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ABSTRACT: Both metal center active sites and vacancies can
influence the catalytic activity of a catalyst. A quantitative model to
describe the synergistic effect between the metal centers and
vacancies is highly desired. Herein, we proposed a machine
learning model to evaluate the synergistic index, PSyn, which is
learned from the possible pathways for CH4 production from CO2
reduction reaction (CO2RR) on 26 metal-anchored MoS2 with and
without sulfur vacancy. The data set consists of 1556 intermediate
structures on metal-anchored MoS2, which are used for training.
The 2028 structures from the literature, comprising both single
active site and dual active sites, are used for external test. The
XGBoost model with 3 features, including electronegativity, d-shell
valence electrons of metal, and the distance between metal and
vacancy, exhibited satisfactory prediction accuracy on limiting potential. Fe@Sv-MoS2 and Os@MoS2 are predicted to be promising
CO2RR catalysts with high stability, low limiting potential, and high selectivity against hydrogen evolution reactions (HER). Based
on some easily accessible descriptors, transferability can be achieved for both porous materials and 2D materials in predicting the
energy change in the CO2RR and nitrogen reduction reaction (NRR). Such a predictive model can also be applied to predict the
synergistic effect of the CO2RR in other oxygen and tungsten vacancy systems.
KEYWORDS: CO2 reduction, metal−vacancy synergistic effect, MoS2, machine learning, DFT calculations

■ INTRODUCTION
The widely used metal−supported catalysts are composed of
active metal atoms anchored on supports. Excellent catalytic
performance is achieved through the interaction between the
metal and support, which affects the electronic structure and
morphology of the catalyst.1−4 Surface vacancies are
unavoidably introduced during the preparation of the sur-
face-supported catalysts, tuning the electrical, magnetic, and
optical properties.5−7 For instance, metal−supported catalysts
enriched with anion vacancies (oxide, sulfide, and nitride
vacancies) effectively promoted charge separation, enhanced
oxygen adsorption, and stabilized interfacial structures, thus
improving the activity and selectively for surface reactions.8−11

The vacancies on metal−supported catalysts are also able to
promote light absorption, charge separation, and CO2
conversion.12−16 The essential role of vacancies, including
vacancy type and location, vacancy concentration, and doped
metal-based motifs, has been revealed in CO2 reduction
reactions (CO2RR).

17−19 The oxygen-vacancy-rich MoO2−x
nanosea-urchins can promote CO2 adsorption and activation,
displaying extremely strong CO2 photoreduction ability.

20 In
the NiCo2O4 system, the synergistic effect between oxygen
vacancies and Ni facilitates CH4 generation and vacancy

regeneration, showing an attempt at precise control of
photocatalytic selectivity and stability.21 Introducing vacancies
and Zn atoms into CoO systems was beneficial in enhancing
the stability of the vacancies in photocatalysts. The synergistic
effect between metal and vacancies, which was attributed to a
significant improvement of CO2 photocatalytic efficiency.

22

Promotion of CO2RR activity was achieved by constructing a
gradient tungsten vacancy on Bi2WO6, promoting rapid
electron migration, and reducing the formation barrier of key
intermediates.23 The vacancies not only modulate the local
electronic structure but also serve as a docking site to anchor
the metal species or adsorbates as a new active site. It is
essential to get in-depth insight into the synergistic effect
between metal centers and vacancies in metal−supported
catalysts for CO2RR.
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Machine learning (ML) models have been applied to
establish the relationship between the reaction activity and
catalyst structures.24−26 The descriptors used for catalytic
activity prediction on the CO2RR are collected in Table S1 of
Supporting Information. Among them, some electronic

structure descriptors need the aid of density functional theory
(DFT) calculations. Instead, there are also some easily
available descriptors, such as d-shell valence electron numbers,
electron type and number, electronegativity, enthalpy of
vaporization, coordination number, and coordination bond

Figure 1. Schematic illustrations of the ML models for predictions of synergistic effect, reaction pathway, free energy change and limiting potential
for CO2 reduction on metal-anchored MoS2 with and without sulfur vacancy, transferring to the external tests on other systems for both CO2RR
and NRR.
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length of metal atom to the nearest neighbor atoms.27−35

Moreover, some DFT-calculated parameters, such as charge
transfer, catalyst mode, and work function, could be replaced
by easily available descriptors.36−39 As an illustration, the
charge transfer between the catalyst and the adsorbates can be
predicted by the formulated atomic ionization energy and
electronegativity parameters.40 To the best of our knowledge,
the ML model for describing the interplay between the vacancy
and the metal sites has rarely reported.
In this work, the ML models for free energy change (ΔG)

and limiting potential (UL) prediction will be trained from
1556 intermediate energies of 26 kinds of metal-anchored
MoS2 with and without sulfur vacancy (metal@Sv-MoS2 and
metal@MoS2) on the CO2RR. As illustrated in Figure 1, after
the CO2 adsorption on the surface, there were two kinds of
reaction pathways, called the coordination pathway (Coor-
pathway, Figure S1) and synergistic pathway (Syn-pathway,
Figure S2), respectively. The Coor-pathway is well recognized
for single-atom catalysts (SACs).41,42 In contrast, the Syn-
pathway is usually found for dual-atom catalysts.43 It will be
demonstrated that the vacancy generation steps of #O → #OH
are the potential-determining step (PDS) for most kinds of
metal@Sv-MoS2 in this work. Abbreviations used in this article
were listed in Table S2 for the catalysts, Table S3 for the
calculated limiting potential of CO2RR intermediates on
different pathways, and Table S4 for descriptors used in ML
models.
To quantitatively describe the synergistic effect between the

metal center and vacancy, the synergistic index, PSyn, is defined
to assess the thermodynamic advantages of competing reaction
pathways. Some easily accessible features for describing active
sites on different substrates and reaction intermediates will be
found to have good applicability in prediction of free energy
changes of both the CO2RR and nitrogen reduction reaction
(NRR) on 2028 external tests, including metal−zeolites,
metal−organic frameworks (MOFs), and 2D materials. The
consistency between experimental data and the ML-predicted
limiting potential is also exhibited in the synthesized oxygen
and tungsten vacancies, which contain with evident synergistic
advantage.

■ COMPUTATIONAL METHODS
The first-principles DFT calculations were performed using the
Vienna Ab initio Simulation Package (VASP) with the projector-
augmented wave (PAW) method.44,45 Theoretical calculations for the
exchange-correlation potentials were based on the generalized
gradient approximation (GGA) method in the form of Perdew−
Burke−Ernzerhof (PBE) functional.46−48 The effects of the long-
range van der Waals (vdW) corrections were treated using the
Grimmes zero-damping DFT-D3 method.49,50 The plane wave cutoff
energy was set to 450 eV. The model of MoS2 was built in a 5 × 5 × 1
supercell. The vacuum thicknesses were set to 15 Å to reduce
interactions between adjacent layers in periodically repeated cells. The
spin polarization was taken into consideration. The 2D Brillouin zone
was sampled using a 2 × 2 × 1 Monkhorst−Pack k-point grid in
reciprocal space. The convergence thresholds for the force and total
energy component were set as 4.0 × 10−2 eV/Å and 1.0 × 10−5 eV,
respectively.
The binding energies (Eb) of metal anchored MoS2 with and

without sulfur vacancy were evaluated according to eqs 1 and 2:

E E E Eb metal@Sv MoS2 Sv MoS2 metal= (1)

E E E Eb metal@MoS2 MoS2 metal= (2)

where Emetal@Sv‑MoS2, Emetal@MoS2, ESv‑MoS2, EMoS2, and Emetal represent
the calculated energies of metal−supported catalysts (metal@Sv-
MoS2 and metal@MoS2), substrate without metal atom (Sv-MoS2 and
MoS2), and isolated metal atom in vacuum. When Eb < 0 eV, the
metal@Sv-MoS2 and metal@MoS2 were assumed to be thermody-
namically favorable.
The computational hydrogen electrode (CHE) model proposed by

Nørskov and co-workers was employed to estimate the thermody-
namic free energies of the fundamental reactions.51,52 Based on this
method, the change in Gibbs free energy (ΔG) for the elementary
steps in the CO2RR was obtained by following eq 3. The relative free
energy, ΔG, of each reaction intermediate was referred to as energy of
the free CO2 molecule. The free energy difference, ΔΔG, was referred
to as the free energy change between two successive steps on the
CO2RR process.

G E E T S e GUZPE pH= + + + + (3)

In the above equation, ΔE represents the electronic energy difference
between two reaction species, the ΔEZPE represents zero-point energy
change, which can be obtained by vibrational frequencies. The TΔS
represents the entropy change, and the simulation temperature T is
298.15 K. The eU term represents the electron transfer with the
electrode potential contribution. The last term in eq 3, ΔGpH =
2.303kBT × pH, where kB is the Boltzmann constant. The
experimental conditions in acidic medium with pH = 0 and 3 were
taken into consideration.
The corresponding limiting potential (UL) was determined by the

potential-determining step, which was the maximum free energy
change of the whole process (ΔGmax). Therefore, the UL represents
the minimum applied potential to overcome the barrier in the
CO2RR, which was obtained by eq 4.

U G e/L max= (4)

Mo@Sv-MoS2 was used to test the performance of different DFT
functionals, including PBE, Perdew−Wang 91 (PW91), and local
density approximation (LDA), as shown in Figure S3 (PBE, PW91,
and LDA functionals calculated by using DMol3),53,54 Figure S4
(PBE, PW91, and LDA functionals calculated using VASP), and Table
S5. The reaction step for conversion from *CO−#O to *CO−#OH
was predicted to be the potential-determining step for all of the
selected DFT functionals. In VASP calculations, the absence of
Grimmes zero-damping DFT-D3 corrections on the PW91 and LDA
functionals results in large ΔGmax values. DMol3 calculations show
moderately small ΔGmax values using the PBE, PW91, and LDA
functionals. It can be assumed that there was little influence from the
DFT functional selection on the subsequent machine learning of the
DFT-calculated results.
All ML algorithms were conducted by the open-source code Scikit-

learn and PyTorch package in the Python3 environment.55 As shown
in Table S6, ten algorithms, including Extreme gradient boosting
regression (XGBoost), Gradient boosting regression (GBR), Extra-
Trees, Decisiontree (DT), k-nearest neighbor (kNN), Linear ridge,
Least absolute shrinkage and selection operator (LASSO), Multiple
Linear regression (MLR), Artificial neural network (ANN), and
Support vector regression (SVR), were applied for free energy change
and limiting potential prediction. To make sure of the generalization
and accuracy, the collected data obtained from DFT calculations and
external literature were randomly shuffled and divided into the
training set and test set in a ratio of 80:20. The normalization
preprocessing was applied for the ML model in training and
prediction. Three indexes were selected to evaluate prediction errors,
the mean absolute error (MAE), the root-mean-square error (RMSE),
and the coefficient of determination values (R2), as described in the
eqs 5−7.

n
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In the above equations, yi, yi , and yi mean the ith predicted value by
ML, the DFT calculation result, and the average value of DFT
calculated results, respectively.

■ RESULTS AND DISCUSSION

Stability Predictions
The DFT calculations indicated that the studied 26 metal@Sv-
MoS2 systems were thermodynamically stable, with negative

binding energies (Eb = −7.72 to −0.55 eV, Figure S5). As
shown in Figure S5A, the thermodynamic stability of metal@
Sv-MoS2 decreased with the number of d-shell valence
electrons number (Nd) of d5 and d10. Similarly, the 26 selected
metal-anchored MoS2 without a sulfur vacancy (metal@MoS2)
also exhibited negative binding energies (Eb = −7.55 to −0.48
eV, Figure S5B), demonstrating the thermodynamic stability of
the metal@MoS2.
As depicted in Figure 2A, on the metal@Sv-MoS2 substrate,

the sulfur vacancy (Sv) may have three possible positions: (1)
Sv located adjacent to the metal (ortho-M@Sv-MoS2), (2) Sv
situated in the meta position of the metal (meta-M@Sv-MoS2),
and (3) Sv positioned on the top position of the metal (top-
M@Sv-MoS2). Three different vacancy configurations were
described by the different values of distance between metal and

Figure 2. (A) Calculation results for the stability prediction of metal@Sv-MoS2. The distances between metal and neighboring atom were given in
Å. (B) Performance of XGBoost model for the prediction of binding energy using three features. (C) External test on TM-S4-G-SACs for the
prediction of binding energy.
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vacancy, named as DM‑Sv in inset of Figure 2B. The relative
stability and binding energies for the Sv at three possible
positions were given in Figures S6 and S7, respectively. The
configurations for ortho-M@Sv-MoS2 (DM‑Sv ranging from
2.41−3.25 Å) was more stable than that of meta-M@Sv-MoS2
(DM‑Sv ranging from 5.88−6.37 Å), and top-M@Sv-MoS2
(DM‑Sv ranging from 3.27−4.03 Å, Figure 2A). It can be
conceived that the p-type lone pair electrons of the sulfur atom
favor coordination with the early transition metal. In turn, the
d electrons in transition metals easily form the π-backbonding
between metal center and sulfur on metal@Sv-MoS2. Taking
Sc@Sv-MoS2 as an example, the Sc atom (3d1) exhibits a

significant contribution to the projected density of state
(PDOS), with π-bonding and π-backbonding bands appearing
near the Fermi level (−0.3 to 0.9 eV), as shown in Figure S8A.
In contrast, the 3d10 Zn atoms make a negligible contribution
to the electronic states in Zn@Sv-MoS2 (Figure S8B). The
penta-coordinated Sc@Sv-MoS2 displays a higher oxidation
state (QSc: 0.88 e) than tricoordinated Zn@Sv-MoS2 (QZn:
0.12 e). We expected that the easily accessible parameter of
electronegativity of metal (χM) could replace the DFT-
calculated values of atomic charge, as demonstrated in previous
work.40 Here, in addition to the value of DM‑Sv, the ratio of d-
shell valence electrons to the electronegativity of metal center (

Figure 3. (A) Illustrations of the CO2RR pathways, the free energy change, ΔG, and the PDS in Fe@Sv-MoS2. (B) The limiting potential for
metal@Sv-MoS2 in the CO2RR, the lines represent the *CO−OH pathway, the rest for the *CHO−O pathway. (C) The prediction of the limiting
potential (UL) in the CO2RR by XGBoost and the feature importance of the XGBoost model. (D) Evaluate the contribution of information
descriptors to binding energy (Eb) and limiting potential (UL) predictions.
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N /d M) was found to be correlated with the stability (the
right side in Figure 2A). It is also displayed that with the
increase in the number of groups (NG) of metal atoms in the
periodic table, the stability has slightly increased.
Using the above-mentioned three descriptors (DM‑Sv,

N /d M, and NG), the ML model was then applied to rapidly
predict the binding energy for metal-anchored MoS2 with and
without sulfur vacancy (M@MoS2, ortho-, meta-, top-M@Sv-
MoS2). As illustrated in Figure 2B, the XGBoost model gives a
good prediction (MAE = 0.20 eV, R2 = 0.97) of binding energy
values and reaches state-of-the-art results via 10-fold cross-
validation (Figure S9). The external test was also conducted on
TM-S4-G-SACs56 systems using the same 3-feature sets of

N /d M, NG, and DM‑Sv, yielding satisfactory binding energy
prediction results in Figure 2C (MAE = 0.25 eV, R2 = 0.93).
Adsorption Selectivity Tests

The adsorption energies of CO2 on metal@Sv-MoS2 ranged
from −0.13 to −0.64 eV, indicating effective capture of CO2 in
*OCO configurations (Figure S10). The CO2 adsorption
energies on the metal active site showed relatively strong
adsorption compared to the van der Waals adsorption energies
on single sulfur vacancy and double sulfur vacancies (−0.20 eV
for both single-Sv and double-Sv), indicating that metal sites
enhance CO2 adsorption and facilitate its activation. The sulfur
vacancy on the MoS2 surface affects the charge distribution
around the metal center, promoting diffusion of CO2 to the
vacancy. The synergistic interaction between the Sv and metal
center contributes to CO2 dissociation on metal@Sv-MoS2
(for the step of *OCO → *CO−#O, ΔΔG was in the range of
−2.29 to −0.71 eV), suggesting that the metal center and Sv
could lead to spontaneous CO2 dissociation. The resultant CO
molecule was easily captured by metal center, accompanied by
the oxidization of sulfur vacancy. Note that the strong CO
adsorption on the catalysts leads to further reduction to CH4
instead of desorption, due to the relatively high desorption
energy (ΔΔG = 0.17−1.64 eV).
An efficient CO2RR catalyst should suppress competing

hydrogen evolution reactions (HER) to achieve a high Faraday
efficiency. The difference in adsorption energies between
*OCO and *H was investigated to understand the competition
between the CO2RR and HER. As depicted in Figure S11,
most of the investigated metal@Sv-MoS2 can avoid *H
poisoning, suggesting a high selectivity for the CO2RR over
the HER. The exceptions were found for the Os@Sv-MoS2 and
Ir@Sv-MoS2 systems. In the following hydrogenation step,
early transition metals (M = Sc, Ti, V, Cr, Mn, Y, Zr, Nb, and
Ta) and d10 metals (M = Zn, Ag, and Cd) predominantly
formed the *CHO−#O intermediate, while other kinds of
metal@Sv-MoS2 preferred to produce the *CO−#OH
intermediate (Figure 1 and Figure S2). The formation of
hydrogen bonding played a crucial role in lowering the
reaction energies with hydrogen bonding distance ranging
from 1.54−2.82 Å on *CO−#OH, except for d10 metal, Cu-,
Zn-, and Cd@Sv-MoS2 (Figure S12). The free energy change
for metal@Sv-MoS2 adsorbed *CHO−#O or *CO−#OH
species was much smaller than that of *H, highlighting the
potential of metal@Sv-MoS2 as a highly selective CO2RR
catalyst (Figure S11).
Activity Evaluation

Figure 1 displays two possible pathways for the CO2RR
(*CHO−#O and *CO−#OH). Subsequent hydrogenation

reactions occur primarily at the metal active site, followed by
the vacancy site. In the *CHO−#O pathway, the d5 and d10
metal@Sv-MoS2 (M = Mn(3d5), Zn(3d10), Ag(4d10), and
Cd(4d10)) preferentially produce *CH3OH−#O species on the
fourth hydrogenation, while other metal@Sv-MoS2 tend to
form *O−#O with the release of CH4. The cases containing
late transition metals and main group metal (Pb) prefer the
*CO−#OH pathway, where consecutive protonation at the C
atom leads to the formation of the *CH3O−#OH species. In
the fifth hydrogenation, transition metals with more d-shell
valence electrons number, the metal@Sv-MoS2 (M = Co(3d7),
Ni(3d8), Cu(3d10), Rh(4d8), Pd(4d10), and Pt(5d9)) were
more likely to generate *CH3OH−#OH species, while other
metal@Sv-MoS2 tends to form *O−#OH, with the release of
CH4 (Figure S13). In most metal@Sv-MoS2 systems (Figure
3), the hydrogenation step for converting *CO−#O to
*CO−#OH (when M = Fe−Cu, Mo, Pd, W, and Pt) and #O
to #OH (when M = Ti, Cr, Mn, Zn−Zr, Ag, and Cd) is the
potential-determining step during vacancy regeneration.
The Syn-pathway network seems to be more concise than

the Coor-pathway network. The synergistic effect was observed
between metal center and Sv in three ways: (1) providing C-
affinity (metal center) and O-affinity sites (Sv) for CO2RR, (2)
reducing the possible reaction pathways, intermediates, and
products, and (3) improving the selectivity for CH4 production
by suppressing HER process.
Taking Fe@Sv-MoS2 as an example, the CO2RR on Fe@Sv-

MoS2 follows the *CO−#OH pathway (Figure 3A). The C−O
dissociation corresponds to a ΔG of −1.26 eV. During the
hydrogenation of CO2, the conversion of *CO−#O to
*CO−#OH was the potential-determining step, with a
maximum free energy change (ΔGmax) of 0.31 eV. This value
was lower than those reported for SACs, such as Fe-supported
graphitic carbon nitride (Fe@N4−C: 0.74 eV, Fe@N4O−C:
1.02 eV),29 Fe-zeolites (0.96 eV),40 and Fe-MOF (0.69 eV)57

for CH4 or CH3OH production, demonstrating the superior
activity of metal@Sv-MoS2 for CO2RR. The calculated values
of limiting potential range from −0.31 to −1.23 V (Figure 3B).
Specifically, metal@Sv-MoS2 has a lower limiting potential
value compared to those of single-Sv (−1.29 V) and double-Sv
(−1.34 V, Figure S14). It is worth noting that the limiting
potential values for metal@MoS2 were in a range from −0.29
to −1.55 V (Figures S15−S16). Without consideration of
vacancy regeneration, the limiting potential values for metal@
Sv-MoS2 ranged from −0.13 to −1.04 V, as plotted in Figure
S17. Although vacancy regeneration often occurs during
electrocatalytic reactions,58 it is important to note that the
metal active sites can continue to catalyze CO2 reduction
regardless of whether vacancy was regenerated or not.
Therefore, metal@Sv-MoS2 seems to display superior activity
for CH4 production.
As mentioned above, the distance between the metal center

and sulfur vacancy, DM‑Sv, is an important descriptor for
reflecting stability, electronic structures, and the catalytic
activity of the CO2RR. Again, the feature of DM‑Sv is a
prerequisite for evaluating the synergistic effect. For example,
when the sulfur vacancy is located in the meta position of the
metal (DM‑Sv > 5.88 Å), no synergistic effect was observed
between the sulfur vacancy and the metal site (Figure S18).
When the sulfur vacancy located in the ortho position of the
metal (DM‑Sv < 3.25 Å), the limiting potential value was
reduced as DM‑Sv increased, indicating a weakening of the
synergistic effect between the sulfur vacancy and the metal site
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(Figure S19). A ML model was constructed using three
features, i.e., Nd, χM, and DM‑Sv, to predict the limiting potential
value for 26 metal@Sv-MoS2 systems. According to Figure 3C,
the XGBoost model demonstrated satisfactory prediction
results for limiting the potential value, with a MAE of 0.095
V and a R2 of 0.86.
Subsequently, we attempted to test the performance of using

a combination of physical parameters in two ways. In the first
test, a complex descriptor, FM−Sv, was proposed to describe
limiting potential, taking into account the contribution of both

the me t a l s i t e ( )N
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d M

d M

+
and the v a c ancy s i t e
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Here, R represents the radius of the metal atom. With the
addition of the R into the three feature sets of Nd, χM, and
DM‑Sv, the XGBoost model displayed comparable prediction
accuracy (MAE = 0.11 V and R2 = 0.83) to the 3-feature model
(Figure S20). Our results show that reaction activity could be
evaluated by four easily obtainable descriptors or their
combination in eq 8, with a Pearson correlation coefficient
of 0.82 (Figure S21).
The second scheme for building the complex descriptors is

stimulated by an investigation of key reaction intermediates. In
Coor-pathway, the adsorption free energies of carbon-involved
(Figure S22) and oxygen-involved (Figure S23) intermediates
were strongly correlated with ΔG*CHO and ΔG*OH, respec-
tively. The values of ΔG*CHO and ΔG*OH served as indicators
to describe the limiting potential associated with the CO2RR
activity (Figures S24 and S25). The sure independence
screening and sparsifying operator (SISSO) method59 was
employed to yield two descriptors, FCHO and FOH, which were
defined as follows:

F N EV( ) /e N
CHO d M

2 ( / )d M= (9)

F NIE / eN
OH d

d3= * * (10)

In the above equations, EV and IE represent the enthalpy of
vaporization and the first ionization energy of metal,
respectively. The predictions for ΔG*CHO and ΔG*OH were
also satisfactory, with Pearson correlation coefficients of −0.85
and −0.91, respectively (Figure S26).
The usage of the two complex features, FCHO and FOH, and

the five descriptor sets of R, NG, Nd, χM, and DM‑Sv, gives a

good correlation to binding energy and limiting potential.
Among them, the distance between the metal center and sulfur
vacancy (DM‑Sv) has the most significant impact on the CO2RR
activity. The d-shell valence electrons of metal (Nd) has the
dominant influence on catalyst stability (Figure 3D). The
important role of d-shell valence electrons and electro-
negativity of metal in stability prediction was also demon-
strated in metal−zeolites.60
Furthermore, the influence of the relative orientation of the

vacancy to the metal was investigated. As shown in Figure 4,
different positions of Sv on Pt anchored the Sv-MoS2 (ortho-,
meta-, and top-Pt@Sv-MoS2), are indicated by the angle, α,
between adsorbate on the upmost metal atom and the Sv
vacancy site. In the case of top-Pt@MoS2, the angle α is 180°
with the linear structure of O···M···Sv. For ortho-Pt@Sv-MoS2
and meta-Pt@Sv-MoS2, the angle α is about 90°. The top- and
meta-Pt@Sv-MoS2 systems prefer to follow the Coor-pathway
(Figure S18). The ortho-Pt@Sv-MoS2 favors the Syn-pathway,
which exhibits relatively lower free energy changes of the
potential-determining step (ΔGmax = 0.92 eV) compared to the
top- (ΔGmax = 1.15 eV) and meta- (ΔGmax = 1.12 eV) cases.
Interestingly, the limiting potential decreases as the value of
sinα/DM‑Sv decreases, highlighting the importance of orienta-
tion and distance between the vacancy and metal sites. Here,
the use of the sinusoidal function of angle α was capable of
transferring the 90° or 180° into the values of 1 and 0, which is
much closer to the value of DM‑Sv.
Synergistic Effect

To efficiently assess the synergistic effect of metal@Sv-MoS2
on the CO2RR, a synergistic effect index, PSyn, was defined to
distinguish the activity difference between metal@Sv-MoS2,
metal@MoS2, and single sulfur vacancy on MoS2 in eq 11.

P U U(Coor, Sv) (Syn)Syn L Lmin= (11)

The term UL(Coor, Sv)min represented the minimum limiting
potential in CO2RR through either the Coor-pathway for
metal@MoS2 or single sulfur vacancy pathway (Sv-pathway)
for vacancy only. The UL(Syn) represented the limiting
potential via the Syn-pathway without considering vacancy
regeneration.
When PSyn was greater than 0.10 V, the Coor-pathway was

more favorable, indicating a negative synergistic effect on the
CO2RR. When PSyn was within the range of −0.10 to 0.10 V,
the Coor-pathway and Syn-pathway were comparable without
the synergistic effect in the CO2RR. When the value of PSyn
was smaller than −0.10 V, the Syn-pathway was more
favorable, indicating a positive synergistic effect on CO2RR.

Figure 4. Relationship of limiting potential with orientation angle, α, and distance between metal and vacancy, DM‑Sv.
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Figure 5A illustrates that the Syn-pathway was more favorable
for d5 (M = Mo) and d10 (M = Ag, Cd, and Pd) metal@Sv-
MoS2 in the CO2RR. For example, in Mo@Sv-MoS2, the
conversion of *CO−#O to *CO−#OH was calculated as the
potential-determining step with a ΔGmax of 0.39 eV. The
ΔGmax of Mo@MoS2 was calculated to be 0.86 eV for the
conversion of *OH to *OH2 (Figure 5B). The ΔGmax of the
Sv-only pathway on MoS2 was calculated to be 1.29 eV for the
conversion of *O to *OH, implying a positive synergistic effect
in Mo@Sv-MoS2 for CH4 production.
The external potential and pH value of the solution could

change the thermodynamics and electrochemical potential-
energy diagrams, since the polar intermediates are sensitive to
pH values on CO2RR.

61 As shown in Figure S27, both Fe@Sv-
MoS2 and Os@MoS2 required less additional electric field to
achieve a high conversion efficiency for CO2. Increasing the
pH value from pH = 0 to pH = 3, the limiting potential for
Fe@Sv-MoS2 (pH = 0, UL = −0.31 V) and Fe@MoS2 (pH = 0,
UL = −0.46 V) decreases to −0.49 and −0.64 V, respectively
(Figure S28). In fact, the synergistic effect between the metal
center and the vacancy (PSyn = −0.15) was not varied by the
pH change from 0 to 3.
Free Energy and Limiting Potential Prediction and
External Tests

It was demonstrated that the adsorption free energies of key
intermediates, such as ΔG*OCH2, ΔG*CHO, and ΔG*OH are
highly relevant to the catalytic performance of single-active site
catalysts in CO2RR.

28,40,62 Until now, the synergistic effect of
the active metal site and vacancy in adsorption free energies

was rarely studied yet. Herein, taking single-active site catalysts
(metal@MoS2) and dual-active site catalysts (metal@Sv-
MoS2) as a prototype, we built ML models for predicting
the free energy change of intermediates. To achieve this goal,
we defined 3 descriptors for active sites on substrates,
including electronegativity difference of metal center and
vacancy (δχM, δχSv) and global electronegativity on substrates
(χsub). The δχM and δχSv were applied to reflect the interaction
strength for the active site with various intermediates. The
descriptor M , through the combination of metal center with
the nearest coordination atoms, was constructed for the
reactive sites. This strategy was applied in our previous work40

and other literature.29 The value of δχM between catalyst and
reduction intermediates in each step of CO2RR process was
easily estimated from eq 12 by the abstraction from M with
the average electronegativity in absorbed intermediate ( Int ).

N

N
i i i

M M Int
M Mo

Mo

1
N

atom

atom

= =
+ =

(12)

The descriptor developed for the vacancy site (δχSv) was
calculated by the joint effect of the absorbed intermediate with
the nearest neighboring atoms and sulfur vacancy deductions.
Furthermore, we added the distance between the metal center
and vacancy, DM‑Sv, via eq 13 to evaluate the synergistic effects
between the metal and vacancy.

Figure 5. (A) Definition of synergistic effect evaluation index (PSyn) to distinguish the synergistic effect on the Coor-pathway, Sv-pathway, and Syn-
pathway in CO2RR. (B) Illustration of the synergistic effect for Mo-anchored MoS2.
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The global electronegativity of the substrate (χsub) could reflect
the interaction strength between the substrate and the metal
center. The χsub value was estimated from eqs 14 and 15 by
dividing the substrate into two groups, the inner sphere
consisting of the coordinate atoms (N, O, etc.) in proximity to
the metal center ( In ) and the out-layer ( Out ) in substrate.
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(15)

For dual-active sites, we defined the average electronegativity
value of the metal center site (χsub) and vacancy (χsub−Sv)
substrate in eqs 16−18.

N

N
k k

atom
Out Sv

1
N

k
atom

= =

(16)

sub Sv
In Out Sv

Out Sv

Mo Out Sv

Out Sv

=
+

=
+

(17)

2sub
sub sub Sv=

+
(18)

The free energy change in each hydrogenation step was
predicted with an 8-feature scheme, including Nd, δχM, δχSv,
and χsub for active sites on substrates, PS, HC, and HS for
reaction pathways, and NO for adsorbate (Figure 6A). A grid
search was performed in 10 algorithms to determine the
appropriate hyper-parameters that would achieve the highest
accuracy. The cross-validation metric was selected by RMSE,
MAE, and R2 to obtain a more reliable estimate of the model’s
performance. The 10-fold cross-validation was applied on the
selected 10 ML models, which shows the accuracy of the
model on the entire volume of nonlinear data (Tables S7 and
S8 and Figure S29). The XGBoost achieved the most
satisfactory prediction results with MAE and R2 values of
0.27 eV and 0.91, respectively (Figure 6B). Based on Pearson
correlation analysis, a nonlinear correlation was observed
between the features and free energy change (Figure S30). The
XGBoost model calculated the average feature importance of
each feature (Figure S31) by a 10-fold cross-validation,
showing that PS, HS, HC, and δχSv were important features.
Shapley additive explanations (SHAP)63 algorithm was
combined with the trained model to further analyze the
positive or negative correlation between features and predicted
results. As shown in Figure 6B and Figure S31, δχSv, PS, Nd, HS,
and HC were the top 5 features with relatively large SHAP
values for the free energy change predication. The SHAP
analysis reveals a negative correlation among δχSv, PS, HS, and
HC, while Nd exhibits a positive correlation. The XGBoost
measures the importance of features based on information
gain, while SHAP is a globally accurate additive method that

Figure 6. (A) The definition and construction of 8 descriptors in the CO2RR process. (B) ML model construction for ΔG prediction and
comparison of the performance of different algorithms; prediction of ΔG of the CO2RR process by the XGBoost algorithm; and SHAP values of
each sample on CO2RR.
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identifies the importance of most global features. The different
method and parameter in XGBoost model and SHAP resulting
in a different ranking of feature importance.
The SISSO59 was used to generate the formulas describing

the relationship between the features and free energy change.
The feature reconstruction by SISSO for free energy change
prediction based on the 1D, 2D, and 3D descriptors exhibits
the results of R2 = 0.41, 0.62, and 0.71, respectively (Figure
S32). The synergistic effect between the metal center and
vacancy can be described by the term δχM − δχSv, which
appeared in 2D and 3D descriptors from the SISSO method.
Other algorithms, including GBR (Figure S33), ExtraTree

(Figure S34), ANN, SVR, and DecisionTree (DT), also
showed satisfactory prediction performance with R2 values
greater than 0.80 and MAE values less than 0.40 eV (Figure
S35). The SHAP analysis results based on different models,
such as GBR, and ExtraTrees, were consistent with the
XGBoost model in prediction of the free energy change
(Figure 6B and Figures S36 and S37). Partial dependence
plot64 was used to compare with SHAP analysis. As shown in
Figure S38, the range of δχSv was large (the blue line was
steeper), which has a significant impact on the free energy
prediction. In addition, the distribution of SHAP values of PS,
Nd, HS, and HC has the same tendency for partial dependence
plots.
Linear models, such as MLR, linear ridge, and LASSO, were

subjected to a grid search to find the appropriate hyper-

parameters. More detailed parameters of models can be found
in Tables S9−S12. However, even after this optimization
process, these models still yielded poor prediction results, with
low R2 values and high the mean absolute errors (R2 < 0.5 and
MAE > 0.7 eV, as shown in Tables S12 and Figure S39). As a
result, the top three ensemble algorithms (XGBoost, GBR, and
ExtraTree) were selected for the prediction of energy
properties for both the CO2RR and NRR in the following
subsection. More importantly, the number of atoms in the
intermediates (NI) can be used as an effective adsorbate
descriptor to predict the free energy change, with MAE and R2
values of 0.25 eV and 0.92, respectively (Figure S40).
Again, the three formulated descriptors, FM‑Sv, FCHO, and

FOH, were applied for the reaction energy prediction. As shown
in Figure 6 and Figure S41, The XGBoost performance with 7
descriptors (MAE = 0.27 eV, R2 = 0.91) was comparable to the
models with 8 descriptors (in which FM‑Sv was added, MAE =
0.29 eV, R2 = 0.90) and 9 descriptors (in which FCHO and FOH
were added, MAE = 0.27 eV, R2 = 0.89). The electronegativity
of the active metal site plays a crucial role in predicting free
energy changes in CO2RR. Previous studies have demonstrated
that the use of other electronic descriptors, such as band gap
(Eg),

40 the lowest unoccupied and highest occupied molecular
orbitals (ELUMO and EHOMO), the vertical ionization potential
(IP),65 etc., is efficient for predicting CO2RR and radical
reactions. By replacing the electronegativity in δχSv and δχM
with the first ionization energy (δIESv and δIEM), a comparable

Figure 7. (A) External tests for ΔG prediction on CO2RR via 8 features by metal−zeolites, M-g-CN, M-Pcs, MOFs, M-N4O, and M-N4 catalysts.
(B) The university descriptors transfer for NRR relative energy change prediction on metal−zeolites with 7 features and feature importance; the
absolute SHAP value of each feature was averaged in the data set, called mean |SHAP value|.
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prediction ability was achieved, with MAE = 0.29 eV and R2 =
0.91 (Figure S42).
Different ratios for dividing the training set and test set

(70:30, 80:20, and 90:10) were also investigated (Figure S43).
The training set and test set randomly scrambled into 70:30
(MAE = 0.29 eV, R2 = 0.88) and 90:10 (MAE = 0.26 eV, R2 =
0.92, Figure S44) displayed performance comparable to that of
80:20 (MAE = 0.27 eV, R2 = 0.91).
Such 8 descriptors can be further transferred to other

metal−supported catalysts, both in two- and three-dimens-
tional topologies. The combination of 1713 external tests,
including metal−supported graphitic carbon nitride (M-g-
CN),28 porpyridinic-like M−Nx complexes (M−N4O and M−
N4),

29 metal−zeolites,40 metal−phthalocyanines (M-Pcs),66
and MOFs57,67 on CO2RR, were incorporated into the ML
models to predict free energy change. Again, the XGBoost
model demonstrated satisfactory performance with an MAE of
0.34 eV and R2 of 0.88 (Figure 7A). The substrate descriptor
displayed a relatively high feature importance, highlighting its
significant role in the CO2RR process (Figures S45 and S46).
Additionally, the GBR (MAE = 0.34 eV, R2 = 0.88) and
ExtraTree (MAE = 0.41 eV, R2 = 0.86) models also exhibited
prediction performance comparable to that of XGBoost
(Figure S47).
Furthermore, the proposed descriptors in this work can be

utilized to evaluate the performance of metal−zeolites in
nitrogen reduction reactions (NRR) with 315 data samples.68

As depicted in Figure 7B, the XGBoost model exhibits a
satisfactory prediction capability (MAE = 0.44 eV, R2 = 0.90)
for the relative energy value of the reaction intermediates (ΔE)
with 7 descriptors. These descriptors include the metal center

descriptor ( N / Md ), electronegativity difference between
metal center and intermediate (δχM), numbers of the nitrogen
binding to metal center (NN), number of hydrogen atoms on
the coordinated nitrogen (HN), number of proton−electron
pair transfer in the reduction step (PS), the number of atoms in
the intermediates (NI), and number of hydrogen atoms in
released NH3 (HS). The SHAP analysis based on the XGBoost
model on NRR reveals that the complex metal center
descriptor ( N / Md ) was the most significant feature in
regulating the catalyst performance (Figure 7B and Figure
S48). The performance was comparable to the reported
XGBoost model (MAE = 0.51 eV, R2 = 0.84)68 trained from
metal−zeolites. In addition, both GBR and ExtraTree models
exhibit similar prediction capabilities (GBR: MAE = 0.44 eV
and R2 = 0.89; ExtraTree: MAE = 0.51 eV and R2 = 0.87,
Figures S49−S51) to XGBoost. Meanwhile, using the
aforementioned 7 descriptors, the XGBoost model also
provides a good prediction of energy difference between two
successive steps (ΔΔE) on the NRR process in metal−zeolites,
with a MAE of 0.46 eV and an R2 value of 0.83 (Figure S52).
The present ML model for predicting synergistic effect

evaluation was applied to metal−supported catalysts with
different types of vacancy sites. Table 1 shows the selected
systems, such as Ov-MoO2−x,

20 Ov-NiCo2O4,
21 Ov-Zn-CoO,22

and Wv-BWO,23 which represent the influence of various
vacancy characteristics, including type, position, concentration,
and doped metal, on the synergistic effect. All these selected
systems have been demonstrated to have high production rates
and selectivity for CO2 conversion in experiments, consistent
with the predicted positive synergistic effect (PSyn < −0.10 V)
from our ML model. The performance of DFT calculation and

Table 1. Application of the ML Model to Experimentally Reported Systems with Different Vacancy Characteristics
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ML prediction of the maximum free energy change on 26
metal-anchored MoS2 with and without sulfur vacancy were
presented in Table S13 for PSyn prediction. The predicted
ΔGmax for Sc@MoS2 and Ag@Sv-MoS2 was slightly higher
than the DFT calculated ΔGmax, whereas the predicted ΔGmax
for the Mo@MoS2 was smaller than the DFT calculated
ΔGmax. It should be mentioned that the data set we used to
construct the ML model was derived from the free energy
changes of reducing intermediates (ΔG, referring to free CO2
molecules and catalyst), rather than the free energy difference
between two consecutive steps (ΔΔG). The achievement of
quantitative power of ML models for free energy change
prediction is still a big challenge. Further effort to improve the
prediction accuracy of PSyn based on ΔΔG is of great
significance for better guiding experimentalists in rational
designing and screening of catalysts.

■ CONCLUSIONS
The synergistic effect between the metal and vacancy has been
revealed in a general model for CO2 activation in metal-
anchored MoS2 and other systems. The stability of the sulfur
vacancy at different positions and catalytic activity of metal@
Sv-MoS2 are related to the number of d-shell valence electrons,
group number, electronegativity of the metal center, and
distance between the sulfur vacancy and the metal site. The
Os@MoS2 (−0.29 V) and Fe@Sv-MoS2 (−0.31 V) are the
most promising CO2RR catalysts, with very low limiting
potentials and high selectivity against the HER. A quantitative
model for synergistic effect evaluation was proposed to assess
the thermodynamic advantages of CH4 conversion in three
possible pathways (Syn, Coor, and Sv). Descriptors related to
active sites on substrates, reaction pathways, and adsorbates
were used to predict the change in free energy for CO2RR (R2
= 0.91), and successfully transferred to an external test for
NRR (R2 = 0.90). An interpretable ML model based on SHAP
analysis reveals that δχSv, δχSub, PS, and Nd are the most
significant descriptors affecting the catalyst activity. The
predicted limiting potential value and synergistic evaluation
index are in agreement with the observed synergistic advantage
for oxygen and tungsten vacancy systems in experiment,
showing applicability of the present ML models to the
prediction of the CO2RR reactivity on other metal−supported
catalysts. This work offers a practical tool for the design of
efficient CO2RR and NRR catalysts.
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