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Abstract
The interpretation of noncoding alterations in cancer genomes presents an unresolved

problem in cancer studies. While the impact of somatic variations in protein-coding regions

is widely accepted, noncoding aberrations are mostly considered as passenger events.

However, with the advance of genome-wide profiling strategies, alterations outside the cod-

ing context entered the focus, and multiple examples highlight the role of gene deregulation

as cancer-driving events. This review describes the implication of noncoding alterations in

oncogenesis and provides a theoretical framework for the identification of causal somatic

variants using quantitative trait loci (QTL) analysis. Assuming that functional noncoding

alterations affect quantifiable regulatory processes, somatic QTL studies constitute a valu-

able strategy to pinpoint cancer gene deregulation. Eventually, the comprehensive identifi-

cation and interpretation of coding and noncoding alterations will guide our future

understanding of cancer biology.

Cancer is considered to be a genetic disease [1]. Herein, aberrations affecting protein-coding
sequences and the perturbation of transcriptional regulation can drive the step-wise process of
neoplastic transformation [2]. However, taking into account the wealth of alterations found in
cancer genomes, the identification of functional variation presents a major challenge. Specifi-
cally, the interpretation of genetic aberrations located outside the coding context is a poorly
resolved issue in cancer genomics studies. In this regard, noncoding germline variation cru-
cially contributes to phenotype formation in healthy and pathologic contexts, and understand-
ing of somatically acquired variance will further improve our knowledge of cancer biology [3].

Noncoding Mutations in Cis-Elements As Cancer-Driving Events
The currently best characterized example of functional noncoding variation with implication
in oncogenesis is seen in the recurrent somatic mutations in the proximal promoter region of
the TERT (telomerase reverse transcriptase) oncogene [4,5]. Although TERT is not frequently
mutated in cancer cells, its overexpression promotes cancer formation by impairing telomere-
shortening related senescence. Consistently, mutations directly upstream of its transcription
start site were associated to elevated gene expression levels, suggesting the noncoding variants
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actively contribute to the neoplastic transformation process. From a mechanistic point of view,
the somatic alterations, frequently found in melanoma and other cancer types [6], create new
binding motifs for Ets transcription factors and ternary complex factors (TCFs) within the
TERT proximal promoter, resulting in overexpression of the gene in respective tumor samples
[4,5]. Similarly, recurrent mutations in the promoter regions of NDUFB9 in melanomas are
predicted to disrupt SP1/KLF binding motifs, a mechanism that, however, requires further
functional validation [7].

Additional examples of functional noncoding variation point to a general implication of cis-
regulatory perturbations in oncogenesis. In particular, the leukemic oncogene TAL1 is acti-
vated in T-cell acute lymphoblastic leukemia (T-ALL) by somatic mutations that favor the
binding of activating transcription factor (TFs) [8]. Specifically, the alterations introduce bind-
ing sites for MYB that recruits further activators, including CBP. Intriguingly, the latter confers
the acetylation of H3K27 and the formation of a super-enhancer, further amplifying the activa-
tion of TAL1. In addition to somatic mutations, structural variations can drive cancer gene
deregulation by the positioning of strong cis-regulatory elements in the proximity of onco-
genes. Here, seminal examples involve the hijacking of enhancers and super-enhancers in
medulloblastoma (activating GFI1 [9]), in multiple myeloma (MYC [10]), in acute myeloid leu-
kemia (EVI1 [11]), and the recently described activation of TERT by translocation events in
neuroblastoma [12].

Systematic Identification of Functional Noncoding Alterations
As illustrated by aforementioned examples, the intrinsic properties of the DNA sequence (such
as TF binding motifs) can point to functional genetic alterations and guide the prioritization of
variants for subsequent validation studies [13]. Moreover, the coordinated efforts of interna-
tional consortia, such as ENCODE [14], ROADMAP [15], and BLUEPRINT [16], provided a
comprehensive functional segmentation of the genome and it is this genome-wide annotation,
based on histone marks, chromatin accessibility, or DNA modifications, that further guides the
prioritization of alterations with likely impact on genome activity [17,18]. Several methods,
including FunSeq [13], CADD [19], FATHMM-MKL [20], and GWAVA [21], were developed
that integrate genetic variance with TF binding sites (TFBS), epigenetic marks or conservation
scores, prioritizing alterations with putative impact on gene deregulation. In addition, SASE-
hunter identifies signatures of accelerated somatic evolution (SASE) and regions with an excess
of local somatic mutations, an elegant method to prioritize noncoding alteration for subse-
quent confirmation [22].

Contrary to aforementioned strategies, this review highlights the application of association
studies that integrate molecular information, particularly gene expression data, to identify
causal genetic alterations and their mechanistic implications in gene deregulatory processes
[23]. Here, in addition to transcriptional activity, regulatory factors, such as epigenetic modifi-
cation, can serve as a valuable resource to quantify gene regulatory defects of cancer genes [24].
Intriguingly, such molecular association studies not only provide an informative measure of
functionality but also point to target genes, with putatively oncogenic implication. In this
regard, this strategy is applicable to elucidate deregulation events of established cancer genes
and provides a resource for putative novel disease-driving factors that have been left unidenti-
fied by prior studies focusing on exonic (or splicing donor site) variation as causal event.

The concept derives from Quantitative Trait Loci (QTL) analysis, the integration of germ-
line polymorphic regions with genome-wide molecular information. Molecular traits, such as
gene expression [25], DNAmethylation [24], histone marks [26], or chromatin interactions
[27], are utilized to bookmark differential activity of variant genetic sites and to guide their
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interpretation. A likely mechanistic scenario involves the differential binding of TFs to cis-reg-
ulatory elements that triggers differential expression of respective target genes, quantifiable by
variant transcript abundance or altered epigenetic profiles. QTL studies are frequently used in
population studies and contributed to the interpretation of natural human variation and dis-
ease susceptibility [25,28–31]. This review discusses the extension of QTL analysis for de novo
variations in cancer genomes in order to identify cancer driving events in noncoding contexts.
Gene expression as quantitative trait is particularly highlighted, as it is directly implicated in
phenotype formation. However, DNA methylation also provides a valuable epigenetic marker
trait through its stable character and the inheritable transmission throughout cancer cell divi-
sions. Importantly, DNA methylation actively participates in gene regulatory processes but
also represents a suitable proxy for transcription factor binding or chromatin configuration
[32,33]. Hence, DNAmethylation profiles reflect given regulatory settings at respective genetic
loci and are particularly suitable for integrative analytic approaches. Consistently, DNA meth-
ylation QTL studies based on germline variation successfully guided the interpretation of dis-
ease risk loci [28,30,34].

Somatic QTL Analysis Identified Putative Cancer-Driving Events
Supporting the value of QTL studies in detecting functional noncoding alterations, single loci
approaches could be replicated using genome-wide profiling strategies. Particularly, TERT
mutations represented the most frequent event in pan-cancer profiling strategies based on
recurrence or expression QTL analysis [6,23,35]. Surprisingly, despite the use of hundreds of
samples across various cancer types, the number of noncoding driver candidates identified in
pan-cancer studies lags far behind expectations [6,23,35], considering the high number of
alterations falling in putative regulatory regions. In fact, by integrating mutational and gene
expression data across cancer types, TERT promoter variants represented the only associa-
tion with genome-wide significance [23]. This can partly be explained by the tissue-specific
nature of gene regulatory processes and gene expression, a phenomenon that can highly con-
found integrative analysis approaches [36]. Moreover, mutational profiles are unique to can-
cer types, further hindering an unbiased analysis across cancer types [2,37]. Thus, larger
datasets are required to perform QTL analysis in a stratified manner, as cancer type restricted
analyses are likely to be more sensitive for the identification of functional regulatory
variance.

In this regard, a recent work highlighted the value of QTL studies by identifying putative
noncoding driver events in chronic lymphocytic leukemia (CLL) [38]. In total, the study
included 150 whole-genome sequenced samples and matched gene expression and epigenomic
datasets, allowing a comprehensive cancer type specific association analysis. Remarkably, the
study identified a densely mutated cluster on chromosome 9q13 that could be associated to dif-
ferential expression of PAX5, a transcription factor with a role in B cell biology. Importantly,
the cis-regulatory effect could be experimentally validated through chromatin conformation
analyses and targeted genome-editing. It is of note that the high number of cancer samples also
allowed a stratified analysis that further suggested a CLL subtype specific function of PAX5
deregulation with putative cancer driver effects.

Restricting the analysis to previously defined TFBS, another study analyzed a total of 84
lymphoma samples for functional noncoding variants [39]. Integrating mutation and expres-
sion datasets using a probabilistic model termed xseq, the study determined recurrent somatic
mutations with cis-regulating function. Interestingly, by combining protein-coding and cis-reg-
ulatory alterations, the work determined cancer genes, such asMYC, to be affected by both
mechanisms and suggested they have complementary effects in oncogenesis.
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Challenges of Somatic QTL Studies
The systematic identification of differential gene regulation related to somatic alterations in
cancer has, compared to their germline counterparts, particular requirements in terms of data
resources. While common natural polymorphisms can be profiled using single nucleotide poly-
morphism (SNP) array technologies with subsequent imputing approaches to assess the main
proportion of germline variance present in a given sample set, this strategy cannot be applied
for somatic variance. To chart somatically acquired variance, more comprehensive strategies,
such as whole genome sequencing, are required. Moreover, in contrast to common germline
variants, the recurrence rate of functional somatic mutations is expected to be rather low [40].
Taking protein coding driver mutations as gold-standard for functional genetic alterations in
cancer, frequencies lower than 5% for the majority of driver events can also be assumed for
noncoding alterations. Low recurrence rates directly impact on downstream statistical analysis,
as the power to determine significant associations is highly reduced compared to traditional
QTL studies. Consequently, more comprehensive strategies to determine variance at a given
genomic loci should be considered, for example the joint analysis of single nucleotide substitu-
tions with structural alterations, such as small insertions/deletions (indels) or larger structural
variants (SV). Moreover, functionally related alterations might be scattered, further diminish-
ing the recurrence rate at single nucleotides. In this regard, alterations can have consistent
impact on regulatory elements, although not affecting the exact same position [13]. Hence, the
definition of recurrence can be widened by the simultaneous analysis of neighboring variants
or functional units, such as TFBS, enhancer or promoter loci, to increase the variable frequen-
cies that enter downstream association approaches. Moreover, the detection of somatic QTL is
further hindered when using cancer samples as control set. Although not being mutated for the
respective locus, gene expression of the putative target genes can be perturbed by other cis- or
trans-acting cancer events. Hence, the availability of matched normal samples and the use of
paired statistical tests highly increase the power to detect significant associations.

While for transcriptional analysis RNA sequencing represents the current gold standard
[6,23,35], DNAmethylation can be assessed using sequencing or array based technologies.
Here, an increased resolution is usually accompanied by higher profiling costs. However,
genome-scale approaches, such as the widely used Infinium HumanMethylation450 BeadChip
(Illumina) or reduced representative bisulfite sequencing (RRBS) provide reasonable resolution
by profiling approximately 0.5–2.0 million CpG sites in the genome, respectively [41,42].
Although this number only represents 2%–8% of the 26 million CpG sites genome-wide, both
techniques are highly informative due to the probe design in established regulatory elements
and the general high correlation between neighboring CpG sites, which enables the inference
of DNA methylation levels at unmeasured loci [43].

Sequencing based techniques to profile molecular traits present further advantages by pro-
viding information about the local genetic setting and allowing the identification of allele spe-
cific variance [44,45]. Assuming that somatic alterations are generally heterozygous and affect
regulatory events on the same chromosome, quantifying allele specific biases in expression or
methylation provides further evidence for a genotype-controlled deregulation process [46].
However, allele specific expression or methylation analysis is limited by the presence of infor-
mative polymorphisms and thus the sequencing read length might be maximized to optimally
resolve the regions of interest. Although allelic events provide important evidence about the
effects of cis-regulatory alterations on their respective target regions, a common allelic location
can only be assessed in haplotype resolved genomes [47]. Furthermore, cell heterogeneity in
cancer complicates allelic interpretations, as common allelic events might occur in different
subclones within the tumor mass.
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Associating Genetic Variance to Gene Expression and Epigenetic
Traits
Following the identification of recurrent genetic variation in the profiled cancer cohort, puta-
tive functional relevant entities can be determined using association strategies. Optionally,
recurrently mutated regions can be subset to pre-defined regulatory regions [17] or prioritized
loci [48], however, these might not sufficiently mirror the cis-acting landscape in a given cancer
type. As current epigenomic maps insufficiently reflect inter-individual variation and include
potential biases introduced by in vitro conditions, limiting the analysis to previously annotated
loci could exclude a substantial number of functional associations.

Cis-regulation on target genes is likely to be conferred by the direct physical contact of regu-
latory elements. Consequently, the genomic distance between the loci presents a natural bar-
rier, with increasing distance decreasing the probability of two loci to interact. Moreover,
chromosomes are organized in stable topological domains, further limiting far-reaching inter-
action events [49]. Consistently, interaction events between distal genomic regions and
enhancer/target pairs locate predominantly within 1–2 Mb of the genome, with interaction fre-
quency being a direct function of genomic distance [50]. Thus, limiting CpG methylation levels
analysis to events flanking the recurrently mutated windows, likely captures the majority of
functional cis-acting events (Fig 1A). Nevertheless, genome-wide approaches and herein the
identification of trans-acting mechanisms, provides substantial additional information. Specifi-
cally, alterations of noncoding RNAs that control gene expression in trans, could provide
important clues of gene deregulation events over large distances or inter-chromosomally [51].
However, genome-wide approaches are facing restrictions due to multiple hypothesis testing,
which can be an important limitation considering the expected low recurrence rate of somati-
cally acquired variance in cancer.

Several statistical approaches are suitable for the integration of genotype with gene expression
or epigenetic datasets and knowledge drawn from germline QTL studies provides an informative
basis and suitable guidance. Commonly applied methodologies for genomic data integration are
Random Forest Selection Frequency (RFSF) based approaches, determining significant associa-
tions by repeated hierarchical clustering. RFSF was suggested to perform superior in the assess-
ment of eQTL compared to other methods [52] and was previously applied in meQTL analysis
[28,34]. An alternative to RFSF is represented by linear regression models, which are adjustable
for covariates, an important issue in association studies [31]. Herein, in addition to technical vari-
ates, clinical parameters, such as tumor stage or patient age, are considerable parameters, which
segregate with genetic features, such as mutation load. Additionally, regression analyses are
adjustable for hidden covariates, assessable by algorithms, such as PEER [53]. While RFSF and
regression models are suitable methods to detect subtle associations or those with high internal
variance, respectively, more robust methods, such as correlation or hypothesis tests represent
suitable alternatives and are widely used in molecular association studies. Noteworthy, a number
of published tools implemented the integration of genetic variance, including somatic mutations,
with gene expression data. Particularly, OncoCis [54] and FunSeq2 [13,55] combine genetic, epi-
genetic, and gene expression information for the detection of functional noncoding variance in
cancer genomes that can be prioritized in subsequent validation studies.

The theoretical framework for the identification of causal somatic variants using QTL analy-
sis is summarized in Fig 1. Following the identification of genetic variance, association meth-
ods determine significant relationships to gene expression or DNA methylation levels. These
putative cis-regulatory loci are prioritized for subsequent characterization of underlying mech-
anisms through the integration of further regulatory mechanisms, such as TF binding or chro-
matin conformation.
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Conclusion
Considering the wealth of alterations found in cancer genomes, the discrimination between
active and silent variants represents a critical first step to identify oncogenic genetic variation.
In this regard, the integration of somatic alterations with molecular data presents a powerful
approach to determine functional alterations. Particularly, regulatory quantitative trait loci

Fig 1. Identification of differential gene regulation associated to recurrent somatic mutations in cancer. (A) Framework for association studies linking
genetic variance (blue dots, lower box) to gene expression or DNAmethylation levels (color coded, upper box) to identify somatic Quantitative Trait Loci
(QTL). Recurrent somatic variance in cancer samples is identified by whole genome sequencing, wherein different window sizes are suitable to determine
frequent mutations. Statistical tests define significant cis-associations to gene expression or DNAmethylation levels in a defined window flanking the variants
(e.g., +/- 1Mb), which can be linked to additional molecular information, such as chromatin interaction frequencies in the regions of interest. (B) Differential
DNAmethylation (left) or gene expression (right) in mutant samples (red dots) point to functional somatic variation events. Stratification by cancer subtypes
identifies specific events and provides further insights into the cancer type biology. (C) Following the identification of putative functional genetic alterations in
cancer genomes, their underlying mechanisms can be elucidated through the integration of additional molecular information. Herein, the effect of mutations
on the affinity of transcription factors presents valuable mechanistic insights. Moreover, spatial analysis linking variant loci to their respective target genes
within the genomic space.

doi:10.1371/journal.pgen.1005826.g001
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analysis is suitable to define regions putatively implicated in oncogenesis; however, association
analyses are adjustable to various types of molecular information. Although this review high-
lights the analysis of gene expression and DNAmethylation as suitable markers for regulatory
activity, the approach is readily adjustable to other traits, such as different epigenetic markers
or even cellular phenotypes. Herein, the identification of functional alterations highly benefits
from the combination of comprehensive high-resolution profiling strategies. This has to be
taken into account in the design of future cancer genome studies, wherein the sole assessment
of genetic variation can impede a systematic downstream analysis and let important disease-
driving events remain unidentified.
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