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The application of computational and mathematical modelling to explore

the mechanics of biological systems is becoming prevalent. To significan-

tly impact biological research, notably in developing novel therapeutics,

it is critical that the model adequately represents the captured system.

Confidence in adopting in silico approaches can be improved by applying

a structured argumentation approach, alongside model development and

results analysis. We propose an approach based on argumentation from

safety-critical systems engineering, where a system is subjected to a strin-

gent analysis of compliance against identified criteria. We show its use

in examining the biological information upon which a model is based,

identifying model strengths, highlighting areas requiring additional bio-

logical experimentation and providing documentation to support model

publication. We demonstrate our use of structured argumentation in the

development of a model of lymphoid tissue formation, specifically Peyer’s

Patches. The argumentation structure is captured using ARTOO (www.

york.ac.uk/ycil/software/artoo), our Web-based tool for constructing

fitness-for-purpose arguments, using a notation based on the safety-critical

goal structuring notation. We show how argumentation helps in making

the design and structured analysis of a model transparent, capturing

the reasoning behind the inclusion or exclusion of each biological feature

and recording assumptions, as well as pointing to evidence supporting

model-derived conclusions.
1. Introduction
The application of computational and mathematical models is a generally

accepted technique in physical sciences and engineering, yet was met with

scepticism by experimental biologists [1]. With advances in computational

power, the development of new modelling techniques and methodologies,

and the promotion of interdisciplinary research, traditional biological studies

complemented by the use of in silico predictive tools is now becoming more

prevalent. Computational models have the capacity to provide an interpretation

of biological data and act as a scientific tool through which new hypotheses can

be established and explored [2,3]. Furthermore, computational tools allow

virtual experimentation not bound by the ethical and financial constraints

associated with laboratory studies.

Computational techniques can appear to be opaque tools that provide a

researcher with a result or prediction but little understanding of how the

result has been reached [4]. The application of scientific software continues to

be discussed in journals [5,6], with concerns that researchers place too much

trust in published software, and suggestions that code, as well as methods
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and results, should be subject to peer review [7]. The concern

about adequacy of software engineering is appropriate, but the

same focus needs to be applied to the underlying biological

information from which a computational model is been con-

structed. In the course of implementation, decisions are made

concerning the interpretation of available biological data, how

that biological data will be translated into a form that can be

effectively expressed on a computer; and which assumptions

or abstractions are to be employed to mask gaps in the biological

understanding. An appreciation of the underlying biological

information and the ways in which it is used in the compu-

tational model is critical to the sensible interpretation of

computational results in the context of the biological domain.

However, it is rare to see a published model of a biological

system accompanied by any in-depth description or justification

of the decisions made in development. While much focus has

been given to the release of software tools that aid researchers

in developing and analysing computational models [8–13],

the same attention has not been given to providing researchers

with a means of showing that their developed tool can ade-

quately support the investigation of a specific biological

research question: that the tool is fit for purpose.

We have previously developed a computational model, or

simulation, of pre-natal lymphoid tissue formation to help

direct and understand results of laboratory experimentation

[14,15]. Through the use of a cell culture system, the behaviour

of cells was tracked for a period of 1 h, after which key cell be-

haviour responses were calculated. These responses revealed

that there is a statistically significant change in cell behaviour

when in the vicinity of developing lymphoid tissue [14]: the

reasons for which are currently unclear. Our computational

model adopts an agent-based approach, allowing exploration

of how system dynamics, in this case changes in cell behaviour

responses, might emerge from interactions between cells and

their environment [15,16]. For the full detail of our implemen-

tation, we direct the reader to our previous descriptions of the

biological information captured in the model, and the manner

by which this has been translated into a specification that can

be encoded as a computer program and simulation platform

[14,15]. As a brief overview for the purposes of this paper,

three cell populations are known to be involved in lymphoid

tissue development, counts of which have been calculated

from flow cytometry experiments. Other attributes, such as

cell speed, have been determined from either laboratory exper-

iments or from the literature. Our model captures each of these

cells: each of which possesses individual attributes and state.

Transitions between these states are described in a set of rules,

described in detail in unified modelling language (UML) state

diagrams [15]. With each simulation time-step, cell behaviour

is simulated dependent on the current state of the cell and the

cell’s location. The environment, in this case the developing gas-

trointestinal tract, is modelled as a continuous space, with

dimensions set that are representative of measurements taken

from stereomicroscopy images. Simulated adhesion and chemo-

kine diffusion pathways influence the behaviour of these cells,

causing the emergence of aggregations of cells within the simu-

lated environment: aggregations that become lymphoid organs.

Our previously published studies demonstrate that we could

use simulation to reproduce emergent cell behaviour that is stat-

istically similar to that observed in ex vivo culture, thus

providing us with a strong baseline behaviour from which we

can use the tool to explore the mechanisms underlying tissue

development [14,15]. Through careful statistical analysis of
simulation behaviour, including sensitivity analyses [13], we

were able to identify key pathways in the simulated model

and suggest how the existence of such pathways in the biologi-

cal system could be investigated in the laboratory. However, as

for any model, the simulation and its results are heavily influ-

enced by the implementation decisions taken when our

simulator was developed.

In general, simulations of complex systems, including

biological systems, are difficult to describe: it is hard to explain

and justify complex interactions, either in real biological sys-

tems or in simulations. Toxicology and human risk

assessment studies, for example, use adverse outcome path-

way (AOP) tools to demonstrate existing understanding of

how molecular, cellular, organ and organism interactions

link a molecular initiating event with a particular adverse out-

come, such as skin inflammation [17]. This information,

derived from the literature or experimental studies, is analysed

and presented as a flow diagram. The strength of the evidence

supporting each event, which may be established as well as

hypothetical or predictive, is evaluated and accompanies the

diagram. Yet, AOPs have been criticized for providing a rep-

resentation of the toxicological process that is simplistic [17],

splitting the representation of the process and the evidence.

For the description of computational models, both unified

modelling language, adopted in the development of computer

software, and systems biology mark-up language (SBML) may

be applied [18–20]; the latter possessing the benefit of allow-

ing model execution by a number of SBML-supported

software tools. Both however are limited by restrictions in

the extent of the system they can capture: UML lacks the form-

alism to capture some biological features (such as cyclic-

feedback) [21], and SBML cannot currently describe complex

agent-based models. In addition, both are purely descriptive:

neither provides complete, evidence-supported detail stating

how that model has been composed. In ecology, the ODD

(overview, design concepts, details) protocol is starting to

address this, through application of a standard protocol com-

pleted while implementing a computational model, with the

aim of ensuring reproducibility of results [22]. The ODD pro-

tocol addresses the purpose behind the creation of the

model, details the inclusion of each biological component of

interest (e.g. cell type) and defines submodels that describe

how observed biological behaviour and attributes are

implemented. Any specific assumptions underlying the

implemented behaviour are also recorded. The ODD authors

note that completion of the protocol provides researchers

with all the information they require to run the simulation

and reproduce the published results: the level of information

required for a typical methods section of a publication [22].

Yet, ODD also does not provide a motivation and justification

for the detailed model and implementation. Scientific repeat-

ability is addressed, not fitness for purpose. The ODD

authors also state that, within the protocol, there should be

no recording of information concerning experimental scen-

arios, simulation experiments and results from statistical

techniques such as sensitivity analyses: these should be

recorded and published separately [22]. However, we contend

that having such information within the simulation design is a

key part of an argument of fitness for purpose that convinces

researchers the simulation is appropriate for the studies in

which it will be applied.

Here, we present the use of a structured argumentation

approach that assists the researcher in recording justifications
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and rationale for both the biological detail and engineering

process that underlie the development of a computational

model, to assist others in interpreting the predictions that

model generates. We suggest the adoption of this approach

within an existing process of computational model develop-

ment, for example that suggested in [3,15], yet acknowledge

the potential for a researcher to use constructed arguments

as a guide for alternative processes of model development.

The argumentation approach is widely applicable and is

independent of the choice of techniques used for model

description: it can be applied to models described in notations

such as UML or SBML and to models accompanied by ODD

or AOP descriptions. Our approach takes inspiration from

the field of safety-critical systems: like biological systems,

safety-critical systems comprise complex interactions, within

a system, between systems and with the wider environment.

In critical systems engineering, a system cannot be declared

safe, but can be demonstrated to be ‘as safe as reasonably prac-

ticable’ [23]. Prior to the adoption of safety-critical systems

(e.g. aircraft, certified by military or civil aviation authorities),

it must be shown that the system and its development meet

stringent compliance requirements: hazards must be shown

to have been identified systematically and thoroughly, and

mitigated to an appropriate level. Acceptable safety can be

established and presented using arguments over evidence.

We have adapted this technique to give a structured argumen-

tation approach that can be used to demonstrate acceptable

fitness for purpose. In common with acceptable safety, our

argumentation approach aims to capture and expose reason-

ing, via an argumentation structure, to critical scrutiny, in

order to establish trust in simulations [24,25]. While it may

seem unnecessary to use techniques from aircraft safety in bio-

logical simulation, we note that errors or misinterpretation of

simulation results may have significant, possibly even safety-

critical repercussions if, for instance, a simulation is used as

a key decision-making tool in clinical trials [26,27]. Opening

all simulation design and implementation decisions to critical

scrutiny requires that elements captured in the model be trace-

able to the biological domain, and their inclusion justified with

respect to abstraction levels and the purpose of the simulation.

Drawing on safety-case argumentation, we create a dia-

grammatic summary of the structured argument of fitness

for purpose, using a visual notation closely based on the stan-

dard safety-critical argumentation notation, goal structuring

notation (GSN) [28,29]. The argument is presented as a tree

of connected argument components, starting from a top-

level claim (a GSN goal). The researcher identifies a set of

fitness-for-purpose requirements (referred to as goals or

claims, that the argument seeks to substantiate), and a set

of strategies that can be used to assess whether the require-

ment has been met. The strategies typically break goals

down into subgoals, and eventually link to evidence sup-

porting the claim, alongside the source of the evidence,

where appropriate. In the simulation context, the GSN argu-

ment structure summarizes the biological information upon

which the model has been constructed, opening this to cri-

tique. GSN also allows goals to be linked to assumptions

and justifications. If a requirement cannot be fully supported

by available evidence, for example where there are gaps in

the biological understanding, then the assumptions and

abstractions made in place of this evidence are documented,

opening all implementation decisions to scrutiny by other

researchers in the field and identifying areas of biological
study that have been overlooked or require further laboratory

work. In addition, and in contrast to the ODD protocol

described above, argumentation approaches can be applied

not only to simulation development, but also to design and

sensitivity analyses and simulation experiments.

One notable side effect of focusing on the justifications for

a simulation model is to engage researchers from differing

disciplines in the process of capturing the model to be imple-

mented. Following sound software engineering principles, we

can express the model in structures and language that is not

discipline dependent, and then provide an argument that the

implementation conforms, in a traceable, repeatable manner, to

this model as part of the overall fitness-for-purpose argument

[30]. Constructing the argument using a visual notation results

in a document that can be easily interpreted by researchers

across disciplines, and which can be published alongside the

description of and results from the simulation. The overarching

objective of this approach is to increase confidence in the use

of simulation-derived predictions, potentially increasing the

impact of a simulation study. While it is possible that providing

a detailed rationale behind simulation development might risk

limiting a researcher’s willingness to challenge the results of

work supported by argumentation, we feel this technique has

the potential to address an important void in biological simu-

lation development: the provision of a method by which a

researcher can fully appreciate the thought processes behind

model composition. In biological contexts, the rationale is

never a fully explored, uncontentious argument, because the con-

text is not that well understood. Instead, the argument exposes

the rationale and understanding to critique, initiating a healthy

debate about the quality of the experimentation and the results.

To support both our adoption of the argumentation

approach and to encourage wider use of argumentation

in conjunction with simulation-based research, we have

developed a freely available Web-based argumentation

tool, ARTOO (www.york.ac.uk/ycil/software/artoo). Here,

we demonstrate argumentation, and the use of ARTOO, by pre-

senting the argumentation that supports our simulation of

lymphoid organ development [13–15]. We present our

implementation decisions and expose to scientific scrutiny

the case that our simulation is fit for the defined purpose of

our published study. We demonstrate the power of the

approach in providing an accessible description of the detail

and rationale of a simulation of a biological system, ensuring

anyone using our model can see clearly how the biological

information has been used and can assess the impact our

assumptions and abstractions have on simulator response.

The ARTOO tool, the description of the GSN-like notation and

the case study together make it possible for researchers to

adopt the argumentation technique, with the objective of

increasing confidence in the application of computational

modelling and predictive tools.
2. Material and methods
2.1. The biological case study: lymphoid tissue

development simulator
Through the adoption of an agent-based modelling approach, we

have developed a computational model, or simulation, of lym-

phoid tissue development in pre-natal mice [14,15]. Populations

of haematopoietic cells migrate into the developing gut from

http://www.york.ac.uk/ycil/software/artoo
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embryonic day 14.5, forming aggregations of cells around

adhesion factor expressing stromal cells 72 h later [31–33].

These aggregations mature to form lymphoid organs capable

of triggering adaptive immune responses to pathogens. Cell

observations captured in ex vivo culture at hour 12 of develop-

ment (velocity and displacement) reveal that haematopoietic

cells behave in a statistically significantly different manner

when in the vicinity of a developing aggregation [14]. Although

a basic model of tissue formation has been developed through

laboratory experimentation [31,34–36], the reasons for this

emergent behaviour are not fully understood. Adopting an

agent-based modelling approach has allowed us to simulate

the behaviour of each individual cell within a simulated

gastrointestinal tract environment, with each cell possessing

attributes (cell speed, size, etc.) and behavioural characteristics

observed in the laboratory or in the literature. Data analyses

suggest that there is no statistical difference between the emer-

gent behaviour of cells in the ex vivo culture system and our

simulated haematopoietic cells [14]. This result, combined with

a rigorous statistical analysis of simulation behaviour [13] has

provided us with a tool that we have used to develop and test

hypotheses that can inform future laboratory investigations.

2.2. The argumentation tool: ARTOO
ARTOO was developed to provide an argument-driven platform for

presenting a stringent analysis that the design and implementa-

tion of a computational model of a biological system is fit for

purpose (figure 1). This permits the construction of an hierarchical

argumentation structure using a GSN-like, graphical notation.

The tool released is under a GNU GPL3 licence, is freely accessible

via www.york.ac.uk/ycil/software/artoo and runs in an up-to-

date version of the Chrome and Firefox browsers. To encourage

adoption of the approach, full instructions are available along-

side the tool and the argumentation structures in this paper can

be loaded into the argumentation design window for further

exploration. Argumentation structures developed in ARTOO can

be extracted as high-quality PNG images that can be published

alongside a description of a developed simulation. Evidence that

may be located elsewhere, such as in publications or in statistical

analyses, can be embedded within the structure through use of

hyperlinks, making all the argument information available to a

researcher analysing the implementation.

2.3. Constructing an argument
An argument is developed as a hierarchical decomposition of

claims relating to the purpose of the simulation. The goal of

the argument is to support a claim, ultimately with evidence if

possible, while keeping a record of the context of that claim.

The first step in constructing any argument is to identify the

top-level claim that we are seeking to establish and its context.

The context of a top-level claim in a fitness argument needs to

clarify the purpose of the simulation and define key terms. The

context is connected to the claim with lines with white arrow-

heads. Components supporting the top-level claim, explained

next, are connected with lines with solid arrowheads.

Connections between a top-level claim and supporting sub-

claims are made via a strategy node. This strategy should

detail the steps that will be taken to argue that the top-level

claim is supported. These strategies may in turn lead to the defi-

nition of further claims, subclaims, that are then argued in turn.

Examining a subclaim increases confidence that its parent claim

holds, and all subclaims are considered together when making

an overall judgement on whether the top-level claim is met.

Some subclaims can be substantiated by pointing to evidence,

such as statistical results or published research. Whereas in

safety-critical safety cases, where all claims must ultimately be

substantiated by evidence, fitness arguments allow us to mark
some undeveloped claims. This allows us to indicate uncertainties:

areas where the biological knowledge is missing or incomplete,

or where further biological experimentation can be usefully

undertaken. Undeveloped claims should not be seen as a weak-

ness in the simulation, but as a clear statement that the researcher

has recognized a gap in understanding, and addressed these in a

particular manner (through use of assumptions or an abstrac-

tion). Claims that cannot be substantiated are accompanied by

a white diamond.

When each identified claim and subclaim has been documen-

ted, the argument structure summarizes how the researcher

believes the top-level claim can be substantiated. Reviewers and

collaborators can peruse the structure to gain an appreciation

of the link between the biological system and the simulation,

and to identify any areas where the simulation authors can be

challenged to improve their argument [37].
3. Results
3.1. Arguing fitness of the lymphoid development

simulator using ARTOO
We present our argument that our lymphoid tissue develop-

ment simulation [14,15] is an adequate representation of the

biological system, and thus fit for the purpose of studying

haematopoietic cell aggregation. Figure 2 shows the top-

level claim, that ‘our model is an adequate representation of

the biology’, and its immediate subclaims. To begin the pro-

cess of arguing that this is the case, we explicitly state what

we mean by an adequate representation and state the pur-

pose behind the implementation of the model: a vital

consideration when determining what simulation results

mean in the context of the biological system. The rationale

for substantiating the top-level claim is stated in the attached

strategies. Here, we argue over ‘the scientific context, the ade-

quacy of our abstraction and adequacy of experimental

results’. In this case, the strategy leads to four subclaims

that explore: the underlying biological data upon which our

simulation is based (claim 1.1.1); the evidence supporting

any abstractions that have been made (claim 1.1.2) and the

ability of the simulator to reproduce cell behaviour observed

in the laboratory and detailed in the literature (claim 1.1.3

and 1.1.4). The arguments supporting each of these claims

can be developed separately.

3.2. Arguing adequate representation of the biology
Figure 2 shows the expansion of claim 1.1.3, that our simu-

lated cell behaviour is representative of that observed in the

laboratory. This is a key claim in our argument: we are pre-

senting evidence to support our belief that the cell

behaviour that emerges in the simulation is representative

of the biological system. Similarly to the top-level claim, the

subclaim is accompanied by a strategy that was used to sup-

port that claim (strategy 1.1.3.1). As noted in our description

of our simulator in the Methods, through use of an ex vivo
culture system we have obtained cell behaviour observations

to which simulated cell responses can be contrasted [14].

We make further subclaims in figure 2 that the behaviour

captured in this system is statistically similar to that observed

in simulation, for both cells close to (less than 50 mm) and

far from (more than 50 mm) a forming aggregation of

haematopoietic cells. For full transparency, we state the stat-

istical test that we have used in this comparison, and a

http://www.york.ac.uk/ycil/software/artoo
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Figure 1. (a) A screenshot of the ARTOO argumentation tool. This runs in a Web browser window in an up-to-date version of either Chrome or Firefox browser (other
browsers do not fully support the required technologies). The File menu provides three options: open a previously developed ARTOO argument structure; save an
argument structure, export the current argument structure as a PNG image. The Build menu provides options to create, edit and delete nodes (representing argu-
ment components); and to create or delete connections among nodes. The View menu operations enable zooming in, zooming out and centring of the argument
structure. Nodes in the argument structure can be individually moved using the computer mouse by left clicking and dragging the node. Left mouse clicking and
dragging on areas outside of the nodes will drag the entire structure. Right mouse clicking on an argument node (shown in the screenshot on the ‘Assumptions’
node) allows access to a node-specific menu to edit or delete the node, add or delete a connection to that node, or collapse and hide the nodes below this node in
the tree. A collapsed section of an argument is denoted by a black diamond symbol. (b) Definitions of each node type available in goal structuring notation.
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Figure 2. Top-level of argumentation structure used during the development of a computational tool that captures Peyer’s Patch development, as output by our
ARTOO. The tool enables the developer to capture their claims and evidence using GSN. A claim is made that the simulation is an adequate representation of the
biology, and arguments stated that support this claim. In turn, this claim is split into four subclaims. A black diamond notes that the claim has been developed yet
is shown in the following figures due to limitations on space. Claim 1.1.3 has been developed in this figure, noting the evidence that simulated cell behaviour at the
12 h time-point is statistically similar to that observed ex vivo. Where a goal is stated, the tool enables the developer to link the goal to the evidence that supports
the claim. Here, the figure is demonstrating that this evidence is within selected publications.
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justification of why we believe that this is the correct statisti-

cal test for drawing this conclusion. Finally, we show the

evidence that supports the structure of claims (in circles):

Mann–Whitney U-test statistics that reveal no statistical

difference between the behaviour of cells in the simulation

and that in the laboratory, with a note stating where the bio-

logical data we have used to draw this conclusion can be

located. In ARTOO, hyperlinks can be used to link to such

supporting evidence.
3.3. Biological data: availability, adequacy and accuracy
Whereas claim 1.1.3 above details how the simulation result

compares with specified biological data, claim 1.1.1 (figure 3)

examines the adequacy and accuracy of the biological data

upon which our simulation has been constructed. The argu-

ment summarizes the specific biological data that has been

used in the implementation, the source of these data, and

where applicable, assumptions relevant to that data.

The claim in figure 3 is supported from evidence generated

from four argumentation strategies, each concerning a subset

of simulation parameters derived from biological data: proper-

ties of haematopoietic (LTin/LTi) cells; properties of stromal
(LTo) cells; representation of the intestine environment and

haematopoietic cell aggregation characteristics. The objective

of the argument under this claim is to document the link

between the simulation implementation and the real-world

domain. Thus, available flow cytometry data, stereomicro-

scopy measurements and data mined from the literature are

all included to support subclaims that the simulation has

been built on appropriate data. The argument ensures it is

clear how we have used these biological data to derive simu-

lation parameters. For example, we explain how we convert

flow cytometry data into estimates of cell numbers through

the time course of the simulation. This record of what data

were used, and how, is an important information for a

researcher to have when conducting a full statistical analysis

of the effect that a parameter has on a simulation response.

As previously noted, there are many interesting biological

questions for which no data are yet available. Our structured

argumentation approach clearly indicates where evidence to

support a claim is not yet available: identifying potential

areas requiring further investigation. For example, claim

1.1.1.4.2 in figure 3 has a blank diamond appended, showing

that it is an undeveloped claim, because there was not, at the

time of simulation development, any quantitative biological
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[15]

number of cells is
representative of the
number observed
biologically

claim 1.1.1.1.2:

underlying biological data
are adequate/accurate

claim 1.1.1:this goal purely examinates the biological
information included in the domain model,
and is not a justification of abstractions.
This is argued in goal 1.1.2

context:

1. The percentage of cells
established through flow
cytometry is used as the
percentage of gut area
occupied by the cells at
E15.5, thus giving an
estimate of cell number
2. Only a percentage of
these have the capability
to differentiate and become
Peyer’s Patches. This
percentage has been set
through calibration

assumptions:

1. The percentage of cells
established through flow
cytometry is used as the
percentage of gut area
occupied by the cells at E15.5,
thus giving an estimate of
cell number
2. This cell number is used
in the calculation of a linear
input rate, that inputs the
required number of cells
per time-step such that the
required number is reached
at the time-point
representing E15.5
3. As no further flow
cytometry data are available,
this input rate continues
through to the end of
the simulation

assumptions:

suitable data available to
quantify number of aggregations
that form in the mouse gut

claim 1.1.1.4.1:

cell size is
biologically verified

claim 1.1.1.2.2:number of cells is
representative of
the number observed
biologically

claim 1.1.1.2.1:

suitable data
available to
contrast
simulation
aggregation to
size observed
in vivo

claim 1.1.4.2:

argue that number and attributes of
haematopoietic cells is representative
of biological system

strategy 1.1.1.1:

argue that the
spatial measurements
have been captured
correctly

strategy 1.1.1.3:

argue that the data available
to judge aggregation formation
is fit for purpose

strategy 1.1.1.4:
argue that number and attributes
of stromal cells is representative
of biological system

strategy 1.1.1.2:

simulated gut environment
can be related to
biological measurements

claim 1.1.1.3.1:scale set where
1 pixel = 4 mm

context:

scale set where
1 pixel = 4 mm

context:

A

A

A

J

scale set where
1 pixel =
4 mm

context:

taking measures
at E15.5 and
E16.5 ensures a
rate of gut growth
can be calculated

assumptions:

cell velocities are
normally distributed
[14]. Simulated cells
assigned speeds using
Gaussian number
generator

justification:

claim 1.1.1.1.1:

Figure 3. Expanded argumentation structure for claim 1.1.1 in figure 2. The argument was created during the development of a lymphoid tissue development
simulator that captures Peyer’s Patch development. The claim argues that the biological data against which the simulation is judged are adequate. Where a claim is
stated, the tool allows the developer to link the claim to evidence that supports the claim. In the majority of cases, evidence is provided to substantiate the claim.
However, where data are unavailable, the claim cannot be substantiated, shown by a blank diamond.
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data on aggregations of haematopoietic cells that we could

objectively compare to the simulated aggregations that form

in silico. A researcher assessing our model can clearly see that

we are not claiming to produce aggregations of haematopoietic

cells that are quantitatively similar to that observed in vivo.
3.4. Engineering: justifying model abstractions
Concerns over the modelling of a biological system that is

incomplete is one criticism often levelled at simulation. In

scenarios where this is the case, or the biological knowledge

is sufficient yet modelling the full detail is not computationally

feasible, abstractions need to be made. The impact these

abstractions have on simulation response needs to be analysed

and understood, in order that researchers can translate

simulation results into meaningful biological hypotheses.

Figure 4 shows the argument supporting claim 1.1.2 of

figure 2, that the abstractions made in our model of lymphoid

tissue development are appropriate. The abstractions in this

specific case had to be made due to an incomplete under-

standing of chemokine expression and adhesion factor

expression. While the generally accepted model of lymphoid
tissue development suggests that haematopoietic cell aggre-

gation is driven by the expression of three chemokines

binding to two receptors on haematopoietic cells, other

published research suggests that only one chemokine

causes a significant difference in the formation of cell aggre-

gation [38,39]. As such, we have made the abstraction that a

pathway consisting of one chemokine and one receptor is suf-

ficient to capture this mechanism. As detailed in the top left

of figure 4, studies in the literature suggest that this may be a

suitable abstraction to make, as the inhibition of receptor

CXCR5 causes a significant difference in the formation of

cell aggregation [38], yet there is no significant difference

where the CCR7 receptor is inhibited [39]. Similar abstrac-

tions have been drawn for adhesion factor expression, with

experimental results suggesting that as one adhesion path-

way has a more significant impact on cell aggregation [40],

others can be abstracted from the simulation. A stringent

analysis of each abstraction has provided us with a method

to document these abstractions for full scientific scrutiny,

allowed us to justify why these have been made with sup-

porting evidence and to direct researchers assessing our

simulation to that available evidence.



domain
expert insight

domain
expert insight

domain
expert insight

cell behaviour
calibration
results [14,15]

domain
expert insight

no significant
difference in mice
lacking receptor
CCR7 [39]significant difference

in PP formation if
CXCR5 inhibited [38]

significant difference
in PP formation if
VCAM-1 inhibited
[40]

no quantitative data
exist at the current time

context:

level of expression of
adhesion replicates that
in the biological system

claim 1.1.2.2.2:

capturing one chemokine
is sufficient to capture
emergent behaviour

claim 1.1.2.1.1:
levels of expression of
chemokines replicates that
in the biological system

claim 1.1.2.1.2:

the abstraction (platform model)
is adequate representation

claim 1.1.2:

argue that chemokine
expression is adequately
captured in the simulation

strategy 1.1.2.1:
argue that adhesion factor
expression is adequately
captured in the simulation

strategy 1.1.2.2:

argue that the platform
representation of the gut
environment is appropriate

strategy 1.1.2.3:
argue that the abstractions made
concerning cell interaction do not
affect emergent behaviours

strategy 1.1.2.4:

the physical shape
of the gut has no
impact on PP formation

claim 1.1.2.3.1:

it is not necessary to explicitly
capture lymphotoxin signalling

claim 1.1.2.4.1:a two-dimensional
representation is
suitable to capture the
emergent behaviours

claim 1.1.2.3.2:

capturing one
adhesion factor
is sufficient to
capture emergent
behaviour

claim 1.1.2.2.1:

1. LTin and LTi cells
express two adhesion
receptors, a4b1 and
a4b7, that bind to
VCAM-1, MAdCAM, and
ICAM-1 expressed
by LTo cell [36]

justifications:

1. LTi cells express
two chemokine
receptors, CXCR5
and CCR7—the first
binds chemokine
CXCL13, the second
CCL19 and CCL21 [39]
2. Inhibiting CXCR5
significantly impacts
lymphoid organ
development, whereas
no significant difference
is observed when
inhibiting CCR7

justifications:

1. All cell interactions
occur on the gut
epithelium
2. All LTin/LTi cell
movement occurs on
the epithelium
3. Having a two-
dimensional aggregation
is a suitable abstraction
to judge what causes
cells to aggregate

assumptions:

1. RET signalling is thought
to upregulate LTab
signalling on LTin cells: this
occurs through stable contact
between an LTin and LTi, so is
implicitly included
2. No definitive understanding of
how LTab upregulated on LTi cells,
just that no PP form if not
upregulated [36]. Assumption
made the mechanism to
upregulate LTab is implicitly
included

assumptions:

J

J

A

A

2. Inhibiting VCAM-1
expression has a
profound effect on
aggregation, suggesting
it is dominant [40]

Figure 4. Expansion of claim 1.1.2 in figure 1. This claim examines the abstractions that have been made and whether these are fit for purpose. In this case, the
implementation of chemokines, adhesion factors, the intestine environment and cell signalling is explored.
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3.5. Reproducing emergent behaviour: cell aggregation
Subclaim 1.1.4 is expanded in figure 5. Here, we are examining

whether our simulator reproduces the second emergent behav-

iour observed in ex vivo culture: the formation of aggregations

of haematopoietic cells by hour 72 of the process. Our argu-

ment is structured over three strategies: determining whether

a representative number of aggregations is formed in the intes-

tine environment; exploring whether previously published

experimental results that examine aggregations under different

physiological conditions are replicated and showing that the

simulation captures appropriately the spatial characteristics

of aggregations. These claims are more difficult to argue,

due to the lack of quantitative biological data available. We

can show that our simulator reproduces laboratory gene

knockout experiments [31,39,41,42], but determining whether

we capture aggregation characteristics appropriately relies on

the expert opinion of our collaborating experimental biologists.

Again, our inability to objectively support the claims does not

represent a failure of the model; the argument clearly shows

our claims and evidence, which are open for scrutiny. We con-

tend that, where a simulation is developed to answer a specific
question, the more open researchers are about the decisions

behind the implementation, the more confidence others have

in assessing the impact of simulation-derived results.

A paper description of our argumentation process makes

the approach appear static: claims have been made and justi-

fied, areas of further development have been identified and

supporting documentation produced. However, we use the

argumentation process as a dynamic and inherent part of

simulation design and results analysis. Argument develop-

ment and refinement continues as the simulator is analysed

and developed further.
4. Discussion
Explorations of biological systems have used models,

whether biological or computational, to achieve various

objectives: to produce hypotheses to inform future laboratory

experimentation or clinical trials, to understand complex

datasets and to attempt to understand theories that cannot

be examined using other methods. Yet, the overriding



snapshots verified
by domain experts

calibration results
(evidence: [15])

experiments
replicated in [15],
fig. 5

simulation has been calibrated
to produce a representative
number of PP

1. Calibration is based
on setting the number of
stromal cells (LTo)
that can express RET
ligand (and thus mediate
PP development)

claim 1.1.4.1.1:

simulation captures cell aggregation
emergent behaviour at 72 h

claim 1.1.4:

comparison can be drawn
between PP generated
in silico and those in vivosnapshots verified

by domain experts

claim 1.1.4.3.1:

representative: similar to that
observed in six mice, as shown
in [15]

definitions

assumptions:

1. There are no quantitative data
available on which simulation PP
size can be compared to in vivo
patch sizes. Thus patches are
identified by eye by collaborating
experimental immunologists
2. An analysis of the patches
identified by eye has been used
as a basis for what a patch is,
and from this a lower two-dimensional
area limit estimated. From this an
automated method of detecting
patches has been developed

justifications:

J

argue that a representative
number of PP are formed at
the end of 72 h period

strategy 1.1.4.1:
argue over the simulation’s ability
to reproduce previously published
experimental results

strategy 1.1.4.2:

argue that the simulation captures
spatial characteristics of PP

strategy 1.1.4.3:

simulation reproduces experimental
results showing patch formation
under different conditions in
[31,39,41,42]

claim 1.1.4.2.1:

Figure 5. Expansion of claim 1.1.4 in figure 1. This claim states that the simulator appropriately replicates the observed emergent behaviour: cell aggregation
indicative of Peyer’s Patch formation.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141059

9

objective is to interpret model results in the context of the bio-

logical domain. To achieve this, the researcher must

understand the mapping between the biological system

being studied and the model of that system.

Specific to biological simulations, the researcher creating

the simulation must understand the impact that decisions

made in implementation have on simulation behaviour, and

those interpreting the results must understand how these

decisions influence what that result means in the context

of the real-world system. Although a large amount of work

has been undertaken in the development of tools that aid

the implementation and analysis of simulations of biologi-

cal systems, a method for demonstrating that a simulation

implementation is an adequate representation of the
biology has yet to be adopted. This is challenging given

that simulation development should be an inherently cross-

discipline activity. Here, we have shown that the application

of a structured argumentation approach has the potential to

address this, using our previously described lymphoid

tissue simulator as an exemplar. By taking safety-critical

system engineering as an inspiration, simulation developers

can use argumentation to provide a detailed case that their

tool is fit for the clearly stated purpose for which it has

been designed, supported by available evidence.

Where these tools are applied as part of a key decision-

making process or for hypothesis generation, such as drug

development, a clear rationale for the fitness for purpose of

the model is essential.
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Conducting a structured analysis of the fitness-for-purpose

requirements using GSN produces a diagrammatic summary

that can be created and interpreted by researchers across the

disciplines, opening the implementation to scrutiny by exper-

imental biologists as well as simulation developers. We have

previously advocated a principled approach to simulation

development where a number of models are developed: a

model consisting exclusively of the biological information to

be captured, a translation of this model into a specification

that can be encoded as a simulation, an executable of that spe-

cification and a model detailing how simulation-derived

results will be interpreted in terms of the biological domain

[15,43]. By creating argumentation structures at each stage of

simulation development, each step in the simulation develop-

ment is made transparent, the reasoning behind the inclusion

or exclusion of a biological feature or assumption is provided

and evidence given as to why this conclusion has been drawn.

By including descriptions of experiments that have been per-

formed using the simulation, other researchers are equipped

with all the detail required to repeat these experiments, to

judge their contribution to their own research. The choice of

biological data upon which the simulator is run, and how

the result has been interpreted, is made explicit. Specific

areas where the current biological understanding is lacking

are identified (as undeveloped claims), and the abstractions

introduced are explained and justified. An effect of the unco-

vering of incomplete knowledge is viewed as necessarily

making a model unfit for purpose: instead, the process of

argumentation highlights where biological experimentation

might be focused to improve understanding [44]. These

aspects have an impact on the result generated by the simu-

lator, and thus will impact how this result is translated in

the context of the real-world domain.

The field of safety-critical systems, from which this

approach takes its inspiration, has an argumentation-based

culture: one which if adopted by those developing simu-

lations of biological systems, could increase the confidence

in the application of computational predictive tools [44].

The adoption of such a culture, and such rigour in model
design, could also not be restricted to those developing simu-

lations, yet contribute to much wider discussions concerning

the relationship between any model and the biological system

it represents. The criticisms often directed towards simu-

lation-based models are beginning to be levied towards cell

culture and animal models, with studies questioning how

representative these traditional biological models are of the

system they have been designed to represent: the human

[45,46]. The scope of this paper only considers the impact

that a structured argumentation process could have on simu-

lation-derived research, yet the scope for impact outside this

area should not be underestimated.

To encourage researchers to adopt an argumentation

approach, we have released ARTOO. We have demonstrated

the use of ARTOO in the production of the argumentation

structures which support the case that our lymphoid tissue

development is fit for the purpose for which it was designed:

to provide biologically relevant hypotheses as to why cell be-

haviour becomes statistically different in the vicinity of initial

haematopoietic cell aggregations [14]. Through the use of

argumentation, we clearly summarize the biological data

upon which our simulation is based, the manner in which

we have derived assumptions from this and instances

where we have made abstractions in the absence of biological

data. As predictions are being made that aim to be grounded

in the biological domain, this information is vital to researchers

intending to understand the impact of our results.
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