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Summary
The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing

variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with dis-

eases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort,

splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance

(VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a

splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would

be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals

overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and

could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in pro-

tein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated

with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common

splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants

to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clin-

ical interpretation of splicing variants.
Introduction

DNAvariants that abolish, change, or create splice sites can

disrupt messenger RNA splicing and adversely affect pro-

tein synthesis or structure, leading to impaired cellular

function and consequent disease.1 Variants that may alter

RNA splicing can be computationally predicted, and these

predictions can be confirmed by RNA analysis. However,

assessing the clinical consequences of abnormal splicing

can be challenging because of an incomplete understand-

ing of alternative splicing and normal RNA expression pro-

files across tissues.2 Some studies have revealed previously

unrecognized variety in RNA transcript isoforms associated

with well-studied genes, including BRCA1 (MIM: 113705)

and BRCA2 (MIM: 600185), showing that our understand-

ing of naturally occurring alternative splicing of disease

gene transcripts is still evolving.3–6 Recent studies have

also illuminated how differential expression of transcript

isoforms can influence whether certain sequence variants

are tolerated.7,8 As a result of this underappreciated

complexity, variants that allow biologically viable alterna-

tive splicing may be incorrectly classified as disease

causing. Therefore, investigating both the spectrum of var-

iants predicted or assumed to cause abnormal splicing

across a broad variety of genes and their contribution to

naturally existing genomic variation is essential to under-

standing their overall involvement in hereditary disease.
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Several computational tools are used to predict the po-

tential splicing effects of variants encountered during clin-

ical genetic testing for hereditary disease.9,10 However,

these tools often do not have a high positive predictive

value when used individually, particularly for variants

outside the essential splice site(s) (ESS).11,12 Therefore,

their predictions are often not considered usable evidence

for variant interpretation unless there is consensus among

them.13 Direct analysis of RNA, through RNA sequencing

or other methods, may provide evidence that corroborates

computational predictions, but this is not yet routinely

and broadly performed in clinical genetic testing. RNA

analysis can be used to confirm the etiology of a hereditary

disease through gene discovery, variant discovery in a

known disease gene, or accurate interpretation of an

observed variant.14–17 In this article, we focus specifically

on RNA analysis as a variant interpretation tool for

confirming or refuting the splicing effects of computation-

ally predicted splicing variants identified by DNA

sequencing.18–20 We investigated splicing variants previ-

ously identified through clinical genetic testing and specif-

ically the proportion of splicing variants of uncertain sig-

nificance (VUSs) that could be reclassified to either

pathogenic or benign categories via RNA analysis.

Although a few studies have shown the utility of tar-

geted RNA analysis for confirming the effects of splicing

variants identified through targeted gene sequencing, it
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remains unclear how often these variants explain the cause

of suspected hereditary disease in individuals referred for

genetic testing and whether their effects can be observed

in disease-relevant tissues.14,18 In addition, results from

RNA analysis can be misleading or equivocal,5 similar to

other types of evidence considered during clinical variant

interpretation. Further, the prediction of splicing effects

can depend on the reference transcript used. Some clinical

laboratories may choose a single transcript as a reference to

report observed variants, and a splicing variant’s impact on

alternative transcripts can vary significantly. Therefore, us-

ing a single reference transcript in some cases may lead to

improper variant classification and result in missed molec-

ular diagnoses.7,8

Professional laboratory practice standards are not

yet available to provide detailed and specific guidance

for consistently interpreting the clinical significance of

splicing variants. Variant interpretation guidelines from

the American College of Medical Genetics and Genomics

(ACMG) and the Association for Molecular Pathology

(AMP) state that functional evidence such as RNA analysis

may garner supporting, moderate, or strong evidence de-

pending on performance of the assay and quality of the

specimen.13 Per the guidelines, to use data from such com-

plementary methods as strong evidence, the methods

should be well established and used in assays that reflect

the biological environment and designed to generate

reproducible and robust data. In addition, the Clinical

Genome Resource (ClinGen) Sequence Variant Interpreta-

tion Working Group recommends that the strength of a

functional assay should be determined by validation met-

rics, including the use of known pathogenic and benign

variants as benchmarks. The level of evidence awarded

(supporting, moderate, or strong) should then be concom-

itant with the demonstrated validation metrics.21 To our

knowledge, such thorough validations with clearly

demonstrated high positive predictive values have not

yet been described for RNA analysis in a clinical setting.

To better understand the spectrum of splicing variants in

hereditary disease genes and the challenges of interpreting

their clinical significance, we investigated data from a clin-

ical cohort of nearly 700,000 individuals who underwent

diagnostic genetic testing. We also surveyed splicing vari-

ants in two large public databases of human genomic vari-

ation. We considered three classes of splicing variants: (1)

those at the highly conserved ESS (51–2 intronic posi-

tions); (2) those in the splice region near the ESS

(53–8 bp intronic and 51–3 bp exonic positions); and

(3) within our clinical data only, exonic variants that

were outside the consensus splice region but were algorith-

mically predicted to have a splicing effect. The first aim of

this study was to examine the contribution of clinically

reportable splicing variants to different types of hereditary

disease detected with targeted gene panels. The second

aim, taking a cautious approach to weighting RNA analysis

evidence, was to estimate the proportion of splicing VUSs

that could reach definitive clinical classification with RNA
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analysis. The last aim was to understand the prevalence

and implications of splicing variants amid natural varia-

tion in healthy genomes.
Subjects and methods

Clinical genetic testing and cohort analyses
Patient cohort data

We collected DNA sequencing results from 689,321 individuals

who received genetic testing between January 21, 2014 and July

1, 2019 for a range of hereditary diseases related to nine clinical

areas: cancer, cardiology, dermatology, hematology, immunology,

metabolism, neurology, pediatrics, and ophthalmology. Data were

de-identified and approved for use in this study by an independent

institutional review board (Western IRB #20161796). Procedures

followed were in accordance with the ethical standards of the IRB.

DNA sequencing

Next-generation sequencing (NGS)-based gene panels and

customized gene sets were curated by clinical phenotype, clinical

heterogeneity, age of disease onset, mode of inheritance, degree

of penetrance, and other relevant information. As described previ-

ously, we targeted gene sequences with oligonucleotide baits (Agi-

lent Technologies, Santa Clara, CA; Roche, Pleasanton, CA; Inte-

grated DNA Technologies, Coralville, IA) to capture the exons,

510–20 bases flanking intronic sequences, and certain non-cod-

ing regions of clinical interest.22,23 Targeted regions were

sequenced to a minimum depth of 503 and an average depth of

3503 read coverage at each nucleotide position in the reportable

range. All sequencing was performed on Illumina HiSeq or Nova-

Seq instruments (Illumina, San Diego, CA).

Bioinformatics, predictive algorithms, and variant interpretation

The bioinformatics pipeline combined a suite of community-stan-

dard and custom-developed algorithms to simultaneously identify

single nucleotide variants, small indels, large indels, structural var-

iants that have breakpoints within targeted sequences, and exon-

level copy number variants (i.e., deletions and duplications).22,23

Truncating variants comprised stop-gain and frameshift variants.

Effects of missense variants were predicted by PolyPhen2, SIFT,

and AlignGVGD. Loss of a canonical splice site (i.e., R15%

decrease in splice site score compared with reference) was

predicted by MaxEntScan (MES)24 and Splice Site Finder-like

(SSF-like), per prior demonstrations of high sensitivity and speci-

ficity for these tools and thresholds.25,26 Gain of a splice site was

predicted by the splicing module of Alamut (Interactive Bio-

software, Rouen, France) when two or more algorithms met the

significance thresholds for the variant sequence but not for the

reference sequence: MES score > 0, SSF-like score > 70, and Splice

Site Prediction by Neural Network (NNSPLICE)27 score > 0.4.

Cryptic site activationwas predictedwhen two ormore algorithms

met the significance thresholds and scores for the variant

sequence were >10% higher than for the reference sequence, per

Alamut software documentation.28

For this study, we considered three classes of splicing variants:

(1) variants at the ESS, including all variants found at the highly

conserved dinucleotide splice sites flanking the beginning and

end of each intron (51–2 bp intronic); (2) variants located in

the splice site region near the ESS, specifically all variants at

53–8 bp intronic and51–3 bp exonic positions; and (3) clinically

relevant splicing variants >8 bp into an intron or >3 bp into an

exon that were either described in the literature or identified inter-

nally by MES, NNSPLICE, and SSF-like.
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All pathogenic (P) variants, likely pathogenic (LP) variants, and

VUSs identified in the clinical cohort were considered ‘‘observed’’

variants. Some variants were present in more than one individual

and were therefore counted more than once in analyses of

observed variants. ‘‘Unique’’ variant analyses removed any such

duplicates.

ACMG/AMP sequence variant interpretation guidelines pre-

scribe classifying variants into five tiers: P, LP, VUSs, likely benign

(LB), andbenign (B).13WeusedSherloc—avalidated, semiquantita-

tive score-based refinement of the ACMG/AMP guidelines—for

clinical variant interpretation.29 Within Sherloc, we assigned

each type of evidence (e.g., population frequency, functional

data) predetermined points that were tallied to determine a vari-

ant’s clinical classification. Results from computational tools that

predict the effects of variants on splice sites, or the effects of

missense variants, were awarded a maximum of one point if there

was consensus among the methods. P/LP classification required a

minimum of four points accumulated from evidence indicating a

pathogenic effect, and B/LB classification required a minimum of

three points indicating a benign effect. Variants that did not reach

the thresholds for LP or LB were categorized as VUSs.

For the purpose of this study, variants classified as P, LP, and

VUSs were considered clinically reportable, but only those classi-

fied as P or LP were considered clinically significant.

Projection of reclassification rates following RNA analysis

As described above, Sherloc supports a semiquantitative approach

to clinical interpretation of sequence variants by awarding points

to each type of evidence applicable to a variant. After all available

evidence is considered, some variants do not have sufficient points

to reach classification as P/LP or B/LB but instead fall within a

range of points that warrants a VUS classification. To estimate

the potential for RNA analysis to provide useful evidence for clin-

ical interpretation of variants within our large clinical cohort, we

used a cautious approach for weighting evidence from RNA anal-

ysis. We awarded such evidence only supporting weight, which

corresponded to one point in Sherloc. We identified all splicing

variants classified as VUSs and separately determined the propor-

tion that would reach a definitive classification (1) if one evidence

point were added toward P/LP classification, to represent concor-

dance between the DNA and RNA analyses, and (2) if one evidence

point were added toward B/LB classification, to represent discor-

dance. Projected evidence points were added separately in both di-

rections because a given VUS may have evidence points on both

the pathogenic and benign scales.
ClinVar analyses
ClinVar is a public database of sequence variants identified

through literature review and clinical and research testing that

typically have clinical classification(s) assigned by submitters.30

We evaluated ClinVar variant submissions from 95 clinical labora-

tories (excluding Invitae-only submissions) by using the data

release from February 3, 2020. Because ClinVar-provided variant

call format (VCF) annotations only include splicing variants at

the ESS, we ran SnpEff to reannotate variants in ClinVar and iden-

tify splicing variants at both the ESS and non-ESS locations. We

predicted splicing variants by location and gene annotation with

SnpEff by using the Ensembl database GRCh38.86, filtering

variant effect annotations to protein-coding transcripts specif-

ically and identifying those annotated as ‘‘splice_donor_variant’’

(þ1–2 intronic), ‘‘splice_acceptor_variant’’ (�1–2 intronic), or

‘‘splice_region_variant’’ (53–8 bp intronic and 5 1–3 bp exonic
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positions). Resulting splicing variants were grouped by interpreta-

tion as (1) P/LP, when all entries were classified as P or LP; (2) B/LB,

when all entries were classified as B or LB; (3) VUSs, when all en-

tries were classified as VUSs; or (4) discordant, when R2 entries

had conflicting interpretations.

Genome Aggregation Database analyses
Genome Aggregation Database (gnomAD) is an open-source data-

base of 15,708 genomes and 125,748 exomes from sequencing

studies of individuals without overt monogenic disease

(v.2.0.2).31 The >8 million gnomAD variants included in this

study comprised coding-region variants (including missense vari-

ants, truncating variants, silent variants, in-frame indels, and

alterations to start and stop codons) and splicing variants in all ca-

nonical coding transcripts (i.e., CANONICAL ¼ YES and BIOTYPE

¼ protein_coding per the Ensembl Variant Effect Predictor, v.85).32

Variants of low quality (i.e., FILTER! ¼ PASS) in either the exome

data or the genome data were excluded from the analysis; only var-

iants that were high quality in both datasets, or high quality in

one dataset and absent from the other, were included. Variants

with no population prevalence (i.e., allele count¼ 0) in both data-

sets were also removed from analysis.

Splicing variants analyzed in this study were based on existing

annotations by the Ensembl Variant Effect Predictor and included

‘‘splice_donor’’ (þ1–2 intronic), ‘‘splice_acceptor’’ (�1–2 intronic),

and ‘‘splice_region’’ (53–8 bp intronic and 51–3 bp exonic posi-

tions) variant consequences. Predicted loss-of-function variants

included stop-gain or frameshift variants and ESS variants. We

computed the total number of variants at the ESS andnon-ESS loca-

tions for all protein-coding transcripts as well for a restricted set of

5,951 genes currently associated with monogenic disease (i.e., the

‘‘Mendeliome’’) as curated from the OnlineMendelian Inheritance

inMan (OMIM) database.33 In addition, we examined the distribu-

tion of splicing variants in genes in theMendeliomewith respect to

modes of inheritance (i.e., autosomal dominant, autosomal reces-

sive, autosomal dominant and recessive, X chromosome linked,

and Y chromosome linked). Minor allele frequencies for splicing

variants in gnomAD were determined by the maximum credible

allele frequency via the ‘‘popmax’’ filter and grouped as common

(>1%), rare (0.1%–1%), and very rare (<0.1%).

Statistical analyses
Comparisons were performed with Mann-Whitney tests (Wil-

coxon rank sum tests) where applicable, and statistical significance

was set at p < 0.05.
Results

Splicing variants in the clinical cohort

We first evaluated a cohort of 689,321 individuals who un-

derwent clinical genetic testing and explored the distribu-

tion of observed splicing variants by location within genes,

clinical interpretation, and association with a variety of

hereditary diseases. The data in this study were derived

from a combined equivalent of 26,893,248 single-gene

tests. Among all observed clinically reportable variants

(i.e., P, LP, or VUSs), 13.0% were splicing variants, 72.3%

were missense variants, and 13.8% were truncating vari-

ants (Table 1). Among the observed splicing variants,

16% were at the ESS; the majority of splicing variants at
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Table 1. Number and proportion of splicing variants in Invitae, ClinVar, and gnomAD data

Variant class

Invitae—observed P/LP/VUS
variants (N ¼ 466,736),
No. (%)

Invitae—unique P/LP/VUS
variants (N ¼ 149,139),
No. (%)

Invitae—patients
(N ¼ 689,321),
No. (%)

ClinVar P/LP/VUS
variants (N ¼ 229,329),
No. (%)

gnomAD variants in
protein-coding genesa

(N ¼ 8,795,492), No. (%)

Splicing variants 60,807 (13.0) 22,344 (15.0) 52,047 (7.6) 23,041 (10.1) 825,992 (9.4)

Splicing VUSs 42,534 (9.1) 16,965 (11.4) 37,064 (5.4) 11,116 (4.8) N/A

Splicing VUSs
that RNA analysis
may reclassify

13,281 (2.8) 5,200 (3.5) 12,013 (1.7) N/A N/A

Missense variants 337,649 (72.3) 110,774 (74.3) 219,515 (31.8) 115,571 (50.4) 5,152,451 (58.6)

Truncating variants 64,472 (13.8) 16,806 (11.3) 58,815 (8.5) 35,985 (15.7) 396,944 (4.5)

Columns do not add up to 100% because some variants that fit multiple categories are counted more than once, while other variants (e.g., copy number variants
and in-frame indels) are only represented in the total N. ClinVar data include submissions with conflicting interpretations and exclude Invitae submissions. gno-
mAD, Genome Aggregation Database; P/LP, pathogenic/likely pathogenic; VUS, variant of uncertain significance.
aIncludes missense variants, truncating variants, silent variants, in-frame indels, alterations to start and stop codons, and splicing variants (to58 bp intronic) in all
canonical coding transcripts.
non-ESS locations were within exons (Figures 1 and 2A). A

vast majority of the 1,732 genes sequenced in the cohort

had at least one splicing variant observed: 1,298 had at

least one non-ESS variant, 721 had at least one ESS variant,

655 had at least one of each, and 368 had none.

Wenext examined22,344unique reportable splicing var-

iants in the clinical cohort. One-fourth (24.1%) were classi-

fied as P/LPand the remaining75.9%wereVUSs (Figure2B).

In contrast, the vast majority (88%) of truncating variants

and only a small minority (4.4%) of missense variants

were classified as P/LP. Most of the unique splicing variants

(84%) were outside the ESS. The majority (85%) of unique

ESS variants were classified as P/LP and the majority (87%)

of non-ESS variants were classified as VUSs, consistent

with the ACMG/AMP guidelines specifying that variants

at the ESS should be awardedweight as very strong evidence

toward pathogenicity, while splicing variants outside the

ESS warrant only supporting weight as evidence in the

absence of relevant functional data. However, we also

observed a small subset of 517 unique ESS variants that

were classified asVUSs (Figure 2B) and, in a separate analysis

of the clinical cohort, another ten that were classified as B/

LB (data not shown). In general, these classifications were

due to relatively high allele frequency in the general popu-

lation or known or inferred functional effects such as in-

frame changes, alternate skipping of exons, or escape

from nonsense-mediated decay.

Potential reclassifications with RNA analysis

To estimate the proportion of unique splicing VUSs that

could potentially be reclassified to LP or LB with additional

evidence from RNA analysis, we established that such data

would be awarded one point in Sherloc. Most splicing

VUSs in our clinical cohort were not at the ESS and there-

fore, even if they were to correlate with abnormal results

from RNA analysis, various considerations related to quan-

titative and tissue-specific expression precluded awarding

more weight toward pathogenicity by default. On the basis

of this approach, we projected that up to 5,200 (31%) of
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the 16,965 unique splicing VUSs in our cohort could reach

LP or LB classifications with evidence from RNA analysis

(Table 1). Given that RNA analysis may either corroborate

or refute a computational prediction of altered splicing, we

evaluated what proportion of splicing VUSs would be re-

classified to LB or LP if an evidence point toward pathoge-

nicity and, separately, an evidence point toward benign ef-

fect were applied. Data from our clinical cohort suggested

that 4,851, or 93%, of the reclassifications would result

in LB classifications and the remaining 389, or 7%, would

be LP classifications. Notably, evidence from RNA analysis

would not be sufficient to reclassify most splicing VUSs

(69%) because of the absence of other types of applicable

evidence for 11,765 of the 16,965 unique splicing VUSs.

Overall, of the 122,191 unique VUSs in our cohort that

could be studied further to resolve their clinical signifi-

cance, 16,965 (13.9%) were splicing VUSs, 105,862

(86.6%) were missense VUSs, and 2,032 (1.7%) were trun-

cating VUSs (Figure 2B). Given these proportions, the

5,200 unique splicing VUSs in this cohort that could

potentially be reclassified with RNA analysis accounted

for 4.3% of unique VUSs of all types.

Given that reclassification of each unique splicing VUS

could impact genetic testing results for multiple people,

wealso estimated the impact of RNAanalysis across individ-

uals. Among the 689,321 individuals in the cohort, 37,064

(5.4%) had a splicing VUS, whereas 196,276 (28.5%) had a

missense VUS and 3,540 (0.5%) had a truncating VUS

(Figure 2C). If RNA analysis were to provide informative

data to reclassify the splicing VUSs, we estimated that

917, or 0.1%, of all 689,321 individuals testedwould receive

an updated result from VUS to LP and 11,273, or 1.6%,

would receive a downgraded result from VUS to LB (Table

S1). When only the 37,064 individuals with splicing VUSs

were considered, we found RNA analysis could reclassify

variants to LB or LP for up to 12,013 (32%) (Table S1).

Thus, RNA analysis could potentially result in a clinically

significant reclassification (VUS to LP) for 917 (2.5%) of in-

dividuals with a splicing VUS (Table S1).
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Figure 1. Clinically classified splicing variants in a large clinical
cohort
Number of splicing variants at exonic or intronic positions indi-
cated among 689,321 individuals tested for a variety of inherited
diseases. All exonic splicing variants are grouped together; the in-
tronic splicing variants are grouped by distance from the intron-
exon junction in base pairs (bp). Note that intronic variants more
than 10 bp from the intron-exon junction may not be detected
because of reportable range of the sequencing assay; therefore,
splice variants510 bp intronic are most likely underrepresented.
P/LP, pathogenic/likely pathogenic; VUS, variant(s) of uncertain
significance. Colors within each bar indicate the number classified
as P/LP (blue) or VUSs (green).
Distribution of splicing variants across clinical areas

Individuals in the clinical cohort were tested for different

sets of genes depending on their clinical presentation,

which allowed us to examine the distribution of splicing

VUSs across nine clinical areas to gain insight into the

extent to which RNA analysis may be useful for different

disease genes. The percentage of individuals with

clinically reportable splicing variants ranged from

2.2%–18.2% (mean, 7.6%) across the clinical areas (can-

cer, cardiology, dermatology, hematology, immunology,

metabolism, neurology, ophthalmology, and pediatrics);

splicing VUSs specifically were found in 0.9%–14.3%

(mean, 5.4%) of individuals (Table S1). Within genes

related to cancer (the clinical area with the most individ-

uals tested), splicing variants were found in 5.9% of indi-

viduals. In comparison, a higher proportion of individuals

(12.8%–18%) who were tested in the clinical areas of pe-

diatrics, neurology, and immunology had splicing vari-

ants, most likely because considerably more genes (and

intron-exon junctions) were tested. The proportion of in-

dividuals harboring splicing VUSs that could be poten-

tially reclassified with RNA analysis also varied by clinical

area, ranging from 0.2% in hematology to 5.6% immu-

nology (Table S1).
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ClinVar splicing variants

We next queried ClinVar to explore the characteristics of

splicing variants reported by other clinical genetic testing

labs (Table S2). Splicing variants accounted for 10.1% of

all clinically reportable entries in ClinVar, distributed

across >11,000 genes and reported by 95 clinical labora-

tories, excluding our own submissions (Table 1). Of the

23,041 splicing variants, 38.1% were at the ESS, while

the remaining 61.9% were at non-ESS locations. ClinVar

P/LP splicing variants were mostly within the ESS

(84.7%), while splicing VUS were mostly at non-ESS loca-

tions (69.6%) (Tables S2 and S3). About half (48.2%) of

all splicing variants in ClinVar were VUSs and another

7.3% had discordant interpretations (Table S2).

When all 229,329 clinically reportable variants in the

ClinVar dataset were considered, only 11,116 (4.8%) were

splicing VUSs and thus potentially eligible to test for reclas-

sification with RNA analysis (up to 12,799, or 5.6%, could

be eligible if discordant interpretations were also consid-

ered eligible). However, the majority of these are unlikely

to be resolved with RNA analysis unless yet another cate-

gory of evidence is applied. Among the limited B/LB sub-

missions to ClinVar (laboratories do not routinely submit

B/LB variants), roughly a quarter were splicing variants

and the vast majority were outside the ESS (Table S4).

Splicing-related natural variation in the human genome

In some instances, splicing variants may be rare polymor-

phisms that create viable alternative transcripts that have

not yet been recognized, or they may be clinically signifi-

cant variants present in healthy individuals as carrier or

low-penetrance alleles. To investigate splicing variants

within naturally existing variation in the human genome,

we examined their occurrence in exome or genome se-

quences from healthy individuals in gnomAD and

compared their prevalence to that of other variant types

commonly identified in clinical testing. Splicing variants

accounted for 9.4% of all variants in protein-coding genes

in gnomAD (Table 1), and there was a distribution of

0–1,594 (mean ¼ 42.0, median ¼ 29) splicing variants

per gene. In comparison, missense variants accounted for

58.6% of all coding variants, and truncating variants ac-

counted for 4.5% (Table 1). Thus, the majority of variants

were missense variants (Figure 3A). With respect to loca-

tion, 11.6% of splicing variants in gnomAD were at the

ESS and 88.4% were at non-ESS locations. The over-

whelming majority (92.3%) of splicing variants were very

rare with allele frequencies < 0.1% among different sub-

populations represented in gnomAD (Figure 3B) (the ma-

jority of missense variants [93%] and truncating variants

[96%] were also very rare). Splicing variants at the ESS,

which typically act as loss-of-function changes, comprised

19.4% of all predicted loss-of-function variants (including

nonsense and frameshift variants) in gnomAD, although

some annotations of predicted loss-of-function effects

(i.e., splice_donor, splice_acceptor, stop_gain, and frame-

shift) in gnomAD may be due to sequencing artifacts or
2021



Figure 2. Distribution of variant types and their clinical classifications in a clinical cohort of 689,321 individuals tested for genetic
disease
(A–C) Number and proportion of variants by type and clinical classification among (A) all observed variants, (B) unique variants, and (C)
patients. Splicing variants are shown both as a group and split into ESS and non-ESS variants. VUSþ RNA potential indicates splicing VUSs
that have the potential to be reclassified with the addition of evidence from RNA analysis; these are included in the splicing VUSs total.
ESS, essential splice site.
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Figure 3. Frequencies of splice variants in the healthy human genome
Splicing variants were identified in gnomAD (v.2.0.2) via the Ensembl Variant Effect Predictor (v.85).
(A) Bar graph indicating the absolute number of variants identified in gnomAD within coding regions and 58 bp of intronic sequence.
Splicing variants include variants at the ESS (at intronic positions 51–2) and at non-ESS locations (at intronic positions 53–8 bp and
exonic positions 51–3 bp). Other includes in-frame indels and alterations to stop and start codons.
(B) Allele frequencies for splicing variants as determined by ‘‘popmax’’ and grouped as common (>1%), rare (0.1%–1%), and very rare
(<0.1%).
(C) Outlier boxplot showing the distribution of splicing and truncating variants among hereditary disease genes by inheritance patterns.
(D) Outlier boxplot showing the distribution of splicing and truncating variants in exons of all gnomAD genes with high pLI scores
(pLI > 0.9) and low pLI scores (pLI % 0.9).
AD, autosomal dominant; AR, autosomal recessive; ESS, essential splice site; gnomAD, GenomeAggregationDatabase; pLI, probability of
loss-of-function intolerant; XL, X-linked.
may indicate variants that are already known not to have

loss-of-function effects.7 Those classified as B/LB in Clin-

Var were also present in gnomAD and uniformly had

high allele frequencies.

We also examined splicing variants in gnomAD across

5,951 genes associated with monogenic disease (referred

to as the Mendeliome). Roughly a quarter (25.8%) of all

splicing variants in gnomAD were in the Mendeliome
702 The American Journal of Human Genetics 108, 696–708, April 1,
and the vast majority (89.5%) were at non-ESS locations.

Further, splicing variants accounted for 9.1% of Mende-

liome variants, whereas missense and truncating variants

accounted for 50.9% and 3.4%, respectively (Table S5). In

addition, splicing variants at the ESS represented 21.9%

of all predicted loss-of-function variants in the Mende-

liome. The vast majority (92.6%) of splicing variants in

the Mendeliome were very rare with frequencies < 0.1%
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among all subpopulations. Splicing variants within the

Mendeliome were enriched in genes associated with auto-

somal recessive inheritance when compared with genes

associated with autosomal dominant inheritance (mean

splicing variants per gene ¼ 67.8 versus 60.1, Wilcoxon p

value < 0.01). Relatively few splicing variants were found

in X-linked disease genes (mean splicing variants per

gene ¼ 30.5, Wilcoxon p value < 0.01). Lastly, splicing

variants in the Mendeliome were uniformly more preva-

lent than truncating variants, and both were more com-

mon in genes associated with recessive disorders than

those associated with dominant or X-linked disorders

(Figure 3C).

High probability of loss-of-function intolerant (pLI)

scores in gnomAD indicate that a gene has a high likeli-

hood of being intolerant to loss-of-function mutations.34

As expected, splicing variants appeared to be depleted in

genes with high pLI scores (mean ¼ 3.6 per exon for pLI

> 0.9, scale 0–1) when compared with those withmoderate

or low pLI scores (mean ¼ 4.2 per exon for pLI < 0.9, Wil-

coxon p value< 0.01) (Figure 3D), consistent with findings

in a recent study.7 Regardless of whether a variant was at an

ESS or had a truncating effect, genes with high pLI scores

had fewer of these variant types than genes with low pLI

scores (Figure 3D). Among genes with high pLI scores

and associated with autosomal dominant disorders, 12

had R1 ESS variants but no truncating variants. All ESS

variants were very rare (i.e., <0.1% population frequency);

upon further inspection, the majority appeared to be

flagged in gnomAD as ‘‘LC_LoF’’ by LOFTEE, suggesting

that they were most likely artifactual annotations. Finally,

ten genes that were annotated as high pLI and associated

with autosomal dominant inheritance had no ESS variants

or truncating variants at all.
Discussion

The large clinical cohort in this study revealed the preva-

lence of splicing variants relative to other variant types

encountered in genetic testing, highlighted the extent to

which clinical interpretation can be ambiguous among

all types of variants, and specifically helped estimate the

proportion of splicing VUSs that may reach a definitive

clinical classification with the addition of RNA analysis

as interpretation evidence. RNA analysis will be increas-

ingly used to uncover clinically important variants that

remain elusive through traditional clinical DNA

sequencing. As an early step toward better understanding

its use in germline genetic testing, this study quantified

how and when RNA analysis can be useful. Our results sug-

gest that RNA analysis will be especially useful for resolving

splicing VUSs outside the ESS because any consensus pre-

dictions of abnormal splicing for these variants would

only be considered supporting, but not strong, evidence

in the variant interpretation process, per ACMG/AMP stan-

dards. RNA analysis could provide additional corrobo-
The Ame
rating evidence to definitively classify these variants as dis-

ease causing or not. By contrast, splicing VUSs found at the

ESS already have a high probability of pathogenicity

because they affect a critical target of the splicing machin-

ery and are therefore awarded greater weight toward path-

ogenicity. RNA analysis will largely serve to confirm or

refute splicing defects associated with variants at these

highly conserved sites.

Although computational tools may be able to predict

splicing changes caused by novel variants, how those var-

iants alter protein function and explain disease is often un-

clear. In our analysis, most splicing variants in gnomAD

had very low allele frequencies, which would preclude

their unambiguous classification as benign based on popu-

lation frequencies alone. In addition, in both the clinical

cohort and gnomAD, most splicing variants were outside

the ESS; thus, their functional effects were not as predict-

able as those of variants at the highly conserved ESS. As a

result, most splicing variants in our clinical cohort had

been classified as VUSs because the available evidence did

not clearly support or refute involvement in hereditary dis-

ease. Even some variants at the ESS can be classified as

VUSs (such as the 517 unique variants at the ESS in our

clinical cohort) if sufficient protein function appears to

be retained through in-frame exon skipping or other

mechanisms. In other cases, variants at the ESS can even

be classified as benign; within our clinical cohort, at least

ten unique ESS variants had been classified as B/LB because

of evidence such as premature truncation near the end of

the gene that would allow escape from nonsense-mediated

decay (e.g., in CARD9 [MIM: 607212]), exon skipping

consistent with known alternative splicing (e.g., in PKP2

[MIM: 602861]), and high population allele frequency

that exceeds disease prevalence (e.g., in DMD [MIM:

300377]) (internal observations).

This study adds to a growing awareness of the significant

challenges of clinical interpretation of splicing variants

observed in individuals with suspected hereditary disease.

For instance, recent reports describe downgrading splicing

variants at the ESS in BRCA1 and BRCA2 from P/LP to VUSs

or B/LB because of evidence from the Evidence-based

Network for the Interpretation of Germline Mutant Alleles

(ENIGMA) consortium and functional studies showing

that some ESS variants result in viable, functional tran-

script isoforms.6,35–37 In addition, two clinical laboratories

recently reported discordant interpretations of an intronic

variant in BRCA2. One lab classified the variant as LP

because of its low prevalence, in silico predictions of

splicing defects, and RNA analysis demonstrating altered

splicing (but without quantification).18 The other lab

recently downgraded this same variant from VUS to B on

the basis of functional evidence of a partial splicing defect,

clinical and family histories of individuals with this

variant, and co-occurrence with other known pathogenic

variants in trans in BRCA2. Both labs classified the variant

in accordance with ACMG/AMP guidelines.5,18 Although

such examples are expected to be infrequent, they
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nevertheless have significant implications for individuals

who carry these types of variants and may undertake

irreversible clinical actions. Furthermore, the challenge of

interpreting splicing variants is not limited to hereditary

cancer and has been noted in other disease areas, such as

inherited retinal diseases.38 To avoid negative outcomes,

it is essential to consider a variety of types of evidence

for variant interpretation and to use appropriate control

samples during RNA analysis.

Compounding the challenge of accurately interpreting

the effects of a splicing variant is the conundrum of

defining which one or a subset of transcript isoforms

may be affected. This has implications for identifying mo-

lecular etiologies of disease through genetic testing because

clinical laboratories may sometimes choose a single refer-

ence transcript when reporting observed variants. In

some cases, the chosen reference transcript may not be

fully relevant to the disease in question (and the prediction

of splicing effects can be dependent on the transcript cho-

sen), leading to missed diagnoses.8 It is expected that clin-

ical interpretation of variants identified during genetic

testing for inherited disease will eventually consider the in-

dividual expression patterns of specific transcripts for each

disease gene and how those patterns may affect the mani-

festation of disease. Various studies have shed light on the

complexity of gene expression through discovery of novel

exons,39 complex interactions between splicing variants

and tissue-specific effects,40 the effect of cellular context

on splicing in the absence of variants that affect

splicing (e.g., in the progeria-related LMNA gene [MIM:

150330]),41 and quantitative effects of transcript isoforms

on clinical phenotypes.7,42

Although individual discoveries and databases such as

the Genotype-Tissue Expression Project (GTEx) are greatly

improving our understanding of the qualitative and quan-

titative nature of gene expression, that understanding still

remains far from complete.43 Given this and the aforemen-

tioned challenges, our Sherloc variant interpretation

framework based on the ACMG/AMP guidelines awards

a single point to such data and only considers them

complementary to other lines of evidence in supporting

a final clinical classification for sequence variants. From

exploring the utility of adding RNA analysis as a routine

component of clinical testing, we estimated that if data

from RNA analysis were to complement clinical DNA

sequencing of gene panels to reclassify a splicing VUS on

the basis of ACMG/AMP guidelines, an additional 0.1%

of individuals in our clinical cohort would receive a clini-

cally significant result and an additional 1.6% would

receive a negative result.

Our estimate of the potential utility of RNA analysis

closely matched that of a recent study reporting that

RNA sequencing (RNA-seq) would change VUSs to P/LP

or B/LB in 0.7% of 1,000 individuals undergoing diag-

nostic testing of 18 hereditary cancer genes.44 Our

methods produced a strikingly similar result: among

244,871 individuals in our clinical cohort who were tested
704 The American Journal of Human Genetics 108, 696–708, April 1,
for the same 18 genes, we projected that RNA analysis

would change VUSs to P/LP or B/LB in 0.68% of them

(data not shown).

Another challenge in interpreting splicing variants is the

uncertainty of their effects in ostensibly healthy popula-

tions. Public sequence repositories such as gnomAD pro-

vide a critical source of evidence for interpreting variants

in clinical laboratories. The observation that a variant is

rare or absent from gnomAD is typically used as evidence

supporting its pathogenicity when observed in an individ-

ual with suspected hereditary disease. However, our gno-

mAD analyses suggest that some ESS variants, like other

loss-of-function variants, may be tolerated because they

are observed in healthy individuals (although others may

be challenging to differentiate from annotation errors).

We observed a dozen rare ESS variants in presumably

dosage-sensitive genes (i.e., those with high pLI and auto-

somal dominant inheritance) in gnomAD v.2.0.2. When

inspecting these variants further, we found that many

were secondarily labeled as low-confidence by the gno-

mAD tool LOFTEE, which can indicate an annotation

error. Moreover, within the gnomAD web interface

(v.2.1.1), additional variants had been flagged by LOFTEE

or other quality metrics, and some had been removed

when compared with the v.2.0.2 dataset, supporting our

suspicion that most of these variants are tolerated. These

observations fit with the results of a recent study that

used quantitative tissue expression profiling to identify

falsely annotated loss-of-function variants in haploinsuffi-

cient disease genes in gnomAD.7 These findings emphasize

the need for clinical genetic laboratories to be aware of po-

tential shortcomings in large, public control datasets and

to proceed cautiously with clinical interpretation of

splicing variants, even if they are in dosage-sensitive genes.

Tools such as LOFTEE and expression-aware annotation of

gnomAD variants may significantly aid in this effort.

In the context of interpreting novel sequence variants

predicted to affect splicing in known disease genes, we

awarded only modest weight to RNA analysis evidence in

Sherloc. This is because transcript data may not always

reflect actual protein function and because other types of

evidence should also be considered in final variant classifi-

cation. More weight can be granted to functional evidence

generated from rigorously designed methods, such as

well-controlled saturation mutagenesis studies, or from

methods that reflect the biological environment, such as

enzymatic activity assays or in vivo animal models of

disease.45,46 The uniform use of data from RNA analysis

as reliably strong evidence in variant interpretation will

require a comprehensive and quantitative atlas of tissue

and temporal gene expression patterns and a thorough

understanding of the redundancy between transcript

isoforms in healthy individuals and those affected by he-

reditary disease. This would improve interpretation of

variant types beyond those affecting splicing because

even disease-causing missense or other types of variants

can be misidentified or missed altogether when the full
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complement of alternative transcripts and tissue expres-

sion patterns are not considered, and this can lead to

false-negative or false-positive reports.8 This challenge

can also be further compounded by difficulties in accessing

relevant samples for RNA analysis, such as from brain tis-

sue. Finally, until RNA analysis becomes standardized in

clinical genetic testing and until professional practice

guidelines specify how to weigh the evidence, laboratories

will most likely vary in how they incorporate RNA data

into variant interpretation.5

Notwithstanding the challenges mentioned above, RNA

analysis is a tool that will be increasingly and necessarily

used in germline genetic testing. Diagnostic and screening

sequencing panels continually expand in gene content,

increasing the number of VUSs overall and the number of

splicing VUSs detected specifically, thus offering more op-

portunities for using RNA analysis to resolve their clinical

significance. RNAanalysismay also help resolve the clinical

significance of some missense variants that have a more

adverse effect on gene function through a splicing effect

rather than through an amino acid change. Moreover,

RNA analysis can identify deep-intronic variants that may

bemissedby standard clinicalDNAsequencing,which typi-

cally captures only 10–20 bp of noncoding sequence

beyond the intron-exon junction. As a result, some clini-

cally relevant, deep-intronic variants have been reported.

By our analysis, across 84 hereditary cancer genes in Clin-

Var, 15 P/LP intronic variants were between 10–20 bp into

an intron and 12 P/LP intronic variants more than 20 bp

into an intron, together accounting for 0.04% of all P/LP

variants. Deep-intronic variants that affect splicing are

not commonly reported in other types of genes because

those regions are not routinely sequenced and methods to

interpret their effects are not yet robust.12 Still, these vari-

ants are important for molecular diagnosis and attendant

clinical management for some patients.14,47–49 RNA anal-

ysis can also be useful for determining the clinical signifi-

cance of variant types beyond splicing, such as some

truncating sequence variants and even intragenic copy

number variants and other structural rearrangements.

Leveraging data from our nearly 700,000-person clinical

cohort, this study collectively provides a clearer view of the

frequencies of splicing variants across a wide range of

genes in clinically affected individuals, the extent to which

RNA analysis may provide useful evidence toward under-

standing the clinical significance of splicing variants, and

an estimate of their contribution to normal variation in

the human genome. Our projection of the utility of RNA

analysis to reclassify splicing VUSs was aided by Sherloc’s

semiquantitative, points-based interpretation framework,

which objectively incorporates several types of evidence

(i.e., population, clinical, computational, and functional).

There are, however, limitations to our study that should be

noted. First, we chose to restrict our analyses to only those

sequence variants with computational predictions of

abnormal splicing effects. This underestimates the utility

of RNA analysis because experimental discovery of delete-
The Ame
rious intronic variants in inherited genetic diseases is still

in an early stage and because evidence is mounting that

databases of clinically relevant genomic variation are

depleted at present for intronic variants that flank the

ESS or are farther away in deeper intronic sequences.12

Indeed, the clinical data presented in this manuscript do

not broadly address splicing variants found more than

10 bp from intron-exon junctions because, as is typical

in clinical genetic testing laboratories, our standard

sequencing assay used for the majority of individuals in

our cohort only addressed variants within 20 bp of exons

for hereditary cancer genes and 10 bp of exons for other

genes. Further, computational tools for predicting splicing

variants can occasionally yield false negatives, so some true

splicing variants may have been missed.11 In addition,

although RNA analysis can help determine the conse-

quences of other types of variants, our study did not

address this. A second limitation of our analyses was that

we assumed that each computational prediction of a

splicing variant will be supported by reliable data from

RNA analysis. As a result, our calculations most likely over-

estimate the utility of RNA analysis for resolving known

splicing VUSs. In contrast, at least for some splicing vari-

ants and within specific genes, RNA analysis will be vali-

dated to yield reproducibly reliable information; evidence

from that analysis will be given more weight in clinical

variant interpretation, thus raising the number of in-

stances in which RNA analysis can facilitate reclassification

from VUS to LP or LB. A third limitation of this study was

the use of an unselected cohort of clinically affected indi-

viduals referred for testing, which may have inherent de-

mographic or other biases. For instance, some clinical areas

such as cancer were overrepresented in the sample set and

some genes were tested many more times than others;

data from these genes should therefore be interpreted in

that context. Finally, we only considered RNA analysis

as a complementary method and not a primary testing

method. As a result, splicing variants outside the typical

sequencing range, as noted above, were not addressed

in the projection. Future studies using whole-genome

sequencing will help us better understand the true preva-

lence of these variants and address this limitation.

The expanding use of RNA analysis in hereditary disease

testing will power both discovery and diagnosis, therefore

improving the clinical sensitivity of genetic testing. For in-

dividuals that could benefit from RNA analysis, reaching a

definitive diagnosis can be a profound outcome, particu-

larly when it immediately improves clinical management.

On a relative scale, because resolving the clinical signifi-

cance of missense VUSs, rather than splicing VUSs, will

naturally have a greater impact on reducing uncertainty

in clinical genetic testing (our clinical cohort had more

than five times more individuals with missense VUSs

than those with splicing VUSs), several novel methods

are being developed to understand the consequences of

protein sequence changes. Likewise, a better understand-

ing of transcript isoforms and their expression patterns
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will improve our ability to capture a broader spectrum of

clinically relevant splicing variants. These advances have

to occur within a guidance framework developed together

by clinical laboratories and professional societies to sup-

port consistency in the methodology used to detect and

clinically interpret splicing variants.
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