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Abstract

Motivation: The identification of heterogeneities in cell populations by utilizing single-cell technol-

ogies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees.

Several methods have been proposed for such inference from high-dimensional single-cell data.

They typically assign each cell to a branch in a differentiation trajectory. However, they commonly

assume specific geometries such as tree-like developmental hierarchies and lack statistically sound

methods to decide on the number of branching events.

Results: We present K-Branches, a solution to the above problem by locally fitting half-lines to

single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies

for branches in the differentiation trajectory of cells. We propose a modified version of the GAP

statistic for model selection, in order to decide on the number of lines that best describe the data lo-

cally. In this manner, we identify the location and number of subgroups of cells that are associated

with branching events and full differentiation, respectively. We evaluate the performance of our

method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during

hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of

human myeloid monocytic leukemia and artificial data.

Availability and implementation: An R implementation of K-Branches is freely available at https://

github.com/theislab/kbranches.

Contact: fabian.theis@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in single-cell technologies have led to the discovery

and characterization of novel cell types in multicellular organisms.

Studying diverse cell populations that differ in morphology and

function can pinpoint distinct cell types in different stages of regula-

tory processes, such as cellular development. For example, single-

cell methods have led to new discoveries related to hematopoietic

stem cells (Moignard et al., 2015; Paul et al., 2015), as well as the

immune system (Jaitin et al., 2014; Mahata et al., 2014; Proserpio

et al., 2016).

The development of novel computational techniques for the

analysis of single-cell data is an active research topic in the field of

bioinformatics (de Vargas Roditi and Claassen, 2015; Grün and van

Oudenaarden, 2015; Stegle et al., 2015). The key idea of the

Waddington epigenetic landscape (Waddington, 1942, 1957) is that

individual cells can be mapped from a high-dimensional space to a

low-dimensional manifold of trajectories that reflect the continuous

regulatory processes. As a result, a number of methods have been

proposed that can reconstruct differentiation trajectories, given

snapshot data of individual cells in different stages of the
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differentiation process, such as Monocle (Trapnell et al., 2014),

Wishbone (Setty et al., 2016), Diffusion Pseudotime (DPT)

(Haghverdi et al., 2016), SLICER (Welch et al., 2016) and TSCAN

(Ji and Ji, 2016). Given a ‘root’ cell as a starting point, most of these

methods can also calculate an ordering of the cells (pseudotime)

based on the stage each cell is in the differentiation process.

However, with the exception of DPT, while these methods are suc-

cessful in assigning cells to discrete differentiation trajectories

(branches) they do not tackle the problem of identifying the local

dimensionality around each cell. That is, identifying branching re-

gions of cells not yet strongly associated to any branch, intermediate

regions along a branch and tip regions of fully differentiated cells.

Moreover, all the above methods lack a sound statistical model to

identify the existence and number of cell subgroups associated to

branching events. Finally, while TSCAN employs model selection to

decide on the number of cell-clusters, it does not aim to identify

branching and tip regions.

In this study, we propose a data driven, model-based clustering

method that identifies the exact number of ‘branching regions’, as

well as the exact number of fully differentiated ‘tip regions’ in the lin-

eage tree. The method then proceeds to assign each cell to a branch-

ing, intermediate or tip region. The proposed methodology does not

aim to infer a pseudotemporal ordering of the cells and as such no

‘root’ cell needs to be defined. Moreover, since characterization of

each cell is based on local information in the differentiation trajectory,

the method can successfully identify cells belonging to the aforemen-

tioned regions of interest in trajectories of arbitrary geometry.

2 Materials and methods

2.1 Problem formulation
Given a center c and direction v, a halfline L is defined as the set of

points satisfying L ¼ fcþ t � v; t � 0g; with l; c; v 2 RP. We aim to

find K halflines L1; . . . ;LK with a common center c and K distinct dir-

ection vectors v1; . . . ; vK. In this case, each halfline Lk corresponds

one cluster Ck. As a prerequisite to defining a cost function, note that

the Euclidean distance of a given point x to a halfline Lk reads:

d x;Lkð Þ ¼

�������� I �
vkvT

k

vT
k vk

 !
x� cð Þ

��������; if x� cð ÞT � vk � 0

jjx� cjj; if x� cð ÞT � vk < 0

:

8>><>>: (1)

Additionally, one may also use other distance metrics (Kiselev et al.,

2017).

The clustering method aims to assign each of the given data

points (cells) into its closest halfline, while minimizing the total cost.

In other words, the goal is to identify the center c, as well as the dir-

ection vectors v1; . . . ; vK of unit length that minimize the overall

clustering cost. To this end, we define the cost function J to describe

the total dispersion, which corresponds to the sum of dispersions

over the K clusters and reads:

J ¼
PK

k¼1

P
x2Ck

d x;Lkð Þ2

¼
PK

k¼1

P
x2C�

k
jjx� cjj2 þ

P
x2Cþ

k

�������� I �
vkvT

k

vT
k vk

 !
x� cð Þ

��������2
 !

;

(2)

where Ck ¼ C�k [ Cþk corresponds to all elements in cluster k and

C�k ; Cþk correspond to the sets of elements in cluster k with negative

and positive dot product to all vectors in the direction of Lk,

respectively.

The main idea of the proposed methodology is to perform local

clustering in single-cell trajectories, by fitting K halflines (branches)

that share a common center. Then, model selection is applied to

identify the number of K branches best fitting the local neighbor-

hood around each cell. Thus, the local structure of single-cell trajec-

tories is identified and each cell is assigned to a tip, intermediate or

branching region, as illustrated in Figure 1.

2.1.1 The K-Branches clustering method

In order to calculate the model parameters, after random initialization

we follow an EM-like iterative optimization procedure similar to that

of K-Means (Hastie et al., 2009). Namely, we iteratively (i) assign

data points to their closest cluster and (ii) update the estimates of c

and v1; . . . ; vK while minimizing J in each step, until convergence.

Since the method might converge to a local optimum of the cost func-

tion, multiple executions using different initializations have to be car-

ried out. The method is randomly initialized by assigning one random

data point as the center c and K other random data points as the direc-

tion vectors xv1; . . . ; xvK. In the following subsections we present the

update equations for the center and directions, respectively.

2.1.2 Estimating the center of the halflines

First, we optimize the cost function J with respect to the center of

the halflines c. Therefore, we have to calculate the gradient rcJ, as

follows:

rcJ ¼ 2
XK

k¼1

X
x2C�

k

ðc� xÞ þ
X

x2Cþ
k

Ak
Tðc� xÞ

� �
; (3)

where the matrix Ak is defined as:

Ak ¼ I �
vkvT

k

vT
k vk

 !T

� I �
vkvT

k

vT
k vk

 !
; (4)

with vT
k vk ¼ 1.

A B

Fig. 1. Local application of K-Branches clustering reveals tip, intermediate and branching regions in single-cell trajectories. (A) Each cell is used as the center of

the branches (halflines) and local clustering is performed in its neighborhood. Then, by using model selection the center cell is either characterized as a tip cell, a

cell belonging to an intermediate region or a cell belonging to a branching region depending on which of the three models (K ¼ 1; 2;or 3 branches) best de-

scribes the structure of the neighborhood. (B) After local clustering is performed on the dataset, cells belonging to three tips (T1, T2, T3) and one branching region

(B1) have been identified, while the rest of the cells are considered to belong to intermediate regions. The exact number of tip and branching regions is inferred

from the data and does not need to be specified by the user
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The equationrcJ ¼ 0 can be solved in closed form, and the opti-

mal c reads:

copt ¼
PK

k¼1

P
x2C�

k
xT þ

P
x2Cþ

k
xTAk

� �� �
�
PK

k¼1 jC�k jIþ jC
þ
k jAk

� �� ��1
;

(5)

where jC6
k j refers to the size of the set C6

k . In the case K ¼ 1 the right

part of Equation (5) simplifies to jC�k jIþ jC
þ
k jA1

� ��1
, which is not

full rank and therefore not invertible when jC�k j ¼ 0. Although the

method for local clustering introduced in a subsequent section is

also performed with K ¼ 1, it uses a fixed center c, rendering the

above limitation irrelevant.

2.1.3 Estimating the directions of the halflines

To optimize the cost function J with respect to the direction vector

of unit length vk, we have to calculate the gradientrvk
J, as follows:

rvk
J ¼ rvk

P
x2Cþ

k
jj I � vkvT

k

� �
x� cð Þjj2

� �
¼ rvk

P
x2Cþ

k
x� cð ÞT x� cð Þ � x� cð ÞTvkvT

k x� cð Þ
� �

:

(6)

Assuming that bX is as matrix whose ith row corresponds to

xi � cð ÞT ; i ¼ 1; . . . ; jCþk j, then setting rvk
J to zero is equivalent to

computing the first eigenvector of bXT bX.

The pseudocode for the K-Branches algorithm is presented in

Algorithm 1, while a comparison between K-Branches and K-Means

is illustrated in Figure 2.

2.1.4 Medoid version of K-Branches

As in K-Means, the K-Branches method described above determines

a ‘centroid’ Lk c; vkð Þ per cluster, which depends on arbitrary vectors

c; vk 2 RP. We can easily modify this to use data points, as in

K-Medoids (Hastie et al., 2009; Theodoridis and Koutroumbas,

2008). The goal of the Medoid version of K-Branches is to identify

one data point as the center medoid xc and K data points as the dir-

ection medoids xv1; . . . ;xvK. That is, the model parameters now cor-

respond to K þ 1 data points, instead of K þ 1 points in RP, where

P the number of dimensions. Similar to K-Medoids, the proposed al-

gorithm searches over all data points during each iteration in a

greedy manner and identifies the data points that minimize the cost

function J given by Equation (2). All medoids are reassigned during

each iteration of the algorithm, until a local minimum for J is

reached and the total clustering cost cannot be further decreased. At

this point, the algorithm converges to a solution where one of the

data points is the center medoid xc of the halflines and K data points

correspond to the direction medoids xv1; . . . ; xvK. The relationship

A B C

Fig. 2. Illustration of K-Branches clustering on artificial data and comparison to K-Means. (A) Original data (B) In the case artificial data, K-Branches successfully

clusters the three halflines. The center of the halflines as well as the lines corresponding to the direction of each cluster are plotted on top of the data points. The

medoids version yields almost identical results for the same data. (C) Unlike K-Branches, K-Means (also with K ¼ 3) merges part of the bottom halfline into the

middle cluster. Since K-Means clusters points in spherical clusters, it is clearly not suitable for clustering data points which belong to distinct differentiation

trajectories

Algorithm 1 K-Branches clustering

1: Inputs: K: number of clusters, x1; . . . ; xN: data points

2: Random initialization of c; v1; . . . ; vK

3: for n in 1:N do " N: number of all data points

4: assign xn to nearest Lk, according to Equation (1)

5: end for

6: repeat

7: update the center c " according to Equation (5)

8: update the direction vectors v1; . . . ; vK

9: for n in 1:N do

10: assign xn to nearest Lk, according to Equation (1)

11: end for

12: until no change in cluster assignments

Algorithm 2 K-Branches clustering, medoid version

1: Inputs: K: number of clusters, x1; . . . ; xN: data points

2: Define: M ¼ fic; iv1
; . . . ; ivK

g " medoid indices � f1; . . . ;Ng
3: Random initialization of fic; iv1

; . . . ; ivK
g " to random indices

4: for n in 1:N do " N: number of all data points

5: assign xn to nearest Lk, according to Equation (1)

6: end for

7: while total cost J decreases do " Repeat until convergence

8: ic  argmini 62MðJðc ¼ xiÞÞ " update the center

9: for k in 1:K do " iterate over K directions

10: ivk
 argmini 62MðJðvk ¼ xiÞÞ " update the directions

11: end for

12: for n in 1:N do

13: assign xn to nearest Lk, according to Equation (1)

14: end for

15: end while
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between the original and the medoid version is similar to that of

K-Means and K-Medoids. That is, the medoid version is more

robust in selecting the center of the halflines with respect to

non-global optima and usually even only one random initialization

is sufficient in practice. In the original algorithm, calculating the

parameters c; v1; . . . ; vK requires time proportional to the number of

data points O(N). A speedup of the medoid version is possible by

computing the distance matrix D only once, where Dij ¼ jjxi � xjjj.
Then, the distance of a data point xi to a halfline L xc; xv � xcð Þ can

be computed in O(1) time from Equation (8). However, for every

one of the N � Kþ 1ð Þ candidate medoids, the distance to every

other data point is taken into consideration to calculate the overall

clustering cost. As a result, O N2
� �

time is required to update the

medoids during every iteration.

d xi;L xc; xv � xcð Þð Þ ¼ D2
ic �

D2
ic þD2

cv �D2
iv

2Dcv
: (8)

To summarize, in cases where robustness in the identification of the

center of the halflines is crucial, the medoid version might be prefer-

able. In applications where robust identification of the center of

the halflines is not as crucial, especially in larger datasets, the original

version of the algorithm could be preferable. Last, in cases where the

center of the halflines is known (or held fixed), such as the case of

local clustering presented later in the methods section, there is no ad-

vantage to using the medoid over the original version, since both are

equally robust in identifying the directions of the halflines.

2.2 Identifying branching and tip regions through

local clustering
2.2.1 Local clustering

In this section we derive a method for the identification of” regions

of interest” in single-cell data, in particular, the identification of

branching regions and tips of branches in lineage trees of differenti-

ating single cells. The main idea is to center the previous model on

each data point and adopt a local perspective by examining only the

neighborhood of S nearest neighbors to the center. We will show

that by fixing the center of the halflines on a given data point and

fitting the previous model of K halflines using a neighborhood size

of S data points, one can infer whether the center data point itself

belongs to branching, intermediate or tip region, through appropri-

ate model selection.

2.2.2 Selection of the neighborhood size S

The proposed method utilizes a number of S nearest neighbors to ex-

tract the neighborhood of the center data point that is being exam-

ined. The size of the neighborhood must be sufficiently large to

reflect the local structure of the data, without capturing ir-

relevant global information. The proposed method is able to

automatically suggest a value for S using a threshold on

d ¼ 1
N

PN
i¼1

P
j6¼ijjxi � xjjj2, which ensures that the average cumula-

tive squared distance d of each data point to all other data points in

the dataset is kept at a constant value. Moreover, the accompanying

software package provides the option of visualization and manual

fine tuning of S through a graphical user interface. Supplementary

Figure S1 demonstrates the effect of neighborhood size in the overall

performance of the method on a toy model of differentiation

(Haghverdi et al., 2015).

2.2.3 Neighborhood scaling

Another challenging aspect is related to datasets showing strong vari-

ation in the density of data points along the differentiation trajectories.

For example, in the dataset of Guo et al., 2010), there are sparse and

dense regions. Variability of data point density might reflect an artifact

of the data acquisition process, or could be a result of the underlying

biological system. In the datasets examined so far, regions of very low

density do not pose a threat to the performance of the method, since ef-

ficient selection of S will expand the neighborhood size accordingly.

On the other hand, the fixed number of S neighbors may drastically

shrink the size of the neighborhood in regions of very high density. To

compensate for this effect, an appropriate heuristic rule was imple-

mented. To be precise, for a given number of S neighbors, we calculate

the median neighborhood radius �q over all neighborhoods of size S.

The neighborhood scaling scheme is as follows: prior to performing

local clustering for the ith data point, its neighborhood radius qi (which

corresponds to its distance to the furthest point in the neighborhood) is

calculated and the condition qi � �q is assessed. If it is true, clustering is

performed as usual. Otherwise, the neighborhood size (S) of the ith

data point is increased until qi � �q holds.

2.2.4 Local model selection

The goal is to infer whether each data point belongs to a tip, inter-

mediate or branching region of a differentiation trajectory, based on

local clustering. That is, using a given data point as the fixed center c

of the halflines, three different models are fit using K ¼ 1, 2 and 3

halflines. The aim of the model selection step in the problem at

hand is to identify the clustering model, i.e. the value of K, that best

fits the data of the local neighborhood centred around the data point

in question. If one halfline best fits the neighborhood, then the central

data point belongs to a branch tip. If two halflines provide the best fit,

then the central data point belongs to an intermediate region. If three

halflines best fit the local neighborhood, then the central data point

belongs to a branching region. Although values of K > 3 could in the-

ory be considered for local clustering and model selection, we have

observed that K ¼ 3 is sufficient in practice for the identification of

branching regions. Therefore, the computational overhead of assess-

ing additional values of K can be safely avoided.

The GAP statistic (Tibshirani et al., 2001) is a popular method

for identifying the number of clusters that best fit some given data.

It depends on the sum of pairwise distances of points in each cluster.

If the Euclidean distance is used as the distance measure, it corres-

ponds to the dispersion around the cluster means (clustering cost).

The GAP statistic compares the decrease in the clustering cost of the

original data with the decrease in clustering cost of data drawn from

a null distribution where no natural cluster structure exists. In the-

ory, the dispersion in the data sampled from the null distribution de-

creases monotonically as K increases, while the dispersion in the

original data drops rapidly for the value of K that best fits the data-

set. Thus, the GAP statistic is maximized when the best value of K is

used for clustering. Assuming that the Euclidean distance is used

as the distance measure, the total within-cluster-dispersion WK

(Tibshirani et al., 2001) is:

WK ¼
XK

k¼1

X
x2Ck
jjx� lkjj2; (9)

where lk denotes the mean cluster of k. Then, the equation for the

GAP statistic for a given number of clusters K reads:

GAPK ¼ Ef log W�
K

� �
g � log Wkð Þ: (10)

where Ef log W�
K

� �
g ¼ 1

B

PB
b¼1 log W�

K;b

� �
and the dispersions W�

K;b

are calculated by applying Equation (9) after performing clustering

on each of the b ¼ 1; . . . ;B bootstrap datasets (of the same size as

the original dataset) drawn from the null reference distribution.
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In the case of local K-Branches clustering, we introduce a modifi-

cation of the GAP statistic that calculates the dispersion around half-

lines, as follows:

fWK ¼
XK

k¼1

X
x2Ck

d x;Lkð Þ2; (11)

where d x;Lkð Þ is given by Equation (1). Moreover, in contrast to

the original GAP we do not take the logarithm of the dispersion,

since it has been reported to overestimate the number of clusters in

some cases (Mohajer et al., 2010). Finally, the modified GAP statis-

tic is given by:

gGAPK ¼
1

B

XB

b¼1
fW�

K;b � fWk: (12)

The dispersions fW�
K;b are calculated by applying Equation (11) after

performing clustering on each of the b ¼ 1; . . . ;B bootstrap datasets

(of the same size as the original dataset) drawn from the null refer-

ence distribution.

To summarize, given a data point as the center of the halflines,

local clustering is performed. Then, if GAPK¼1 > GAPK¼3, it belongs

to a branch tip. Otherwise, if the data point does not belong to a tip

and gGAPK¼2 � gGAPK¼3 holds, it belongs to an intermediate region.

Finally, if the data point does not belong to a tip andgGAPK¼2 < gGAPK¼3, it belongs to a branching region. Both the ori-

ginal and modified versions of the GAP statistic are necessary for

model selection and are complementary to each other. That is, GAP

can identify tip cells (Fig. 3C) but is not suitable for separating inter-

mediate from branching cells (Fig. 3D). On the other hand, gGAP

can separate intermediate and branching cells (Fig. 3E), but it not

suitable for identifying tip cells, since it would falsely identify a large

number of branching cells as tip cells (Fig. 3F). The performance

comparison of the different GAP statistics is illustrated in Figure 3.

Moreover, the behavior of the GAP statistic when additional noise is

added is illustrated in the Supplementary Figure S2. After all data

points have been assigned to tip, intermediate and branching re-

gions, an optional filtering of each cell’s label (tip, branching, or

intermediate) based of the values of a few (e.g. 5) nearest neighbors

can be performed to aid in smoothing out any random false positives

caused by the inherent stochasticity of the GAP statistic. As a final

step, K-Means clustering is performed on the subset of the data be-

longing to tips, using the original GAP statistic for model selection.

In this manner, the exact number of tips is identified and each data

point that has been characterized as belonging to a tip region is

uniquely assigned to a specific tip. The same process is applied to

cells belonging in branching regions in order to identify the exact

number of branching events and assign branching region cells to

their corresponding branching event.

2.2.5 Dimension reduction precedes model selection

In this section we focus on the selection of the null reference distri-

bution. Uniform sampling of features over a box aligned with the

principal components of the data is suggested in (Tibshirani et al.,

2001). Alternatively, uniform sampling over the range of every fea-

ture in the original dimensions of the data is suggested for simplicity.

Although the K-Branches clustering method performs well in the

A B C

D E F

Fig. 3. The original, as well as the modified versions of the GAP statistic are necessary for the identification of regions of interest in single-cell differentiation tra-

jectories. (A) Toy data were generated by uniform sampling of data-points along three line segments. Two of the segments are held fixed and one of them is pos-

itioned at an angle h. A new dataset is sampled for each value of h and zero-mean Gaussian noise of standard deviation r is added. Then, local clustering is

performed on centred on three cells, each being in a distinct region: Tip, Intermediate and Branching. The S ¼ 31 (as selected by the proposed heuristic) nearest

neighbors of each center-cell define the region used for local clustering. (B) Example of toy data generated for h ¼ 30
�

and r ¼ 0:5. The centers of the three re-

gions are highlighted. (C) The original GAP successfully identifies the tip region cell, since GAPK¼1 > GAPK¼3 holds for a wide variety of angles. (D) GAP cannot

be used to identify branching region cells, since in many cases GAPK¼3 > GAPK¼2 holds in the intermediate region. As a result, a large number of intermediate re-

gion cells would be false positive branching region cells. (E) gGAP successfully identifies the branching region cell, since gGAPK¼3 > gGAPK¼2 holds for a wide var-

iety of angles. (F) gGAP cannot be used to identify tip cells. In many cases there is strong overlap between the confidence intervals for gGAPK¼1 and gGAPK¼3, which

in practice would lead to a large number of branching cells being falsely identified as tip cells. All error bars in the plot correspond to 95% CIs generated using

500 bootstrap datasets
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original space, model selection does not. This follows from the

‘curse of dimensionality’ (Hastie et al., 2009), since it becomes expo-

nentially hard to estimate the null distribution in high dimensions.

As a result, dimensionality reduction is a necessity if model selection

is to be performed. Diffusion maps (Coifman et al., 2005) are a non-

linear dimensionality reduction method which are known to success-

fully identify differentiation trajectories (Haghverdi et al., 2015),

outperforming traditional dimensionality reduction methods such as

principal component analysis (PCA) (Hastie et al., 2009) and

Locally Linear Embedding (LLE) (Roweis and Saul, 2000). As a re-

sult, the dataset is first processed by diffusion maps and the first few

diffusion components (DCs) are selected. Then, local clustering is

performed for each data point in the space of the selected DCs.

Finally, the reference distribution is calculated by uniform sampling

over a box aligned with the same DCs, resulting in the computation

of the GAP and gGAP statistics used for model selection.

3 Results

3.1 Datasets
The performance of local K-Branches is evaluated using three pub-

licly available datasets, as well as one synthetic dataset. The first

dataset corresponds to single-cell RNA-seq data describing the dif-

ferentiation of myeloid progenitors during hematopoiesis (Paul

et al., 2015); Accession Number GSE72857) and consists of meas-

urements of 2730 cells and 8716 genes. The second dataset consists

of single-cell qPCR data related to mouse blastocyst development

(Guo et al., 2010); Accession Number J:140465) and includes meas-

urements of 428 cells and 48 genes. The third dataset corresponds to

a single-cell qPCR dataset of multiple time points where THP-1

human myeloid monocytic leukemia cells undergo differentiation

into macrophages (Kouno et al., 2013); Data available in the supple-

ment of the original publication) and include measurements of 960

cells and 45 genes. The last dataset corresponds to an artificial data-

set used as proof of concept and includes measurements of 2 syn-

thetic genes and 244 cells that differentiate into three branches but

the differentiation process includes a loop. Such a dataset could for

example correspond to cellular reprogramming, or cells exiting the

cell cycle, as also suggested by (Welch et al., 2016).

3.2 Comparison to other methods
The purpose of local K-Branches is to identify branching and tip re-

gions, while current popular methods assign cells to distinct

branches. Local K-Branches is compared with DPT (Haghverdi

et al., 2016) which in addition to assigning cells to distinct branches,

also identifies tip cells and undecided cells in branching regions. One

difference between DPT and the proposed method is that DPT only

identifies one cell of each branch as the tip, while the proposed

method typically identifies a region of tip cells. Although TSCAN

does not directly identify branching and tip regions, it does construct

a minimum spanning tree that connects the cluster centers. As a re-

sult, one could consider as tip, intermediate and branching clusters

those clusters that are connected to one, two and more than two

clusters in the minimum spanning tree. Monocle is similar to

TSCAN. However, it connects single cells instead of cell-clusters on

the minimum spanning tree. Consequently, extending monocle to

identify tip and branching regions in a similar manner is not

straightforward or statistically motivated. As such, Monocle

(Trapnell et al., 2014) and SLICER (Welch et al., 2016) are only in-

directly compared with the proposed method, in terms of estimating

correct branching in the data. The results of applying the above

methods on all datasets are presented in Figure 4. The proposed

method was either performed on the first two or three DCs, depend-

ing on the morphology of the dataset. On the other hand, DPT al-

ways takes all available DCs into account. All other methods

perform dimensionality reduction as part of their pre-processing and

they are only visualized using diffusion maps. Additionally, the per-

formance of local K-Branches when LLE (Roweis and Saul, 2000) is

used for dimensionality reduction is presented in the Supplementary

Figure S3. Finally, in the datasets where ground truth for the identi-

fication of tip cells is available, quantitative comparison of local

K-Branches, DPT and TSCAN was performed, assessing their cap-

ability to identify tips cells in terms of precision and recall. Precision

calculates the fraction of cells identified as tip-cells that actually cor-

respond to true tip-cells. Recall calculates the fraction of true tip-

cells selected by the method, over the total number of true tip-cells

present in the dataset. Both scores range from zero to one, with one

corresponding to a perfect score. Another quantitative comparison

is performed on the basis of correct identification of the number of

branching events present in the dataset. Quantitative results are

summarized in Table 1.

3.2.1 Single-cell RNA-seq data of myeloid progenitors

When applied to the first two DCs of the single-cell RNA-Seq data-

set of (Paul et al., 2015), the proposed method identifies three

branch tips of fully differentiated cells, as well as one branching re-

gion. The regions identified by K-Branches are illustrated with re-

spect to Fluorescence Activated Cell Sorting (FACS) labels in Figure

5. In order to perform a quantitative comparison, true tip-cells were

considered cells belonging in the granulocyte/macrophage progeni-

tor (GMP) and megakaryocyte/erythrocyte progenitor (MEP) gates

of Figure 5. However, selecting tip cells in this manner is only ap-

proximately accurate. The results of DPT on the same data agree

with the findings of local K-Branches. Two of the three tips identi-

fied by DPT are in the tip regions of local K-Branches, while the

third tip of DPT is not inside but in the vicinity of the local K-

Branches tip region. When comparing the branching region, the un-

decided cells of DPT are either inside or in close proximity to the

branching region identified by local K-Branches. However, consider-

ably fewer cells are considered as undecided by DPT. Additionally,

TSCAN finds no branching and identifies two tip regions. Finally,

Monocle overestimates, while SLICER underestimates the overall

branching. According to the results in Table 1, local K-Branches is

the most precise method, while TSCAN achieves better recall but

fails to identify the branching event.

3.2.2 Single-cell qPCR data of mouse blastocyst development

The proposed method was applied to the first three DCs of the

single-cell qPCR data which contains two distinct branching events

(Guo et al., 2010). Once more there is close agreement between the

results of local K-Branches and DPT. Both methods identify four

branch tips and the tip cells of DPT are in the tip regions of the pro-

posed method. One key difference is that the proposed method auto-

matically identified four branch tips and two branching regions,

while DPT had to be manually executed twice on the data: First,

three branches were identified, then DPT was performed on one of

the branches, identifying the second branching region and new

branch tips. On the other hand, TSCAN identifies two tips, one of

which corresponds to a tip in the diffusion map trajectory, while it

identifies no branching regions in the data. In order to perform

quantitative comparisons, cells belonging to the 2- and 64-cell

blastocysts were considered tip-cells. DPT is the most precise
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A B C D

Fig. 4. Results local K-Branches, DPT, TSCAN, Monocle and SLICER on all datasets. (A) Single-cell RNA-Seq data of myeloid progenitors (Paul et al., 2015).

Common myeloid progenitor (CMP) cells branch into MEPs and GMPs. (B) Single-cell qPCR data of mouse blastocyst development (Guo et al., 2010), where the

initial population of 2-cell blastocyst differentiates into three different groups of 64-cell blastocysts, undergoing two distinct branching events. (C) Single-cell

qPCR data of human monocytic leukemia (Kouno et al., 2013). In this dataset, THP-1 human myeloid monocytic leukemia cells differentate into macrophages and

no branching event is present. (D) Artificial data of arbitrary geometry where three distinct tips are connected by a loop

Model-based branching point detection in single-cell data 3217



method achieving precision of 1, with local K-Branches being a close

second with 0.96 precision. On the other hand, TSCAN achieves

only 0.6 precision and fails to identify the branching events.

However, it performs better in terms of recall, even though it does

not identify any cells of the 2-cell stage tip (T1 of local K-Branches

and DPT). Finally, Monocle identifes 5, while SLICER finds 3 clus-

ters in the data.

3.2.3 Single-cell qPCR data of human monocytic leukemia cells

The third dataset contains measurements of 960 THP-1 human mye-

loid monocytic leukemia cells which undergo differentiation into

macrophages and includes measurements along eight distinct time-

points (Kouno et al., 2013). In order to perform a quantitative com-

parison, we considered the cells belonging to the first and last

timepoints as the two tip populations. In terms of pre-processing,

one of the genes (KLF10) was removed, since it was only strongly

expressed during the second timepoint and hindered the average per-

formance of all methods as shown in the Supplementary Figure S4.

Local K-Branches was performed on the first two DCs and identified

two tips and no branching event. On the other hand, DPT and

TSCAN identified three tips and a branching event. As such, local

K-Branches is the only method that successfully does not identify

branching in the data. On the other hand, all three tip-cells of DPT

lie in tip regions and it achieves the highest precision of 1, followed

by local K-Branches with 0.77 and TSCAN with 0.47. Finally,

TSCAN achieves the greatest recall score of 0.43, followed closely

by local K-Branches with 0.4 while DPT only achieves recall of

0.012. Monocle finds 23, while TSCAN identifies 5 clusters in the

data.

3.2.4 Artificial data of arbitrary geometry

The final dataset highlights an important advantage of the proposed

methodology. Namely, the identification branch tips and branching

regions in datasets of arbitrary geometry. In this case, the dataset

was manually generated to consist of three branches with a loop

among them and the first two DCs retain the same geometry as the

original dataset. Even though it could be directly applied to the ori-

ginal two-dimensional data, the proposed method was performed

on the first two DCs. This was done for two reasons: First, for real

data of high dimensions clustering and model selection will be per-

formed on the DCs and we assume that dimensionality reduction

through diffusion maps will also retain the loop structure of real

data. Second, by using the DCs there are direct comparison to the

performance of DPT. Despite the challenging geometry of the data-

set, the proposed method correctly identifies the three regions cor-

responding to the branch tips, as well as the three branching regions.

On the other hand, DPT correctly identifies the three tip cells but

fails in identifying the branching regions. To be precise, it identifies

one branching region correctly, but then it fails to find the other two

and considers one irrelevant part of the loop as a branching region.

Monocle underestimates the number of branching events, probably

since it always assumes that the differentiation trajectory corres-

ponds to a tree-like structure. Finally, SLICER overestimates the

overall branching in the data, while TSCAN identifies two tips

mostly lying in an intermediate region. An illustration of the per-

formance of K-Branches on the same dataset for different levels of

added noise is presented in the Supplementary Figure S5.

4 Conclusion and discussion

In this study, a model based clustering approach was introduced for

the identification of regions of interest in single-cell data. First, a

novel clustering method called K-Branches was introduced, which

clusters data points into a set of K halflines with a common center.

Subsequently, this clustering method was applied locally to the

neighborhood of each cell and a modified version of the GAP statis-

tic was developed to perform model selection. The goal of model se-

lection is to identify the local dimensionality of the data. That is,

identify fully differentiated tip cells and cells belonging to branching

regions. In this manner, all branching events, as well as all end-

points (tips) in differentiation trajectories can be identified. As dem-

onstrated, this local view of the data allows the method to be suc-

cessfully applied to challenging datasets that include sparsity and

complex geometries.

The main idea of the proposed methodology is different from

that of commonly used methods such as DPT, Monocle, Wishbone,

SLICER or TSCAN. To be precise, these methods aim to assign each

cell to a distinct branch in the differentiation process and also calcu-

late pseudotime: an ordering of the cells, relevant to their distance

from a starting root cell, which reflects how far they have progressed

in the differentiation process. As such, K-Branches cannot be dir-

ectly compared with most of these methods, perhaps with the

Table 1. Quantitative comparison of methods

Dataset Score Local K-Branches DPT TSCAN

Paul et al.a precision 0.77 0.67 0.61

recall 0.04 0.001 0.24

correct branchingb Yes Yes No

Guo et al. precision 0.96 1.0 0.6

recall 0.36 0.02 0.89

correct branchingb Yes Yes No

Kouno et al. precision 0.77 1.0 0.47

recall 0.4 0.012 0.43

correct branchingb Yes No No

aQuantifying tip recall is problematic since ground truth is based on thresh-

olding of FACS markers and hence recalls too many cells.
bThe number of branching events was identified correctly.

Fig. 5. Cells plotted according to FACS-measured FcgR3 and CD34 protein ex-

pression values (Paul et al., 2015). The cells corresponding to regions B1, T1,

T2, T3, as identified by local K-Branches, are highlighted. The MEP, granulo-

cyte/macrophage progenitors and CMPs gates are also plotted. Pie-charts

correspond to the distribution of T1, T2 and T3 cells in the MEP and GMP

gates. The cells of branching region B1 are enriched only in the CMP gate

(Fisher’s exact test P-value < 2:2�16). The cells of tip T1 correspond to MEP,

while the cells of tip T2 correspond to GMP. The cells of tip T3 correspond to

outlier groups of dendritic cells and natural killer cells (lymphocytes)
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exceptions of DPT and TSCAN. To be precise, DPT also identifies

tip cells and branching regions of undecided cells, while TSCAN can

be extended to search for tip, intermediate and branching clusters.

The performance of the proposed method was compared with that

of DPT and TSCAN in three single-cell datasets, as well as an artifi-

cial dataset. Local K-Branches achieved high precision and correctly

identified the number (or absence) of branching events in all three

single-cell datasets, while performing better than DPT in terms of re-

call. DPT was very precise and found the correct number of branch-

ing events in two of the three datasets, but since it only selects one

cell per tip, it is poor in terms of recall. TSCAN was the least precise

of all methods and did not identify the correct number of branching

events in any dataset. However, it performed better than all other

methods in terms of recall, in part since it selects a large number of

cells. Moreover, in the dataset which consists of three branches with

a loop in between, the local approach of the proposed methodology

successfully identifies all tip and branching regions, while DPT only

identifies the branch tips and TSCAN finds two tips in an intermedi-

ate region. Although this difference was observed on a synthetic

dataset, real datasets containing loops could in theory correspond to

cells exiting cell cycle, cells resulting in the same state through differ-

ent differentiation trajectories, or cellular reprogramming (Bendall

et al., 2014). One advantage of DPT is faster execution time since

the entire dataset is typically processed in a few minutes. On the

other hand, local K-Branches requires a few seconds per data point.

However, in the case of local K-Branches each data point can be

processed completely in parallel. TSCAN is also faster than local

K-Branches but was less precise in the identification of tip-cells. To

be fair, it was designed to solve a different problem and uses PCA

for dimensionality reduction. PCA can be sufficient when the goal is

to identify distinct cell-clusters, but has limited capabilities when it

comes to learning continuous manifolds of differentiation trajecto-

ries which appear to be a necessity for the accurate identification of

branching and tip regions. Finally, TSCAN utilizes a model-based

approach to decide on the global number of clusters. In contrast,

local K-Branches utilizes model selection to identify the dimension-

ality of the data in a local context.

In terms of future work, it would be interesting to extend the

method to support explicit identification of the branches that lie be-

tween the branching and tip regions, which are currently only charac-

terized as intermediate regions. Although clustering works in the

original dimensions, model selection using the GAP statistic does not.

As such, the proposed method utilizes diffusion maps for dimensional-

ity reduction. Although LLE achieved similar results, it required tedi-

ous fine-tuning to produce satisfactory trajectories. Moreover,

developing a different model selection method, other than the GAP

statistic, that would allow the methodology to be directly applied in

the original dimensions could be an additional topic of future work.
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