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Multivariate analysis reveals activation-primed 
fibroblast geometric states in engineered 3D 
tumor microenvironments

ABSTRACT Fibroblasts are a heterogeneous group of cells comprising subpopulations that 
have been found to be activated in the stromal microenvironment that regulates tumor 
initiation and growth. The underlying mechanisms of such selective activation of fibroblasts 
are not understood. We propose that the intrinsic geometric heterogeneity of fibroblasts 
modulates the nuclear mechanotransduction of signals from the microenvironment, resulting 
in their selective activation. To test this, we developed an engineered 3D fibroblast tumor 
coculture system and used high resolution images to quantify multiple cell geometry sensitive 
nuclear morphological and chromatin organizational features. These features were then 
mapped to activation levels as measured by the nuclear abundance of transcription cofactor, 
megakaryoblastic leukemia, and protein levels of its target, αSMA. Importantly, our results 
indicate the presence of activation-“primed” cell geometries that present higher activation 
levels, which are further enhanced in the presence of stimuli from cancer cells. Further, we 
show that by enriching the population of activation-primed cell geometric states by either 
increasing matrix rigidity or micropatterning primed cell shapes, fibroblast activation levels 
can be increased. Collectively, our results reveal important cellular geometric states that 
select for fibroblast activation within the heterogenous tumor microenvironment.

INTRODUCTION
Fibroblasts are connective tissue cells and in vivo, they are embed-
ded in and adhered to the fibrillar extracellular matrix where they 
are exposed to varying local mechano-chemical signals. As a result, 
they occupy distinct mechanical states as seen by the variety of cell 

geometries they exhibit. Geometry is an intrinsic cellular property 
that modulates nuclear mechanics (Makhija et al., 2015), the spatial 
organization of the genetic material (Wang et al., 2017), nuclear 
signaling, and transcription programs (Jain et al., 2013). Importantly, 
recent studies have demonstrated that cells in two different 
geometrical states have different transcriptional responses to the 
same stimuli (Mitra et al., 2017; Damodaran et al., 2018). Hence, 
cellular perception and response to the microenvironmental signals 
is dependent on their cell geometry. As a result, cell geometry 
modulates many important functions such as proliferation, apopto-
sis, cellular reprogramming, and stem cell differentiation (Chen 
et al., 1997; McWhorter et al., 2013; Uhler and Shivashankar, 2017; 
Roy et al., 2018).

In tissues the generally quiescent fibroblasts become activated in 
response to microenvironmental cues comprising both physical 
forces (e.g., matrix rigidity, compression/tensile forces) and soluble 
chemical signals (e.g., cytokines, hormones) (Grinnell, 2003; Kalluri, 
2016). The activation of fibroblasts is a crucial event in tissue repair 
and disease progression. Importantly, in the tumor microenviron-
ment stromal fibroblasts sense stimuli released by cancer cells 
to become cancer-associated fibroblasts, which are important 
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regulators of tumor growth and metastasis (Kalluri, 2016; Erdogan 
et al., 2017; Richards et al., 2017). Recent studies have highlighted 
the existence of molecularly, morphologically, and functionally 
distinct fibroblast subpopulations in the normal and tumor-stromal 
environments (Bauer et al., 2010; Kiskowski et al., 2011; Öhlund 
et al., 2014; Avery et al., 2018; Philippeos et al., 2018; Xie et al., 
2018). In addition to the studies that have used single cell transcrip-
tion and protein expression profiles to explore the origins of such 
heterogeneity (Philippeos et al., 2018; Xie et al., 2018), the contribu-
tion of cellular mechanics is just beginning to be recognized (Lee 
et al., 2014; Labriola and Darling, 2015; Herum et al., 2017; Tsuboi 
et al., 2017; Avery et al., 2018; Nassiri and McCall, 2018). A quantita-
tive description of the link between cell geometric heterogeneity 
and nuclear mechanotransduction in physiologically relevant 3D 
fibroblast tumor microenvironments has not been established.

In this paper we investigate whether the heterogeneity in cell 
geometry is directly coupled to the variance in fibroblast activa-
tion levels in the 3D fibroblast cancer spheroid coculture system. 
Using high resolution microscopy, we obtain multiple cell geom-
etry descriptive single cell measurements of nuclear morphology 
and chromatin organization as well as fibroblast activation levels 
in the same cells. The activation level was characterized using 
cellular levels of alpha-smooth muscle actin (αSMA) as well as 
nuclear abundance of its transcription factor, megakaryoblastic 
leukemia (MKL) (Miralles et al., 2003). Using multivariate analysis, 
we demonstrate that the coupling between cell geometry 
and nuclear abundance of MKL and αSMA is enhanced in the 
presence of signals released by metastatic breast cancer cells, 
MCF7. Further, we show that this activation can be controlled 
by enriching the population of activation-primed cell geometric 
states by either changing matrix rigidity or micropatterning 
specific cell shapes.

RESULTS
Fibroblast activation in engineered 3D fibroblast tumor 
coculture system
We embedded spheroids of the metastatic breast cancer MCF7 
cells along with NIH3T3 fibroblasts in a 3D collagen matrix, thereby 
mimicking a tumor-stromal environment (Asghar et al., 2015) 
(Figure 1A; see Materials and Methods). Within 24 h, there were 
physical interactions between cancer cells and fibroblasts (Figure 
1B; Supplemental Figure S1A). After 72 h, we stained for αSMA 
(Figure 1C and Supplemental Figure S1B), a fibroblast activation 
marker which is also associated with increased fibroblast contractil-
ity (Hinz et al., 2013). We measured the levels of αSMA within 2 µm 
of the fibroblast nuclear boundary and obtained the fraction of 
positive cells based on a threshold (Figure 1D and Supplemental 
Figure S1C; see Materials and Methods). As expected, we find a 
larger fraction of activated fibroblasts in the cocultured system 
(Stuelten, 2005). The increased contractility of these cocultured 
fibroblasts is evidenced by the higher shrinkage of the collagen gel 
(Supplemental Figure S1, D and E) (Yang et al., 2015). Next, we 
stained for TGFβ effector transcription cofactor, MKL, and found 
that its nuclear abundance was also ∼40% higher in cocultured 
fibroblasts (Figure 1E and Supplemental Figure S1, F and G). 
Consistently, nuclear MKL levels were positively correlated with 
cellular αSMA levels whereby αSMA-positive cells have higher nu-
clear MKL levels (Supplemental Figure S1, H and I, and Figure 1F). 
These results show that in the presence of cancer cells, there is an 
increase in the TFGβ signaling in fibroblast. Interestingly, while there 
is a population level increase in the nuclear MKL and cellular αSMA 
levels (activation markers) in the cocultured fibroblasts, there is also 

an increase in their variance, leading to a long-tailed distribution 
(Figure 1F; Supplemental Figure S1, J and K). This indicates that, in 
contrast to a uniform increase, only a subset of the population pres-
ents higher levels of activation. In addition to the heterogeneity in 
the activation levels, a variety of cellular geometric states are 
observed in both control and cocultured fibroblasts (Figure 1C). We 
hypothesized that the heterogeneity in the fibroblast activation is 
tuned by the fibroblast cell geometry.

Multivariate analysis for mapping cell shape to fibroblast 
activation levels
To test whether there is a coupling between cell geometry and fibro-
blast activation, we computed a cell geometry sensitive feature set 
for each cell and mapped it to its transcription parameters (e.g., 
nuclear MKL levels, αSMA levels). Calculating single cell geometric 
features were made difficult by the frequent overlapping and 
clustering of fibroblasts as shown in Figure 1B. Fibroblasts, being 
adherent cells, have elaborate cytoskeletal networks that connect 
focal adhesions to the nuclear membrane via LINC complexes 
which, in turn, are connected to the chromatin. This allows the extra-
cellular forces to be directly coupled to the chromatin dynamics 
within the nucleus (Li et al., 2015). Thereby, the morphology and the 
mechanical state of the nucleus and the organization of the chroma-
tin within are directly modulated by and coupled to the geometry of 
the cell (Li et al., 2014; Wang et al., 2017). Therefore, we decided to 
use the nucleus and the chromatin as a sensor and descriptor of cell 
geometric states. HC foci are condensed chromatin present at the 
peri-centromere of each chromosome. Therefore, the positions of 
these foci are a reflection of the packing of the chromosomes within 
the nucleus. To characterize the nuclear mechanical heterogeneity, 
sets of parameters describing nuclear morphometrics, global 
chromatin compaction, and the organization of HC nodes were 
quantified (Figure 2; see Materials and Methods). The analytical 
workflow used to map cell geometric states to nuclear levels of MKL 
in fibroblasts embedded in a 3D collagen matrix is summarized in 
Figure 2. First, individual fibroblast nuclei were segmented in 3D 
space; this was followed by the identification of HC nodes.

To test whether our parameter set could discriminate cells of dif-
ferent geometries, we obtained two homogeneous populations 
consisting of rectangular (1800 µm2 AR 1:5) and circular (500 µm2) 
cells using micropatterned substrates (Supplemental Figure S2, A 
and B; Supplemental Information) (Théry, 2003). We then computed 
the aforementioned parameters followed by dimension reduction 
using principle component analysis (PCA). Cells of different geom-
etries occupy distinct regions in the PCA biplot (Supplemental 
Figure S2C). We decided to use the first three principle components 
(∼85% of variance; Supplemental Figure S2D) to represent the 
parameter set. The discriminative potential of this reduced para-
meter space was determined by maximizing interclass separation 
using linear discriminant analysis (LDA) (Jain et al., 2000) (Supple-
mental Figure S2E). The classification power of LDA is tabulated in 
Supplemental Figure S2F (accuracy: training [94%] and validation 
[95.4%]). It is important to note that the parameter sets individually 
and combined were able to discriminate rectangular and circular 
cells (test accuracies > 80%; Supplemental Figure S2G).

The above results confirm that the nuclear morphology and 
chromatin organization are sensitive to cell geometry and therefore 
can be used as markers to delineate different cell geometric states 
in a heterogeneous cell population. Hence for each fibroblast nuclei 
in the 3D collagen gel, the aforementioned parameter set was 
computed. Its dimensionality was then reduced using PCA and the 
first three principle components were used to represent the cell 
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geometric feature space. For the same cells, the levels of MKL in the 
nucleus were measured. At the population level, the gradation of 
MKL-enriched fibroblasts was discretized by binning the MKL 
distribution into 10 subpopulations with an equal number of cells 
(deciles). LDA using the first three principle components was then 
used to obtain maximum separation of the subpopulations. This is 
then visualized in LDA biplot (Supplemental Figure S2H). The 
intersection ratio between the 95% confidence ellipsoids of 
subpopulations in the LDA space is used as a measure of the dis-
criminatory power of the parameter set. The pairwise intersection 
ratios of all subpopulations (Supplemental Figure S2I) shows that 
the MKL-enriched nuclei have minimal overlap with the MKL- 
depleted nuclei. The degree of separation of nuclear MKL subpopu-
lations by the reduced parameter space is quantified by the inverse 
relationship between the mean intersection ratio of ellipsoids and 

the number of deciles the subpopulations were apart (Supplemental 
Figure S2J). Of the various parameter sets, the discriminating 
potential of the nuclear morphological features is the highest. Since 
the different subpopulations of MKL nuclear levels occupy distinct 
regions in the LDA biplot, we conclude that cell geometry is 
coupled to nuclear MKL levels. In the next section, we further 
explore this coupling in both control and cocultured fibroblasts.

Fibroblast activation level is coupled to cell 
geometric states
At the population level, the cell geometric states are similar between 
control and cocultured fibroblasts (Figure 3A; Supplemental Figure 
S3A). A small fraction of the cocultured fibroblasts exhibits slightly 
more elongated nuclear morphologies. The nuclear abundance of 
MKL is tightly coupled to the cell geometry sensitive parameters in 

FIGURE 1: Fibroblast activation in engineered 3D fibroblast tumor coculture system. (A) Schematic representation of 
the engineering of a coculture system (see Materials and Methods). (B) Nearest point projection image depicting 
fibroblasts physically interacting with the MCF7 spheroid. Cells are stained for F-Actin (green) EpCAM (red), and DNA 
(blue). Scale bar: 20 μm. (C) Maximum intensity projections of control and cocultured fibroblasts stained for aSMA (heat 
colors) and DNA (cyan). Note: This is a collage of cells from different fields of view. (D) The percentage of a-SMA 
expressing (+ve: positive: orange) cells in the two samples visualized as a stacked barplot. The means are significantly 
different (p < 2.6e-6, Wilcox’s t test). Segments represent the standard error of mean across three trials. (E) Probability 
density histogram of nuclear MKL levels in control (blue) and cocultured fibroblasts (green). The means are significantly 
different (p < 1.6e-6, Wilcox’s t test). (F) Relationship between cellular aSMA and nuclear MKL levels. The number of 
cells in each sample > 800.
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both control and cocultured fibroblasts (Figure 3B; Supplemental 
Figure S3, B and C). We used the first linear discriminant (LD1), which 
we will refer as cell morphology index (CMI) to describe the cell geo-
metric state. Nuclear MKL levels varied linearly with CMI (Figure 3C; 
Supplemental Figure S3D) such that the higher the CMI the greater 
the nuclear abundance of MKL. Importantly, the slope of this linear 
relationship increases by ∼40% in cocultured fibroblasts when com-
pared with control fibroblasts without much change in the CMI val-
ues (Supplemental Figure S3, A and E). Hence, cells with high CMI in 
control condition already have higher nuclear MKL levels which are 
further increased in the presence of cancer cells. In contrast, cells 
with low CMI have low nuclear MKL levels and this level does not 
change by much even in the presence of cancer cells. This suggests 
the presence of certain cell geometric states (CMI > 0), which are 
“primed” for higher activation in the presence of a stimulus. Consis-
tently, the αSMA-positive cells had higher CMI (Figure 3D).

The top 20 parameters that show the highest correlation with 
CMI are shown in Figure 3E. From this map, it is evident that the 

MKL-enriched nuclei with higher CMI are larger in size, with a 
smooth boundary where the HC nodes are centrally positioned. A 
few representative cells with increasing CMI are depicted in 
Figure 3F were these differences in nuclear morphology, chromatin 
organization, cell geometry and fibroblast activation levels are 
visible. The relationships between all the parameters and CMI are 
summarized in Supplemental Figure S3F. Collectively, our method 
shows that fibroblast activation levels are coupled to cell geometric 
states whereby certain cell geometries are more prone to activation 
by cancer cells.

Since the relative distances of the fibroblasts from the cancer 
spheroids in each matrix as well as number and size of spheroids 
are variable in 3D coculture system, we next tested whether the 
conditioned media from the MCF7 cells can be used instead 
(Lewis et al., 2004). The results obtained using cocultured 
fibroblasts were reproduced in fibroblasts exposed to condi-
tioned media obtained from MCF7 cells for 72 h (Supplemental 
Figure S3, G–L). In experiments using conditioned media, the 

FIGURE 2: Multivariate analysis for mapping cell shape to fibroblast activation levels. (i) From the raw image, individual 
3D fibroblast nuclei are identified. Next from the obtained single nucleus, HC (HC) nodes are identified. (ii) Multiple cell 
geometrysensitive features that describe the nuclear morphology, chromatin compaction and HC node organization are 
computed (n = 141) (see Supplemental Figure S2). (iii) The dimensionality of this multiparametric feature set is reduced 
using PCA. (iv) In parallel, the nuclear MKL levels of the identified nuclei in is measured and the probability density 
histogram of the nuclear MKL levels is discretized. The subpopulations of fibroblast nuclei were obtained by binning the 
MKL distribution into 10 subpopulations (deciles). (v) This is mapped to the same cell in the PCA space (Supplemental 
Figure S2). (vi) LDA using the first three principle components is used to separate the subpopulations.
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correlation between nuclear MKL levels and cell geometric states 
is further enhanced, thereby reinforcing the importance of this 
geometric coupling. Henceforth, we used conditioned media to 
perform our experiments.

Modulating fibroblast activation by tuning the distribution 
cellular geometric states
Since fibroblast activation levels are correlated to cell geometric 
states (as described by CMI), we hypothesized that tuning the 

FIGURE 3: Fibroblast activation level is coupled to cell geometric states. (A) PCA biplot of the first two components 
obtained from multiple parameters with each circle colored based on the sample. Micrographs of nuclei are mapped to 
their approximate location in PCA space. Scale bar = 5 μm. (B) LDA biplot of the first two components obtained from 
multiple parameters with each circle colored based on the nuclear MKL subpopulation for control and cocultured 
fibroblast. (C) MKL nuclear intensity as a function of the LD1 or CMI in the respective samples for one representative 
trial. The 95% CI of prediction is visualized as line bounds. (D) Probability density histogram of CMI values for aSMA 
positive (orange) and negative (gray) cells from three trials. The means are significantly different (p < 0.0001, Wilcox’s 
t test). (E) Heat map depicting relationship between the CMI and the top 20 nuclear and chromatin features. Each 
column corresponds to one nucleus. The row side colors depict the person correlation value (cor) between CMI and the 
corresponding feature. (F) Representative images of cells stained for aSMA (heat colors) and DNA (blue) with increasing 
LD1 values (–3.5, 0.9, and 4.1, respectively). Scale bar = 10 μm (total number of fibroblasts from three trials: cocultured, 
1241; and control, 843).



808 | S. Venkatachalapathy et al. Molecular Biology of the Cell

distribution of geometric states should lead to altered fibroblast 
activation levels. Matrix rigidity, cytoskeletal filaments such as actin 
and microtubules, as well as the nuclear envelope proteins such as 
Lamin A/C have been shown to alter cell and nuclear morphology 
(Omelchenko et al., 2002; Li et al., 2014; Cho et al., 2017; Kim et al., 
2017). Therefore, we first characterized the effects of these factors in 
regulating the distribution of cell geometric states in our 3D system. 
To measure the contribution of the actin and microtubules on cell 
geometric states in our system, we treated fibroblasts embedded in 
a collagen matrix for 24 h, with cytochalasin D (2.5 µM) and 
nocodazole (5 µg/ml) for 1 h. We probed the importance of Lamin 
A/C by using a mouse embryonic fibroblast in which Lamin A/C has 
been knocked out compared with the wild type control. We tested 
the effect of matrix rigidity by embedding fibroblasts in collagen 
matrix of varying concentrations (0.5, 1.0, and 1.5 mg/ml) for 24 h. 
We point out that in addition to increasing the stiffness of the matrix, 

increasing collagen concentration also alters the ligand density and 
fibrillar structure of the matrix.

The fold change in the mean value of parameter in the perturbed 
and control fibroblasts is visualized in Supplemental Figure S4A and 
the top 20 parameters from Figure 3E are highlighted in Figure 4A. 
To quantify the overall change induced by the aforementioned 
treatments, we computed the mean difference in the value of all 
parameters with respect to the control. All perturbations led to 
changes in different nuclear and chromatin features.

Lamin A/C depletion and increased matrix rigidity was found to 
cause maximal but contrasting changes to the cell geometric 
parameters (Supplemental Figure S4, A and B). In contrast to 
increased matrix rigidity, in Lamin A/C KO cells, the top parameters 
are associated with lower CMI (Figure 4A; Supplemental Figure 
S4C). For instance, as opposed to activation-primed cell geome-
tries, LaminA/C KO cells had larger nuclei that has more curvature 

FIGURE 4: Modulating fibroblast activation by tuning the distribution cellular geometric states. (A) Heat map depicting 
ratio between the mean value of top parameters (depicted in Figure 3E) in a perturbed sample and control. Please note 
that the collagen concentration is 1 mg/ml unless otherwise state (number of fibroblasts from three trials: control, 495; 
nocodazole [noco], 375; cytochalasin D [cytoD], 275; 0.5 mg/ml, 425; 1.5 mg/ml, 440; Lamin A/C KO MEF [lamko], 524; 
MEF, 450). (B) LDA biplot of nuclear Lamin levels. Note that the loadings here is same as in Figure 3B (number of 
fibroblasts:110). (C) Box plot of the CMI values in NIH3T3 cells in 1.0 mg/ml and 1.5 mg/ml collagen. The means are 
significantly different (p < 2.6e-6, Wilcox’s t test). (D) The percentage of a-SMA expressing (+ve: positive: orange) cells in 
the samples visualized as a stacked barplot. Segments represent the standard error of mean across three trials (number 
of fibroblasts: 1.0 mg/ml control: 153 and CM: 148; 1.5 mg/ml control: 130 and CM: 169). The means are significantly 
different (p < 1.6e-4, Wilcox’s t test). CM stands for conditioned media (number of cells in each sample ∼300).
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FIGURE 5: Controlling cell geometric heterogeneity allows control of 
fibroblast activation levels. (A) NIH3T3 cells grown on 5- and 
20-μm-wide fibronectin stripes in conditioned media stained for aSMA 
(heat colors) and DNA (cyan) (scale bar is 20 μm). Note: This is a 
collage of cells from different fields of view. (B) Box plot depicting the 
LD1 values of cells on 5- and 20-μm-wide stripes. The means are 
significantly different (p < 2.6e-6, Wilcox’s t test). (C) The percentage 
of a-SMA expressing (+ve: positive, orange) cells in the samples 
visualized as a stacked barplot. The means are significantly different 
(p < 2.6e-6, Wilcox’s t test). Segments represent the standard error of 
mean across three trials. CM stands for conditioned media. 
(D) Probability density of mean centered cellular aSMA levels in 
unpattered cells and cells on 5- and 20-μm-wide stripes. The dotted 
line represents the width of each distribution at its half maxima. 
Inset: FWHM of the distributions. (E) A summary model.

and lower HC volume. This suggests that cell geometries with lower 
CMI will have reduced Lamin A/C levels. To test this, we stained 
fibroblasts with Lamin A/C and mapped its levels to the cell geo-
metric state using the previously estimated PCA-LDA loadings 
(Figure 4B; Supplemental Figure S4, D–F). Indeed, we find that the 
cells with higher CMI had higher Lamin A/C levels. In contrast, the 
fraction of the primed cell geometric states (CMI > 0) is increased in 
cells embedded in 1.5 mg/ml collagen (stiff) matrix (Figure 4C). This 

would indicate that there would be higher levels of activation in 
such a stiff matrix. We next validated this by culturing fibroblasts in 
1 and 1.5 mg/ml collagen in the presence and absence of condi-
tioned media from MCF7 cells and measuring the fraction of αSMA-
positive cells (Supplemental Figure S4, G and H). We find that in the 
control condition, the fraction of activated fibroblasts is higher in 
stiffer gels and this difference is further enhanced with conditioned 
media (Figure 4D). Collectively, these results indicate that by tuning 
the distribution of cell geometric states, fibroblast activation levels 
can be modulated.

Controlling cell geometric heterogeneity allows control of 
fibroblast activation levels
We next asked whether we could control the variability and levels of 
fibroblast activation by decomposing the distribution of geometric 
states into two relatively homogeneous subpopulations with distinct 
cell geometries. Since this can be achieved with better precision in 
a 2D cell culture system, we used NIH3T3 cells grown on micropat-
terned substrates. First, we validated that the coupling between cell 
geometric states and fibroblast activation is maintained in fibro-
blasts cultured on glass and exposed to conditioned media (Supple-
mental Figure S5; Supplemental Information). Next, we obtained 
two cell geometric populations by culturing fibroblasts on micropat-
terned lines that are 5 and 20 µm wide in MCF7 conditioned media. 
From Supplemental Figure S3F, it is evident that primed cell geom-
etries have larger nuclei that are less elongated. Since both these 
features have been shown to be regulated by cell area and aspect 
ratio, we decided to use micropattered lines with widths of 5 and 
20 µm (Figure 5A). The 5-µm-wide lines produced cells with lower 
CMI (Figure 5B). Therefore, we expected that the activation levels 
of fibroblasts to be higher when cultured on 20-µm-wide lines. 
Fibroblasts cultured on both lines for 72 h in the presence of condi-
tioned media were stained for αSMA as shown in Figure 5A. As 
expected, the fraction of αSMA-positive cells was found to be 
higher in fibroblasts grown on 20-µm-wide lines (Figure 5C). Further, 
the variability as measured by the full width half maxima (FWHM) of 
the mean centered cellular αSMA levels was higher in unpattered 
cells relative to cells grown on 20- and 5-µm-wide lines (Figure 5D, 
inset). This indicates that by controlling cell geometry, one can 
control the variability in fibroblast activation levels. Collectively, our 
results reveal that the cellular geometric state is an important 
intrinsic cellular property that tunes fibroblast activation.

DISCUSSION
In this study, we present a framework for studying single cell hetero-
geneity and our results reveal the role of cell geometry in the selec-
tive activation of fibroblasts in tumor microenvironment, particularly 
in physiologically relevant engineered 3D tissues. In tissues, cells 
integrate biophysical and biochemical stimuli from their microenvi-
ronment in order to have a robust cellular response and to maintain 
homeostasis. Fibroblasts in the tumor-stomal environment are 
activated by signals such as TGFβ from the cancer cells (Lewis et al., 
2004; Stuelten, 2005); however, this activation is not uniform and 
only a subset of the fibroblast is activated. There has been a 
growing interest in the field in quantifying and characterizing the 
implications of such nongenetic heterogeneity in cellular popula-
tions (Huang, 2009; Altschuler and Wu, 2010; Komin and Skupin, 
2017; Lawson et al., 2018; Wang et al., 2019). In this study, we 
hypothesized that the heterogeneity in fibroblast activation is 
coupled to the innate heterogeneity in the cell geometric states. To 
study this, we cocultured fibroblasts with MCF-7 spheroids in 3D 
collagen matrix, thereby mimicking a tumor microenvironment. Our 
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coculture platform using micropattered substrates also provides a 
more robust method to obtain multiple cell spheroids for generat-
ing engineered 3D tissues. As expected, we found that the nuclear 
abundance of MKL and the corresponding αSMA levels increase in 
fibroblasts in the presence of cancer cells.

To understand the role of observed geometric heterogeneity in 
regulating fibroblast activation, a method that allows for computing 
geometry dependent parameters, as well as quantifying functional 
content in order to compare the two at a single cell resolution, for a 
population of cells is required. Here we have computed multiple 
features that describe nuclear morphology and internal chromatin 
structure that delineate cell geometric states in a heterogeneous 
cell population. Recent studies have used multilinear regression 
models to show the importance of cell shape in YAP and NFkB (p65) 
signaling (Sero et al., 2015; Sero and Bakal, 2017). In this study, we 
discretized the population-based nuclear MKL levels and demon-
strated the discriminatory potential of the reduced cell geometric 
feature space in the classification of the identified subpopulations in 
both control and cocultured fibroblasts. Further, we show that the 
cell geometric states are correlated to nuclear MKL abundance and 
describe this using a linear regression model. Importantly, our 
observations indicate the presence of certain primed cell geome-
tries (CMI > 0; Figure 3C) that present higher activation levels which 
are further enhanced in the presence of stimuli from cancer cells.

These primed cells have larger nuclei that have smoother 
boundaries with centrally positioned and spatially separated HC 
nodes. The nuclear morphology is an important regulator of the 
organization of chromatin within and thereby their transcriptome. 
While transcriptional implications of the organization of HC nodes 
cannot be directly deduced without knowing the identity of the 
genes that are packed in these regions, a change in their position-
ing is an indication of large scale reorganizations in the 3D chro-
matin organization, which is a critical modulator of transcription 
(Belyaeva et al., 2017). Nuclear mechanical properties are dictated 
by Lamin A/C and its lower levels have been associated with softer 
nuclei that are more prone to deformations that arise due to the 
active state of the cytoplasm (Makhija et al., 2015; Kim et al., 
2017). Consistently, we find that the Lamin A/C levels are corre-
lated with cell geometric states as defined by CMI, where the 
activation primed cell geometric states present higher Lamin A/C 
levels. By increasing the matrix rigidity, we observed a shift in the 
distribution of cell geometric states toward higher CMI (more 
primed cells). As expected, the cells in stiffer gels had higher 
activation levels which became more pronounced in the presence 
of signals from cancer cells. To further prove a causal relationship 
between cell geometry and fibroblast activation, we cultured fibro-
blasts on fibronectin coated lines of 5 and 20 µm width in the can-
cer cell-conditioned media. Fibroblast cells on 20 µm width were 
enriched for primed cell geometric states (higher CMI) and these 
cells presented higher levels of activation.

Collectively, our results highlight the presence of activation-
primed cell geometric states. In a heterogeneous tissue microenvi-
ronment, there are multiple subpopulations of fibroblasts character-
ized by their differential molecular, transcriptional, and morphological 
properties (Bauer et al., 2010; Kiskowski et al., 2011; Öhlund et al., 
2014; Avery et al., 2018; Nassiri and McCall, 2018; Philippeos et al., 
2018; Xie et al., 2018). Hence, we posit that the fibroblasts with 
such primed geometries in the presence of cancer cells form a 
subpopulation of cells that are selectively activated. In tissues, this 
subpopulation of active cells plays an important role in the progres-
sion of many diseases including cancers and as a result, there is a 
growing interest in using them as therapeutic targets (Li et al., 2016; 

Hanley et al., 2018). In diseased conditions, such intrinsic heteroge-
neity has been a major source of impediment for interventions that 
target cancer-associated fibroblasts. Our findings suggest that 
targeted inhibition of the activation-primed cell geometric states 
could pave the way for developing drug discovery pipelines for 
tumor models.

MATERIALS AND METHODS
Cell culture, conditioned media preparation, and treatments
NIH3T3 fibroblast and MCF7 metastatic breast cancer cells were 
cultured in high glucose DMEM (Life Technologies) supplemented 
with 10% (vol/vol) fetal bovine serum (GIBCO, Life Technologies) 
and 1% Penn Strep at 37°C in 5% CO2. Conditioned media from 
MCF7 cells were obtained by washing and adding fresh culture 
media to a 70% confluent culture and collecting the media after 
24 h, filtering it through a 0.2-mm syringe filter, and storing aliquots 
at –80°C. Cells were treated with MCF7-conditioned media for 3 d 
or 2.5 µM Cytochalasin-D (Sigma-Aldrich) and 5 µg/ml nocodazole 
(Sigma-Aldrich) for 1 h followed by fixation with 4% paraformalde-
hyde (Sigma) in 1× phosphate-buffered saline (PBS).

Micropatterning
Polydimethylsiloxane (PDMS) stamps were prepared by mixing 
PDMS elastomer (SYLGARD 184; Dow Corning) with curative-to-
precursor in a 1:10 ratio according to the manufacturer’s protocol 
and by molding the PDMS in microfabricated silicon wafers. 
Fibronectin solution (100 µg/ml) was then allowed to adsorb 
onto the surface of each PDMS stamp under sterile conditions. 
The coated PDMS stamp was subsequently deposited onto the 
surface of a nontreated hydrophobic dish (Ibidi) to allow the 
microfeatures to be transferred. The surface was then treated 
with 2 mg/ml Pluronic F-127 (Sigma-Aldrich) for 30 min to passiv-
ate nonfibronectin-coated regions. Thirty thousand cells were 
seeded for 15 min. Unadhered cells were removed, and the 
remaining cells were washed once with 1× PBS and 1 ml of cell 
culture media and incubated for 3 h.

3D coculture
To generate spheroids, MCF7 cells (1 × 106) were seeded on fibro-
nectin-coated circular micropatterns of area 1800 µm2. After 24 h, 
the MCF7 cells formed clumps with 7–10 cells/clump. These clumps 
were scrapped and mixed with 50,000 NIH3T3 cells trypsinized from 
a 70% confluent culture in a 1 mg/ml rat tail collagen I (Thermo-
Fisher Scientific) solution which was neutralized with 0.1 N NaOH. In 
control samples, only NIH3T3 cells were used. This solution was 
allowed to gel at 37°C for 3 h after which 0.5 ml of culture media 
was added and the samples were kept for 24–72 h.

Immunostaining 3D culture samples
Gels were rinsed twice with 1× PBS, followed by fixation using 4% 
paraformaldehyde (Sigma) for 20 min. Cells were washed and 
permeabilized with 0.2% Triton-X (Sigma) in 1× PBS for 30 min. After 
washing thrice with 1× PBS, the cells were treated with 5% bovine 
serum albumin (BSA) (blocking solution) for 3 h. This was followed 
by incubation with required primary antibodies (in blocking buffer) 
overnight at 4°C. The primary antibodies were myocardin-related 
transcription factor (MRTF-A) (1:200; Santa Cruz; and 1:500 AbCAM), 
and αSMA (1:250; Cell Signaling). Cells were washed thrice for 
15 min with washing solution (0.1% triton and 0.1% Tween) and 
incubated with corresponding Alexa Fluor secondary antibody 
along with Hoescht-33342 (1 mg/ml; 1:1000) for 3 h. Filamentous 
actin (F-actin) was labeled using phalloidin Alexa Fluor 488 (1:1000; 
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Life Technologies). The samples were washed with washing solution 
thrice for 15 min and imaged.

Immunostaining 2D culture samples
Cells were rinsed twice with 1× PBS, followed by fixation using 4% 
paraformaldehyde (Sigma) for 20 min. Cells were washed and 
permeabilized with 0.2% Triton-X (Sigma) in 1× PBS for 15 min. After 
being washed twice with 1× PBS, the cells were treated with 5% BSA 
(blocking solution) for 1 h. This was followed by incubation with 
required primary antibodies (in blocking buffer) overnight at 4°C. The 
primary antibodies were MRTF-A/MKL (1:400; Santa Cruz and 1:800 
AbCAM) and αSMA (1:450 Cell Signaling). Cells were washed with 
blocking solution and incubated with corresponding Alexa Fluor sec-
ondary antibody along with Hoescht-33342 (1 mg/ml; 1:1000) for 
45 min. F-actin was labeled using phalloidin Alexa Fluor 488 (1:1000; 
Life Technologies). The samples were washed and imaged.

Confocal imaging and image analysis
The 2D culture samples were scanned using Nikon A1 Confocal 
microscope (Nikon, USA) with a 100× 1.4 NA oil immersion objec-
tive. Stacks of 16-bit gray scale 2D images were obtained with a 
voxel size of 120 nm in the XY direction and 500 nm in the Z 
direction. The 3D culture samples were scanned with a 60× 1.25 NA 
oil immersion objective. Stacks of 16-bit gray scale 2D images were 
obtained with a voxel size of 120 nm in the XY direction and 800 nm 
in the Z direction.

Images were analyzed using custom codes written in 
ImageJ2/Fiji (Schindelin et al., 2012) and MATLAB using the 
functions from Bioformats, mcib3d, and Image Processing Library 
(Toolbox, 2004). The raw 3D images labeled for DNA were 
processed using a Gaussian blur filter (Sigma 0.15) and thresh-
olded using Otsu, a global thresholding method, to binarize and 
identify the nuclear regions. Watershed was then used to 
separate touching nuclei. This binary image was then used to 
identify individual nuclei as 3D objects within a size range of 
200–1300 µm3, and this was followed by cropping of individual 
nuclei in all four channels along their bounding rectangles. These 
individual nuclear crops were used to quantify 3D nuclear para-
meters and the respective maximum intensity projections were 
used to measure 2D parameters.

HC nodes were identified from DNA intensity images based on 
an intensity and volume threshold: pixels with intensity more than 
LowerthresholdHC were first binarized and 3D nodes were identified 
as those objects with volumes of at least 1 µm3:

Lowerthreshold Mean 1.5 (StandardDeviation )HC DNA DNA= + ×

The nuclear intensity and compaction features were identified 
from the DNA intensity images and from the HC regions identified 
as described above. The population descriptors (mean, median, 
max, min, and SD) of the geometric and the positioning parameters 
of the HC nodes were then calculated for each individual nucleus. 
The complete feature list can be found in the Supplemental 
Information.

The MKL nuclear levels and cellular αSMA from each experiment 
were normalized by setting the maximum intensity value to 1 in 
order to compare across trials.

The cellular αSMA levels are represented by the mean levels of 
αSMA in a perinuclear ring of 2 µm width in 3D. The αSMA-positive 
cells were identified using a threshold, defined as the median levels 
of cellular αSMA in both control, and cocultured fibroblasts/
fibroblasts in conditioned media.

Statistical analysis
All statistical analyses and plotting were carried out in R (R Develop-
ment Core Team, 2016). For each parameter set, feature reduction by 
PCA using correlation matrix obtained from the scaled data was 
used. The scores from the first three principle components were then 
used as discriminant variables in LDA (library MASS) to separate the 
different classes. The first or the first two LDs along with 95% confi-
dence ellipsoids (libraries sp, rgeos) were used to visualize the sepa-
ration between the classes. To calculate the degree of separation, the 
intersection ratio as defined below is used. In cases where there are 
more than one class, a matrix consisting of the pairwise intersection 
ratio of the various classes is computed and visualized as a heat map:

IntersectionRatio
IntersectionArea

Area Areaellipsoid1 ellipsoid2( )=
+

Continuous variables such as the nuclear intensity of transcrip-
tion factors have been binned to generate 10 equal subpopulations 
based on the population deciles. In such cases, a plot of mean in-
tersection ratio as a function of number of deciles apart of the dif-
ferent parameter sets is also computed to depict the degree of 
separation as a function of the increasing nuclear intensity. Linear 
regression models employing nuclear transcription factor levels as a 
function of the LD1 have been used.
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