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Abstract: Lung cancer is regarded as the major causes of patient death around the world. Although
the novel tumor immunotherapy has made great progress in the past decades, such as utilizing
immune checkpoint inhibitors or oncolytic viruses, the overall 5-year survival of patients with lung
cancers is still low. Thus, development of effective vaccines to treat lung cancer is urgently required.
In this regard, DNA vaccines are now considered as a promising immunotherapy strategy to activate
the host immune system against lung cancer. DNA vaccines are able to induce both effective humoral
and cellular immune responses, and they possess several potential advantages such as greater stability,
higher safety, and being easier to manufacture compared to conventional vaccination. In the present
review, we provide a global overview of the mechanism of cancer DNA vaccines and summarize the
innovative neoantigens, delivery platforms, and adjuvants in lung cancer that have been investigated
or approved. Importantly, we highlight the recent advance of clinical studies in the field of lung
cancer DNA vaccine, focusing on their safety and efficacy, which might accelerate the personalized
design of DNA vaccine against lung cancer.

Keywords: DNA vaccines; lung cancer; tumor antigens; immunotherapy; adjuvants

1. Introduction

To date, lung cancer is one of the most diagnosed cancers and the leading cause
of cancer death, which is a critical global issue [1]. In the last decade, the significant
progress and transformed outcomes have been achieved in better understanding of cancer
pathology, application of predictive biomarkers, and improved treatments for patients with
lung cancer [2]. Despite the great recent efforts, over 1.7 million deaths and 2 million new
cases per year for lung cancer are reported, even with the rapid increase in non-smokers [3].
Based on the histopathological features, lung cancer consists of two major subtypes, non-
small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), which account for
approximately 80–85% and 15–20% of patients with lung cancer, respectively [4,5]. Cancer
immunotherapies (CIs) are currently the most promising approach against cancer, which
can contribute to overcome the drawbacks of conventional therapeutics [6]. CIs comprise
CAR-T cell therapies, oncolytic viruses, antibody-based drugs, cancer vaccines etc. [7]. In
this context, cancer vaccines represent an effective and promising scheme for manipulating
the immune system.

Cancer vaccines are mainly divided into four types: tumor-cell-based vaccines, peptide
or protein vaccines, viral-vector-based vaccines, and nucleic-acid-based vaccines (DNA or
RNA vaccines) [8]. Among these potent vaccines, DNA vaccines are promising immune-
therapeutics against cancers with various advantages. DNA vaccines are not only able
to trigger innate immune responses, but also efficiently to induce both the humoral and
cell-mediated immune responses of the host [9–11]. Additionally, a powerful DNA vaccine
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can consist of several genes encoding tumor-specific antigens, thereby augmenting immune
responses against tumor antigens, which are involved in tumor initiation, progression,
and metastasis [12]. For example, DNA vaccines have been extensively investigated for
development of novel strategies against melanoma, prostate cancer, breast cancer, and
lung cancer [11,12]. Moreover, DNA vaccines are easier to manufacture and have greater
stability and safety compared to the traditional vaccines [13,14]. Although enormous
efforts have been made to develop cancer vaccines, clinical therapies of cancer vaccines
are still less efficacious because of the highly variable antigens of tumors and low immune
responses [15].

In the current review, we briefly summarize important recent advances in the design
of DNA vaccines targeting antigens of lung cancer and their significance in lung cancer
treatment. Additionally, we discuss the novel strategies for improving antigen presentation
and low immunogenicity, including new delivery platforms, molecular adjuvants, or
immunomodulatory factors, and highlight the current clinical applications of DNA vaccines
for lung cancer therapy. Finally, this article offers perspectives on the potential of DNA
vaccines to overcome the major obstacles for lung cancer immunotherapies.

2. DNA Vaccines of Lung Cancer: Mechanisms of Immune Activation

The principal concept of a DNA vaccine for lung cancer is to introduce potential and
effective tumor antigens into the host and subsequently activate host immune responses to
clear tumor cells (Figure 1). To create a powerful DNA vaccine for lung cancer, the specific
tumor-antigen-encoding genes or encoded immunostimulatory molecules are cloned into
a eukaryotic expression plasmid [16]. These vaccines can be delivered to the host using
various vaccination routes, including intramuscular, intradermal, transcutaneous, and
mucosal injections [17]. In addition, the DNA plasmids can be transported into the cells
by physical methods including electroporation, sonoporation, or gene gun [18–20]. After
taking up the plasmid, the host cell expresses the target antigen and presents the antigen
to lymphocytes by the major histocompatibility complex (MHC) signaling pathways [21].
Afterwards, the exogenous antigens are presented to MHC class II molecules and inform
CD4+ T cells to induce tumor-antigen-specific antibodies [22]. Likewise, the captured
exogenous antigens can also be transferred to MHC class I molecules and induce specific
cellular immune responses by interacting with CD8+ cytotoxic T cells, which is important
for the clearance of tumor cells [14].
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treatment of patients with melanoma [24–26]. Notably, an interesting preclinical study 
demonstrated that a genetically engineered DNA vaccine induced highly antitumor effi-
cacy and decreased the tumor nodules in a mouse lung cancer model [27]. Although DNA 
vaccines are shown to elicit therapeutic antitumor immune responses, the DNA vaccines
for lung cancer are still in the clinical trial phases. In this context, new developments in 
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clinical studies to achieve the goals of translational applications in patients.
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mutations and are particularly expressed in neoplastic cells [30]. 
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phase III trials [31]. In contrast to TAAs, TSAs are less likely affected by central or periph-
eral tolerance due to molecular alterations [32,33]. TSAs are easily generated because of
the genomic instability presented in lung cancer, and are effectively identified by immune 
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An effective immunity induced by the specific CD8+ T cell has an essential role in the
antitumor activity, and DNA vaccines are powerful at inducing CD8+ T cell responses [23].
Just two cancer vaccines are currently approved for human application (Sipuleucel T and
T-VEC). Sipuleucel-T (Provenge) was the first dendritic-cell-based cancer vaccine approved
by the U.S. Food and Drug Administration (FDA) for the control of prostate cancer, and
T-VEC (talimogene laherparepvec) was the first oncolytic virus vaccine for the treatment of
patients with melanoma [24–26]. Notably, an interesting preclinical study demonstrated
that a genetically engineered DNA vaccine induced highly antitumor efficacy and decreased
the tumor nodules in a mouse lung cancer model [27]. Although DNA vaccines are shown
to elicit therapeutic antitumor immune responses, the DNA vaccines for lung cancer are
still in the clinical trial phases. In this context, new developments in DNA plasmid delivery
and optimization will improve the efficacy of DNA vaccines in clinical studies to achieve
the goals of translational applications in patients.

3. Potent Antigens Selection for Lung Cancer

The most vital process in the development of DNA vaccine for lung cancer is to select
the potent tumor antigens. These antigens are homogenously expressed in the cancer cells
and are designed to prevent tumor immune escape and cancer metastasis. Additionally,
the antigens are highly immunogenic and are indispensable for cancer cell survival [28]. To
the best of our knowledge, tumor antigens are divided into two major categories, including
tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) [29]. For example,
many TAAs are monomorphic self-antigens, which are expressed in both cancer cells and
normal host cells. TSAs (neoantigens) are encoded by tumor-specific somatic mutations
and are particularly expressed in neoplastic cells [30].

In the past few years, it was extensively investigated that TAAs showed less clinical
benefit because of the preexisting central tolerance to self-antigens [28]. Especially, targeting
TAAs (MAGE-A3, MUC-1) in lung cancer induced inefficient immune response in the phase
III trials [31]. In contrast to TAAs, TSAs are less likely affected by central or peripheral
tolerance due to molecular alterations [32,33]. TSAs are easily generated because of the
genomic instability presented in lung cancer, and are effectively identified by immune
system of the host [30]. Thus, the generation of TSAs will contribute to designing tumor
vaccines, such as identification of TSAs by rapid genomic profiling and computational
prediction pipelines based on next-generation sequencing [33]. However, not all the
genomic instability exhibits similar effects such as new neoantigen generation and host
response to cancer immunotherapy [34]. Tumor mutation burden (TMB) is considered as
a promising biomarker of response to immune checkpoint inhibitors, while it is hard to
detect neoantigen load in clinical practice due to biological or economic problems [35].

With the development of next-generation sequencing and relevant cutting-edge bioin-
formatics, more and more unique TAAs and TSAs have been identified for lung cancer
vaccines [36–38]. Given that both TAAs and TSAs are of considerable importance in T-
cell-mediated antitumor immunity, targeting these potential antigens is critical for cancer
immunotherapy. Herein, we summarize the updated TSAs and TAAs associated with
lung cancer in Tables 1 and 2. Since most antigens of lung cancer come from self-tissue,
innovative engineered DNA vaccines with novel antigens will surmount inherent immune
tolerance and inefficient immune response as mentioned above.

Table 1. Potential neoantigens identified in lung cancer.

No. of Potential
NEOANTIGENS Patient Parameter (s) Identified

Year References

8–610 34 MHC-I binding affinity 2015 [39]

288–417 2 MHC-I binding affinity 2016 [40]

80–741 7 MHC-I binding affinity 2016 [41]
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Table 1. Cont.

No. of Potential
NEOANTIGENS Patient Parameter (s) Identified

Year References

102–316 4 MHC-I binding
affinitySelf-similarity 2017 [42]

12 147 MHC-II binding affinity 2018 [43]

1–219 12 MHC-I binding affinityAntigen
processing 2018 [44]

1–139 14 MHC-I binding affinity 2019 [45]

54–2992 20 MHC-I binding affinity 2020 [46]

12–30 12 MHC-I/MHC-II binding
affinity 2021 [47]

225 24 MHC-I/MHC-II binding
affinity 2021 [48]

Abbreviation: MHC, major histocompatibility complex.

Table 2. Potential TAAs identified in lung cancer.

TAAs Gene Function Histology Identified Year References

OLFM1 Suppress cell growth and metastasis LC 2015 [49]

SQLE Cell proliferation and metastasis LC 2015 [49]

c-Myc Cell growth and metabolism LC 2016 [50]

HNRNPA2B1 mRNA metabolism and transport LC 2017 [51]

ENO1 Regulate cell proliferation and metastasis NSCLC 2017 [52]

P53 Inducing cell cycle arrest, and DNA repair LC 2017 [53]

GBU4-5 Cell growth and division SCLC 2018 [54]

IGFBP-1 Cell migration LC 2019 [38]

FGFR1 stem cell leukemia/lymphoma syndrome LC 2019 [55]

CA125 Cell adhesion, migration, and invasion NSCLC 2019 [56]

GAGE7 Influence cancer progression NSCLC 2019 [57]

TOP2A Metabolism for proteins and DNA damage LC 2020 [58]

SOX2 Cell proliferation, metastasis, and
drug resistance LC 2020 [59]

CAGE Cell cycle, growth, and proliferation NSCLC 2021 [60]

Abbreviations: TAAs, tumor-associated antigens; LC, lung cancer; NSCLC, non-small-cell lung cancer; SCLC,
small-cell lung cancer.

4. DNA Vaccine Delivery Platforms

A major challenge in the development of DNA vaccines is to ensure the delivery of
DNA plasmids to the appropriate cells and tissues. Thus, choosing an applicable delivery
system is thought to be a key factor to induce the activation of host immune system and
to reduce some side effects [11]. In this section, we summarize the recent advances in
DNA vaccine delivery platforms for cancer including electroporation and gene-gun-based
delivery, nanoparticle-based delivery, and self-assembling peptides-based delivery systems.

Electroporation is one of the most intensively studied strategies to promote the deliv-
ery of DNA plasmids into antigen-presenting cells (APCs) [61]. In terms of mechanism,
electroporation delivery can increase cell permeability by forming transient pores, thus
allowing more DNA plasmids to enter into the cells [62]. In addition, electroporation has an
adjuvant effect to attract specific immune cells such as dendritic cells to the DNA injection
sites, and subsequently triggering the production of proinflammatory cytokine and the
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magnitude of cancer antigen-specific immune response [63]. A number of clinical trials
have tested the delivery efficacy of the DNA vaccine against cancers using electroporation
such as melanoma, prostate cancer, and colon adenocarcinoma [12,64]. Another common
scheme is applying a gene gun to transfer DNA vaccine, which is coated with a gold
particle. In this delivery system, the cytotoxic T lymphocyte responses can be enhanced
and less DNA is required in different experimental settings [65]. Numerous convincing
evidence have demonstrated that the antitumor effects of cancer vaccines can be enhanced
by gene gun delivery against various cancers such as lung cancer [66–71]. In spite of this
significance, electroporation or gene-gun-based delivery suffer some drawbacks, such as
causing considerable pain on administration and not being suitable for community-wide
vaccination [63].

An alternative delivery approach has been designed to enhance the uptake of target
DNA vaccine using nanoparticle-based drug delivery platforms. This novel delivery plat-
form can overcome the pharmacokinetic limitations and improve the poor bioavailability
or solubility of drugs. Up to now, various nanoparticles have been applied to deliver
DNA-based vaccines and promote antitumor immune responses, including polymeric
nanoparticles, liposomes, silica nanoparticles, bisphosphonate-modified calcium phos-
phate nanoparticles, gold nanoparticles, virus nanoparticles, and carbon nanotubes [72–74].
Liposomes are one of the well-recognized nanoparticle vaccine delivery platforms, which
are easy to construct by altering the composition, surface of lipid, and other important
properties [75–77]. Liposomes can not only augment the immunogenicity of special anti-
gens for cancer DNA vaccines, but they also improve the therapeutic efficacy. BioNTech
have developed a novel nanoparticle for gene delivery called Lipoplex, which is mainly
complexed with RNA encoding target tumor antigens for cancer immunotherapy [78]. In
addition, Lipoplex complexing with DNA plasmid reduced tumor proliferation and tumor
angiogenesis of lung cancer [79].

Self-assembling peptides (SAPs) are small biomedical materials that can also function
as an effective drug delivery system to deliver antigens to cancer cells [80,81]. SAPs can be
manufactured to form various constructions such as nanomicelles, nanotubes, nanovesicles,
nanotapes, and hydrogels [80]. This innovative delivery system has several advantages
compared to liposomes or nanoparticles, such as high drug-loading efficiency, low drug
leakage, easier uptake, and highly biodegradable properties [63]. Additionally, it can
induce long-time immune response in an adjuvant independent manner [81]. Recently,
an interesting study showed that a new delivery platform based on SAPs, called the
Glycosaminoglycan (GAG)-binding enhanced transduction (GET), was able to promote
delivery of nucleic acids for gene therapy in lung organs [82]. The tripeptide complexes
the DNA plasmids into the novel nanoparticles and can be delivered to various organs,
in particular in the lung, and has great potential application in delivery of DNA vaccines.
Nevertheless, the main drawback associated with low pH in SAPs is that it needs to
improve [83]. For instance, the SAPs might damage cells or host tissues at low pH condition,
and keeping constant neutral pH can contribute to embedding molecules in SAPs during
the self-assembly process. Moreover, the temperature condition alters the self-assembly
behavior when designing the novel SAPs, and also needs to be optimized [80].

5. Adjuvants

DNA vaccines of lung cancer induce a systemic immune response, including humoral
and cellular immune responses, and are effective to prevent the metastases of tumors. Ad-
ditionally, DNA vaccines activate immunological memory of host immune cells compared
to small molecule inhibitors and antibodies [11]. Nevertheless, single antigen in a DNA
vaccine might induce poor adaptive immune response [9]. Therefore, it is necessary to
develop new DNA vaccine adjuvants, which can target important elements of the immune
system to elicit a robust and sustained immune response [63]. Here, we summarize the re-
cent advances in new DNA vaccine adjuvants for lung cancer, including inherent adjuvants
and molecular adjuvants [63,84–88].
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The inherent adjuvants contain pathogen-associated molecular patterns (PAMPs) such
as CpG motifs and lipopolysaccharides, and dendritic cells. The PAMPs are normally
recognized by the Toll-like receptors (TLRs) [63]. TLR agonists are considered as a potential
vaccine adjuvant, which can mimic the progress of microbial infection and increase the
immune efficacy of a cancer vaccine [48,89,90]. To date, several TLR agonists are in clinical
trials as promising vaccine adjuvants for cancer therapy, including TLR3 agonist, TLR4
agonist, TLR7 agonist, TLR8 agonist, and TLR9 agonist [48,89–91]. Among these TLR
agonists, two TLR agonists were approved as an innovative vaccine adjuvant, including
Monophosphoryl lipid A (MPL) and CpG oligodeoxynucleotides (ODN) 1018 [48]. MPL is
a detoxified LPS derivative that can activate the TLR4 signaling pathway and is applied as
an important element of the Cervarix vaccine of the year 2009 [92]. The ODN 1018 is a TLR9
agonist and is used for an adjuvant of the Heplisav-B vaccine that followed in 2017 [93].

There is emerging interest in the use of molecular adjuvants such as cytokines and
chemokines to enhance the efficacy of a cancer vaccine [63]. These adjuvants can attract
specific immune cells to the location of injection or mediate the traffic of antigen such as
RANTES, CCL5, and CXCR2 [94,95]. Moreover, they can enhance the immunogenicity of
target antigens in host cells and modify the immune responses against various pathogens
such as IFN-γ, IL-2, IL-12, IL-15, and granulocyte-macrophage colony stimulating factor
(GM-CSF) [96–98]. GM-CSF is one of the well-recognized immunostimulatory factors and
has been investigated in many clinical trials of cancer vaccines [98,99]. A recent study
found that co-delivery of dendritic cells and the modified oncolytic adenovirus expressing
IL-12 and GM-CSF cytokines induced a strong antitumor immune response [100]. Another
class of potential vaccine adjuvants is the CD40 agonists and stimulator of interferon genes
protein (STING) agonists [101–104]. CD40 is normally expressed on antigen-presenting
cells (APC) or macrophages, and CD40 agonists (CD40a) can activate maturation of APCs
for enhancing tumor-specific antigen presentation [104]. A number of trials have shown
that CD40 agonists were applied in combination with CSF1R inhibitor or TLR agonists
for cancer therapy in a vaccine-adjuvant way [101,103,104]. STING is an important trans-
membrane protein that is located in the endoplasmic reticulum and in response to cytosolic
DNA [105]. STING agonists exhibited effective antitumor activity, including cyclic di-
guanosine monophosphate and synthetic cyclic dinucleotide derivatives [106]. A number
of studies demonstrated that STING agonists combined with a cancer vaccine or delivery
platform induced a potent inflammatory response and modulated the tumor microenviron-
ment by increasing proliferation of CD4+ T cell [107–110]. Although STING agonists might
cause some systemic toxicity, the novel strategies of combined therapy would accelerate
their application as a cancer vaccine adjuvant.

6. Recent Clinical Trials Based on DNA Vaccines against Lung Cancer

DNA vaccines elicited great immune responses in various animal models against
cancers [12]. For instance, more than five different DNA vaccines are licensed and employed
in the veterinary industry, and one of the DNA vaccines (Oncept vaccine) in particular is
applied to treat canine melanoma based on a xenogenic antigen [21,111,112]. Many clinical
trials have investigated the efficacy and safety of designed DNA vaccines against a majority
of tumor models, including breast cancer, cervical cancer, pancreatic cancer, prostate cancer,
and lung cancer [16]. However, none of these DNA vaccines have been approved for
clinical application in lung cancer patients by the FDA or relevant agencies around the
world. A powerful search for the studies of clinical trials with “lung cancer” and “DNA
vaccines” in a public database (www.clinicaltrials.gov (accessed on 8 August 2022)) [113]
showed that approximately 10 studies were detected in the last decade under the following
conditions: “completed”, “withdraw”, “recruiting”, “not yet recruiting”, and “terminated”.
Among these clinical trials employing DNA vaccines against lung cancer, only several trials
have published the results. In this section, we summarize the recent advances in clinical
studies of DNA vaccines for the treatment of lung cancer.

www.clinicaltrials.gov


Vaccines 2022, 10, 1586 7 of 13

The NCT02179515 phase I clinical study investigated the safety and effectiveness of
MVA-brachyury-TRICOM vaccine, which was based on a Modified Vaccinia Ankara (MVA)
vector and expressing three important human costimulatory molecules (B7.1, ICAM-1, and
LFA-3, abbreviated as TRICOM) for treatment of lung cancer and other tumors [114,115].
A total of 38 cancer patients were injected subcutaneously with different doses of MVA-
brachyury-TRICOM at monthly (approximately 28 days) intervals for 3 months. This
novel vaccine effectively activated specific CD8+ and CD4+ T cells in human dendritic
cells in vitro assay. Notably, no obvious dose-limiting toxicities were detected in patients,
and brachyury-specific T cell responses were highly induced at different dose levels and
in many patients. A recent study reported the results of a phase I study (NCT00199849),
in which 4–8 µg dosages of a pPJV7611 plasmid coding for the NY-ESO-1 protein were
delivered by a particle-mediated epidermal delivery (PMED) method in patients with
NSCLC. A general increase in antibody titer and NY-ESO-1-specific CD4+ and CD8+ T cells
were detected in most patients. In addition, a positive delayed-type hypersensitivity (DTH)
reaction to NY-ESO-1 protein was not observed in all patients [116,117]. In another phase
I study (NCT00423254), the safety and immune responses of pPRA-PSM DNA vaccine
combined with synthetic peptides E-PRA and E-PSM were evaluated for the treatment of
solid malignancies such as small-cell lung carcinoma. The treatment was well tolerated
and safe. More than half of the patients exhibited the intensification of immune response
by detecting the proliferation of PRAME-specific or PSMA-specific T cells isolated from
the blood. Importantly, some patients exhibited stable disease for 6 months or even
longer [116,118]. Except for the completed clinical trials, there are about five ongoing
clinical trials using DNA vaccines against lung cancer [119]. They are all in clinical phase
I or phase II and use DNA vaccines as naked plasmid or combined with drugs such as
durvalumab for the treatment of lung cancer. Nevertheless, the results for these trials are
not available to date.

Interestingly, eight studies were found in PubMed (pubmed.ncbi.nlm.nih.gov (ac-
cessed on 9 August 2022)) following these criteria: “lung cancer”, “DNA vaccine”, article
type “clinical trial”, from 2001 to 2022 [120]. Among these clinical trials, most of them
concentrated on prophylactic DNA vaccine or molecular adjuvant against cancer [121,122].
For example, CpG ODN (K3), a novel synthetic DNA adjuvant, was used to boost the im-
mune response in patients with lung cancer. CpG ODN (K3) activated innate immunity by
increasing the secretion of IFN-γ, CXCL10. Additionally, Th1-type immune response and
cytotoxic activity were significantly enhanced in patients. Taken together, DNA vaccines ex-
hibited great potential against lung cancer compared to conventional therapies. Among the
published clinical trials, few obvious side effects were observed, and a significant increase
of specific antibody or CD8+ T cells was detected by the novel DNA vaccines. Although
many DNA vaccines encoding novel TAAs or TSAs were presented in the preclinical or
clinical studies, only a few personalized antigens were detected. More clinical trials are
required to further explore their mechanism of action and clinical practice.

7. Future Prospects

DNA vaccines are the next generation of immunotherapy that consists of immunoen-
hancement and precision medicine. In the context of DNA vaccines, they can provide
therapeutic strategy for a majority of cancers, including lung cancer. However, despite
the remarkable progress of DNA vaccines in cancer research, DNA vaccines reveal some
limitations and challenges in trials, including poor immunogenicity in humans, limited to
protein immunogens, and inducing passible antibody production against DNA. In addition,
the early designs of DNA vaccines and immunologic tolerance are the main causes for
failure of DNA vaccines in human clinical trials.

Recent breakthroughs have been investigated to enhance the immune response of
host against lung cancer by adding the TAAs or TSAs and adding the novel immuno-
logical adjuvants such as cytokines and chemokines. Although intramuscular injection
of DNA vaccines is a common route, device-mediated immunotherapy is also general,

pubmed.ncbi.nlm.nih.gov
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especially electroporation and gene gun. In addition, nanoparticle-based delivery and
molecular-adjuvant-based DNA vaccine showed increased potential efficacy in numerous
ongoing clinical trials. The recent clinical trials imply that the current cancer vaccines
are not sufficient to provide excellent outcomes only by a single component. Therefore,
combinations with other strategies, such as adding novel adjuvants and delivery platform,
would improve the clinical outcomes compared with the monotherapy. Furthermore, the
personalized tactic in the DNA vaccine design will be critical for success in the clinical
applications. To accomplish the applicable treatment for the patients with lung cancer by
DNA vaccine immunization, more detailed studies are needed in the future.
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