
RESEARCH ARTICLE

Exploring the impact of Helicobacter pylori on

gut microbiome composition

Nihar Ranjan Dash1, Ghalia Khoder2, Aml Mohamed Nada3, Mohammad Tahseen Al

BatainehID
1,4*

1 College of Medicine, University of Sharjah, Sharjah, United Arab Emirates, 2 College of Pharmacy, University

of Sharjah, Sharjah, United Arab Emirates, 3 University Hospital Sharjah, Sharjah, United Arab Emirates,

4 Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, United Arab Emirates

* malbataineh@sharjah.ac.ae

Abstract

Helicobacter pylori (H. pylori) is known to colonize gastric mucosa, induce inflammation,

and alter gastric microbiota resulting in a spectrum of gastric diseases. Likewise, changes in

gut microbiota have recently been linked with various metabolic and inflammatory diseases.

While extensive number of studies were published examining the relationship between H.

pylori and gastric microbiota, little is known about the impact of H. pylori on downstream gut

microbiota. In this study, we performed 16 S rRNA and ITS2-based microbial profiling analy-

sis of 60 stool samples from adult individuals. Remarkably, the gut microbiota of H. pylori

infected individuals was shown to be increased of members belonging to Succinivibrio, Cor-

iobacteriaceae, Enterococcaceae, and Rikenellaceae. Moreover, gut microbiota of H. pylori

infected individuals was shown to have increased abundance of Candida glabrata and other

unclassified Fungi. These results links possible role for H. pylori-associated changes in the

gut microbiota in intestinal mucosal barrier disruption and early stage colorectal carcinoma

deployment. Altogether, the identified differences in bacterial and fungal composition pro-

vides important information that may eventually lead to the development of novel biomark-

ers and more effective management strategies.

Introduction

Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that colonizes the

gastric mucosa of more than half of the worldwide population with high geographic variability

[1]. H. pylori infection is generally acquired during childhood and can persist life-long without

symptoms. It triggers pathogenesis by creating reactive oxygen species and modulating host-

inflammatory responses. This pathogen is known to cause diseases of the upper gastrointesti-

nal tract such as peptic ulcer, gastric cancer, and gastric mucosa-associated lymphoid tissue

(MALT) lymphoma [2, 3]. Further, recent studies have linked H. pylori infection to lower gas-

trointestinal tract diseases, such as colorectal cancer [4, 5]. Several factors affects the outcome

of H. pylori infection, including virulence properties such as sialic acid-binding adhesin

(SabA), vacuolating cytotoxin (VacA), and cytotoxin-associated gene A (CagA) [6, 7]. In addi-

tion, host genetic, immunogenic factors, and environmental factors including resident gut

microbiota is known to play a significant role in disease pathogenesis [8].
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Studies have suggested that gut microbiota can be affected by H. pylori infection [8, 9]. In

fact, infection with H. pylori associates with altered gastric microbiota and dysbiosis that has

been implicated in the pathogenesis of gastric diseases [10, 11]. However, there is a lack of clar-

ity whether H. pylori infection itself supports the growing of undesirable microorganisms or

inversely, an altered microbiota creates advantageous conditions for H. pylori colonization. It

is very likely that a multifaceted interaction exists, in which the colonizing H. pylori favors the

growing of certain microbes and vice versa. Perhaps dysbiosis promote changes in gastric

mucosa that is more favorable for H. pylori colonization [8].

Currently, the exact interaction between H. pylori and gut microbiota is not fully under-

stood and reported literature shows contradictory results. For example, a study in children

reported that the gut microbiota of H. pylori-negative patient presented more relative abun-

dance of gammaproteobacteria, betaproteobacteria, bacteroidia and clostridia classes and a

higher bacterial richness and diversity [12]. Whereas, another study reported a contrasting

result that children infected with H. pylori presented increased number of gut microbiota

including Proteobacteria, Clostridium, Firmicutes and Prevotella in comparison to patients

without the infection [13]. Whether these differences are of primary etiological importance to

H. pylori infection or secondary to the altered inflammatory and metabolic environments

remains largely unknown. Aforementioned deliberations have necessarily created growing

interest exploring the potential interactions between the human gut microbiota and H. pylori.
In this study, we aim explore and characterize the gut microbiome composition between

asymptomatic H. pylori infected versus non-infected subjects to better understand the interplay

between H. pylori and gut microbiota and its effect on human health and disease conditions.

Material and methods

Ethical statement

The study was performed after receiving the necessary ethical approval University Hospital Shar-

jah- Hospital Ethics Research Committee (UHS-HERC-021-07022017). All subjects were

recruited at University Hospital Sharjah (Sharjah, UAE) and provided written informed consent.

Stool Sample collection and preparation. We collected 60 stool specimens from Emirati

citizens adults. The basic demographic information such as age, gender, marital status, educa-

tion level, diet, exercise, height and weight were documented. From each subject, 2 to 4 gram

of freshly passed stool specimen was collected in a sterile container stored immediately into

liquid nitrogen and then transferred to −80˚C for further analysis. Liquid (diarrheal) stool and

use of antibiotics in the last 3 months or use of proton pump inhibitors and/or bismuth prepa-

rations among the volunteers were the only exclusion criteria used in this study.

H. pylori detection

Antigen detection was performed on all 60 stool samples using Premier Platinum HpSA

immunoassay (Meridian Bioscience Inc.). Tests were performed in duplicate according to the

manufacturer‘s instructions. Spectrophotometric absorbance at dual wavelength 450/630 nm

equal or above 0.1 was considered a positive result.

DNA extraction

Faecal samples were subjected to DNA extraction using QIAampPowerFecalDNA kit (Qiagen

Ltd. GmbH, Germany) following the manufacturer’s instruction (Qiagen Ltd.). The extracted

DNA was stored at −80˚C for further analysis.
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PCR, sequencing, and sequence processing

Bacterial 16S rRNA genes were amplified using polymerase chain reaction (PCR) targeting the

V4 region with dual-barcoded, as per the procedure of Kozich et al. (2013) [14]. Next, ampli-

cons were sequenced with an Illumina MiSeq using the 250-bp paired-end kit (v.2). Sequences

were denoised, taxonomically classified using Greengenes (v. 13_8) as the reference database,

and clustered into 97%-similarity operational taxonomic units (OTUs) with the mothur soft-

ware package (v. 1.39.5) (Schloss et al. 2009) [15], following the recommended procedure

(https://www.mothur.org/wiki/MiSeq_SOP; accessed Nov 2017). ITS2 region were sequenced

on an Illumina MiSeq (v. 2 chemistry) using the dual barcoding protocol of Kozich et al.

(2014). Primers and PCR conditions used for 16S sequencing are identical to those of Kozich

et al.; those used for ITS2 sequencing were described by Gweon et al. (2015) [16]. Bacterial

sequences were processed and clustered into operational taxonomic units (OTUs) with the

mothur software package (v. 1.39.5) (Schloss et al. 2009), following the recommended proce-

dure (https://www.mothur.org/wiki/MiSeq_SOP; accessed Aug 2018). Paired-end reads were

merged and curated to reduce sequencing error (Huse et al. 2010). The processing pipeline

was identical as the one used for bacteria, except for the following differences: (1) paired-end

reads were trimmed at the non-overlapping ends, and (2) high quality reads were classified

using UNITE (v. 7.1) (Kõljalg et al., 2005) as the reference database. A consensus taxonomy for

each OTU was obtained and the OTU abundances were then aggregated into genera. OTU

abundances were summarized with the Bray-Curtis index and a principle coordinate analysis

(PCoA) was performed to visualize microbiome similarities and a permutational analysis of

variance (PERMANOVA) was done to test the significance of groups. Alpha diversity was cal-

culated using Shannon’s diversity index.

Quality control

The possibility for contamination was examined by co-sequencing DNA amplified from sam-

ples and from four each of template-free controls and extraction kit reagents treated the same

way as the samples. Two positive controls, consisting of cloned SUP05 DNA, were also added

(number of copies = 2�10^6). Operational taxonomic units were considered putative contami-

nants (and were removed) if their mean abundance in controls reached or surpassed 25% of

their mean abundance in samples.

Statistical analysis

Alpha diversity was assessed with the Shannon index on raw OTU abundance tables after filter-

ing out contaminants. The significance of diversity changes was tested with an ANOVA. To

evaluate beta diversity across samples, we excluded OTUs occurring in fewer than 10% of the

samples with a count of less than three and calculated Bray-Curtis indices. We tested beta diver-

sity, underscoring differences across samples, using principal coordinate analysis (PCoA) ordi-

nation. Dissimilarity in community structure was assessed with permutational multivariate

analyses of variance (PERMANOVA) with treatment group as the main fixed factor and using

4,999 permutations for significance testing. All analyses were conducted in the R environment.

Results and discussion

1. Bacterial and fungal sequence curation analysis and taxonomic

composition

Stool samples from the 60 individuals enrolled in this study were obtained in order to assess

the microbiota composition and H. pylori infection. From these 60 individuals, 12 were H.
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pylori infected by antigen detection test and their clinical characteristics shown in S1 Table.

We sequenced 16S rRNA gene V4 amplicons generated from DNA samples on a MiSeq.

MiSeq-generated Fastq files were quality-filtered and clustered into 97% similarity operational

taxonomic units (OTUs) using the mothur software package [http://www.mothur.org]. The

resulting dataset had 21257 OTUs (including those occurring once with a count of 1, or single-

tons). An average of 18383 quality-filtered reads were generated per sample. Sequencing qual-

ity for R1 and R2 was determined using FastQC 0.11.5, and visualized (S1 Fig). We sequenced

ITS2 amplicons generated from DNA samples on a MiSeq. MiSeq-generated Fastq files were

quality-filtered and clustered into 97% similarity operational taxonomic units (OTUs) using

the mothur software package [http://www.mothur.org]. The resulting dataset had 3171 OTUs

(including those occurring once with a count of 1, or singletons). An average of 9581 quality-

filtered reads were generated per sample. Sequencing quality for R1 and R2 was determined

using FastQC 0.11.5, and visualized (S2 Fig).

Examination of the taxonomic composition generated from high quality reads and classified

using Greengenes v. 13_8 as the reference database. We aggregated OTUs into each taxonomic

rank, and plotted the relative abundance of the most abundant ones. In the figure legends, the

unfilled portion of the bar represents unclassified and lower-abundance taxa (S3 and S4 Figs).

2. Gut microbiota of H. pylori infected subjects show higher level of

complexity compared to uninfected subjects

To evaluate the intra- and inter-individual variability among H. pylori infected and uninfected

subjects, we first evaluated averaged alpha-diversity for the 60 samples, examination of the

averaged rarefaction curves based on the biodiversity indices, Shannon and Chao1 at increas-

ing sequencing depth exhibited that both curves incline to reach a plateau. Therefore, the gen-

erated sequences from all samples were considered adequate to cover most of the biodiversity

in the samples. Surprisingly, and unlike what have been previously reported, average rarefac-

tion curves for H. pylori infected and uninfected subjects revealed a difference in that, on aver-

age H. pylori infected samples show higher level of gut microbiota complexity compared to

uninfected samples. Statistical analysis, calculated for the peak sub-sampling point reached by

all samples, i.e. 18000 reads, showed that the two curves significantly vary based on a one-way

analysis of variance (ANOVA) (p-value< 0.05) (Fig 1).

Numerous groups have demonstrated a significant effect of H. pylori on gastric microbial

richness and relative abundance [17–20]. Suggesting a major role of gastric microbiota on H.

pylori-induced gastric inflammation and cancer [19, 21]. However, little is known about the

impact of H. pylori on downstream gut microbiota. Here, we report an intriguing difference in

the gut microbiome between H. pylori infected and uninfected groups. Furthermore, It is

known that obesity is associated with dysbiosis and decreased diversity [22–24]. In contrast,

despite that 70% of the H. pylori infection subjects in our study were obese (BMI>30), here we

show that H. pylori infected samples exhibits higher level of gut microbiota richness and com-

plexity. This may suggest an important role for H. pylori in driving these compositional

changes irrespective to BMI status.

H. pylori has been implicated in many uninfected, asymptomatic, and disease conditions [7,

8, 25]. Although biological attributes of higher microbial biodiversity have been evaluated

favorably, especially against chronic inflammatory conditions such as obesity and inflamma-

tory bowel diseases [25, 26]. Perhaps H. pylori presence induces changes in the gut micro-envi-

ronmental cues, such as changes in pH that drives this compositional shift among native

communities to compensate. Most likely this compensation will be translated into unique

functional genes that are involved in important metabolic pathways.
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Next, we evaluated beta-diversity of microbiome composition, diversity among samples, we

summarized OTU abundances into Bray-Curtis dissimilarities and performed a Principal Coor-

dinate Analysis (PCoA). Based on permanova analysis no significant differences (p-value =

0.9741) (Fig 2). Suggesting that H pylori infection only drives species richness (higher OTU

count), but without affecting the overall inter- individual variability, the difference in micro-

biota composition between individuals. This observation is interesting to identify those micro-

bial populations that are being more abundant as a result of H. pylori infection and to further

understand their relevance in H. pylori pathogenesis and host immune interactions.

3. Exploration of bacterial abundance and prevalence between uninfected

and H. pylori infected individuals

In order to evaluate possible differences in bacterial richness as suggested in Fig 1, we con-

ducted ANOVA statistical analysis to compare the average relative abundance in uninfected

and H. pylori infected groups of genera with an absolute percentage difference >0.1%.

Remarkably, the comparison between uninfected and H. pylori infected datasets showed that

profiles obtained from uninfected individuals have no statistically significant over-representa-

tion, however we characterized a statistically significant under-representation of Succinivibrio

(% absolute −0.62%, p-value< 0.05), Coriobacteriaceae (% absolute −0.58%, p-value< 0.02),

Enterococcaceae bacterium RF39 (% absolute −0.48%, p-value< 0.01) and Rikenellaceae (%

absolute −0.499%, p-value< 0.02) among others (Fig 3).

The higher abundance in these genera in H. pylori infected individuals may be correlates H.

pylori pathogenesis and early stage cancerous development. Previous studies have reported

that iron deficiency is associated with the presence of H. pylori [27, 28], that has been clearly
demonstrated in animal models as well [29]. Further, Iron deficiency accelerates Helicobacter

pylori-induced carcinogenesis [30]. Here, we report that Succinivibrio and Turicibacter

among others have increased relative abundance with H. pylori infected (Fig 3A) and have

been reported else were to increase with iron depletion [31]. Furthermore, accumulating

Fig 1. Gut microbiota of H. pylori infected subjects show higher level of complexity. Evaluation of the alpha-diversity in the 60 analyzed samples. Outlined reports

the average rarefaction curves based on the Chao1 and Shannon index at increasing sequencing depth of H. pylori infected and healthy samples. H. pylori infected and

healthy datasets are colored in blue and red, respectively.

https://doi.org/10.1371/journal.pone.0218274.g001
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evidence links colorectal cancer development with microbiomes changes [32–35]. Here, we

showed that Coriobacteriaceae among others have high abundance with H. pylori infected

samples (Fig 3A). This interesting observation is consistent with previous studies that have

reported Coriobacteriaceae tend to grow more in tumor niches and have been implicated as

an early stage tumorigenic agent [34, 36]. Altogether, suggesting that H. pylori has a viable role

in colorectal cancer development similar to what have been previously reported [37, 38]. Most

likely, these data can be useful to provide screening biomarkers to predict early colorectal can-

cer development in individuals with H. pylori infection.

4. Exploration of fungal diversity between uninfected and H. pylori infected

subjects

Mycobiota have been first characterized as members of the normal gut flora in 1967 [39], Fun-

gal populations comprises a small percentage of the total gut microbiome. However, reports

Fig 2. Evaluation of the beta-diversity in the 60 analyzed samples. Panel shows the predicted Principal Coordinate Analysis (PCoA). Healthy and H. Pylori data points

and corresponding clusters are colored in green and orange respectively.

https://doi.org/10.1371/journal.pone.0218274.g002
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Fig 3. Exploration of the bacterial diversity in H. pylori infected and healthy subjects. (A)The bar plot reports only genera with an absolute percentage difference

between H. pylori infected and healthy averages>0.1% and a p-value< 0.05, evaluated by means of ANOVA statistical analysis. (B) The table indicates the bacterial

genera, the relative abundance and the prevalence of each group, the relative percentage difference and the p-value.

https://doi.org/10.1371/journal.pone.0218274.g003
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have indicated that these small numbers fungi, have surprisingly strong effects on dampening

inflammatory responses in the gut [40, 41]. Also, others have reported their impact on bacterial

community composition [42, 43]. In order to evaluate mycobiota in our study, we conducted

ANOVA statistical analysis to compare the average relative abundance in uninfected and H.

pylori infected groups of fungal genera with an absolute percentage difference >0.1%. The

comparison between uninfected and H. pylori infected datasets showed that profiles obtained

from uninfected individuals have no statistically significant over-representation, however we

characterized a statistically significant under-representation of unclassified fungi (% absolute

Fig 4. Exploration of the fungal diversity in H. pylori infected and healthy subjects. (A) The bar plot reports only genera with an absolute percentage difference

between H. pylori infected and healthy averages>0.1% and a p-value< 0.05, evaluated by means of ANOVA statistical analysis. (B) The table indicates the fungal

genera, the relative abundance and the prevalence of each group, the relative percentage difference and the p-value.

https://doi.org/10.1371/journal.pone.0218274.g004
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−21%, p-value< 0.01) and Candida glabrata (% absolute −6.3%, p-value< 0.01) among others

(Fig 4).

In our study, Ascomycota is the most prevalent fungus phylum in both uninfected and H.

pylori infected groups and similar to what have been published before [44]. However, we

showed a staggering abundance of unclassified fungi (% absolute −21%, p-value< 0.01) in H.

pylori infected vs. uninfected group. Suggesting a clear shift in the mycobiota as a result of H.

pylori infection. Recent check (January, 2019) of the NCBI Genome database https://www.

ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/fungi revealed only 4029 complete fungal

genomes compared with>182000 complete bacterial genomes. This suggest that fungi might

be under-detected compared with bacteria in any sequencing efforts and underscores the

importance of increasing the annotated reference sequences for fungi. Furthermore, fungi, as

eukaryotes, are probably contributing in unique metabolic pathways to the microbial equilib-

rium and host interactions. This compositional shift from known commensal fungi to unclas-

sified fungi perhaps indicate the loss of some known protective benefits of commensal fungi

such as mannans, a key component of fungal cell wall. Jiang et al reported that mannans stimu-

lation of mice intestine alone was sufficient to prevent disease susceptibility in mice depleted

of commensal bacteria [45]. Composition of the gut microbiota is strongly involved in the

maintenance and the shaping of the immune responses related to the intestinal barrier. Dys-

biosis may lead to intestinal barrier disruption and increased susceptibility to certain diseases

such as inflammatory bowel disease [46]. For example, a study found that Candida albicans
mono-colonization efficiently reversed dextran sodium sulfate (DSS)-induced colitis after anti-

biotic induced eradication of commensal bacteria in mice [45]. Here, we reported a shift from

the commensal C. albicans into Candida glabrata (% absolute −6.3%, p-value< 0.01) when

infected with H. pylori. Interestingly and in contrast to C. albicans, West, Lara, et al. reported

that inactivation of genes involved in mannan biosynthesis have been linked to increase viru-

lence in C. glabrata [47]. However, whether this dissimilarity in mannan biosynthesis signifi-

cantly alter intestinal barrier is yet to be elucidated.

We acknowledge potential limitations of this study, including relatively small sample size,

more advanced functional analysis, and direct gastric biopsy to elucidate the disease pathogen-

esis and mucosal changes.

In conclusion, the role of H. pylori spans beyond gastric microbiota to possibly affects

downstream gastrointestinal microbiota. Underscoring the importance of H. pylori associated

changes in the gastrointestinal dysbiosis and its possible role in inflammation and colorectal

carcinomas development. More studies connecting the gut microbiota-host-H. pylori interac-

tions are needed to fully understand these associations and its effect on related illnesses.

Supporting information

S1 Table. Clinical characteristics. Metadata reflecting clinical characteristics including age,

ethnicity, gender, and BMI of H. pylori-infected and uninfected subjects.

(DOCX)

S1 Fig. Bacterial sequence curation and analysis. Sequenced 16S rRNA gene V4 amplicons

generated from DNA samples on a MiSeq. MiSeq-generated Fastq files were quality-filtered

and clustered into 97% similarity operational taxonomic units (OTUs) using the mothur soft-

ware package [http://www.mothur.org]. The resulting dataset had 21257 OTUs (including

those occurring once with a count of 1, or singletons). An average of 18383 quality-filtered

reads were generated per sample. Sequencing quality for R1 and R2 was determined using

FastQC 0.11.5, and visualized below.

(DOCX)
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S2 Fig. Fungal sequence curation and analysis. Sequenced ITS2 amplicons generated from

DNA samples on a MiSeq. MiSeq-generated Fastq files were quality-filtered and clustered into

97% similarity operational taxonomic units (OTUs) using the mothur software package

[http://www.mothur.org]. The resulting dataset had 3171 OTUs (including those occurring

once with a count of 1, or singletons). An average of 9581 quality-filtered reads were generated

per sample. Sequencing quality for R1 and R2 was determined using FastQC 0.11.5, and visual-

ized below.

(DOCX)

S3 Fig. Bacterial summary taxonomic composition. High quality reads classified using

Greengenes v. 13_8 as the reference database. The aggregated OTUs into each taxonomic

rank, and plotted the relative abundance of the most abundant ones. In the figure legends, the

unfilled portion of the bar represents unclassified and lower-abundance taxa.

(DOCX)

S4 Fig. Fungal summary taxonomic composition. High quality reads classified using Warcup

V2 as the reference database. The aggregated OTUs into each taxonomic rank, and plotted the

relative abundance of the most abundant ones. In the figure legends, the unfilled portion of

the bar represents unclassified and lower-abundance taxa.

(DOCX)
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