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Abstract

Community associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a major cause of skin and soft
tissue infections (SSTIs) in the US. We developed an age-structured compartmental model to study the spread of CA-MRSA
at the population level and assess the effect of control intervention strategies. We used Monte-Carlo Markov Chain (MCMC)
techniques to parameterize our model using monthly time series data on SSTIs incidence in children (#19 years) during
January 2004 -December 2006 in Maricopa County, Arizona. Our model-based forecast for the period January 2007–
December 2008 also provided a good fit to data. We also carried out an uncertainty and sensitivity analysis on the control
reproduction number, Rc which we estimated at 1.3 (95% CI [1.2,1.4]) based on the model fit to data. Using our calibrated
model, we evaluated the effect of typical intervention strategies namely reducing the contact rate of infected individuals
owing to awareness of infection and decolonization strategies targeting symptomatic infected individuals on both Rc and
the long-term disease dynamics. We also evaluated the impact of hypothetical decolonization strategies targeting
asymptomatic colonized individuals. We found that strategies focused on infected individuals were not capable of achieving
disease control when implemented alone or in combination. In contrast, our results suggest that decolonization strategies
targeting the pediatric population colonized with CA-MRSA have the potential of achieving disease elimination.
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Introduction

Background
Staphylococcus aureus is one of the most common bacterial

pathogens in humans and the most frequent cause of skin and

soft tissue infections (SSTIs) [1]. Strains of health care-associated

methicillin-resistant S. aureus (HA-MRSA) were first identified

among hospitalized patients in 1960 [2] and dominated MRSA

infections until late 1980s. Since the early 1990s, there has been a

dramatic increase in community-associated MRSA (CA-MRSA),

which is now endemic at unprecedented levels in many regions in

the US [3–6]. This increase in CA-MRSA appears to have

regional variation and is more pronounced in children compared

to adults [4,5,7]. Cases of HA-MRSA and CA-MRSA are

characterized by significantly different epidemiological and

microbiological features [8].

Evidence indicates that CA-MRSA infections result from

physical contacts with MRSA carriers at home, community

facilities such as gyms, nursing homes, or kindergartens [9]. In

addition to regular treatment of the actual infection of the infected

individuals, typical intervention strategies against CA-MRSA

related SSTIs focus on pharmaceutical treatment via decoloniza-

tion using mupirocin [10–12] and reductions in contact rates

between infected and non-infected individuals. However, the role

of these control interventions on CA-MRSA transmission dynam-

ics remains poorly understood. In particular, in this paper we

asked if control strategies targeting symptomatic infected individ-

uals were sufficient to achieve disease control in a population.

Although several mathematical models for MRSA transmission

in hospital settings, nursing homes, and other inpatient facilities

have been developed (e.g., [13–18]), there is a scarcity of

transmission models of MRSA and relevant epidemiological data

to parameterize them at the community level, but these could be

useful to elucidate the transmission dynamics and the effect of

control interventions on CA-MRSA. For instance, in [13], [14]

and [19], compartmental transmission models were developed to

study the invasion of CA-MRSA into hospitals and the likelihood

of coexistence between CA-MRSA and hospital-acquired (HA-)

MRSA. Moreover, HA-MRSA dynamics were exclusively studied

in both [16] and [17]. In these studies, health care workers were

modeled as vectors transmitting disease among patients (or

residents) with the goal of assessing the impact of quantifying the

effect of targeted control measures. Furthermore, most of these

modeling studies have assumed homogenous mixing, but recent

work has pointed to age-specific variation in MRSA infection risk

[4,20]. Hence, age-structured CA-MRSA transmission models at
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the community level and tailored to local epidemiological data

could increase our understanding of the transmission dynamics of

CA-MRSA and the impact of routine and novel intervention

strategies.

Here we developed and parameterized an age-structured

compartmental transmission model to study the transmission

dynamics of CA-MRSA at the population level and evaluate the

effect of various intervention strategies. To calibrate the model, we

employed a unique dataset Dataset S1) covering several years of

SSTIs incidence during the period January 2004–December 2006

in Maricopa County, Arizona. We also used additional incidence

data for subsequent years 2007–2008 for validation purposes.

Based on our calibrated model, we estimated the reproduction

number denoting the average number of secondary infections

generated by primary infectious individual [21–23] and evaluated

the effect of contact rate reductions aimed at infected individuals

owing to awareness of infection as well as decolonization treatment

strategies targeting symptomatic infected individuals or the general

(asymptomatic) colonized subpopulation.

Epidemiological data
We obtained detailed data on CA-MRSA infections from the

Center for Health Information Research (CHIR), which is a

university-community partnership between Arizona State Univer-

sity and several Arizona providers, insurers and employers. The

dataset (Dataset S1) comprises records on hospitalization and

outpatients visits by children and teenagers (age#19 years)

enrolled in the Medicaid program of Arizona from January 1,

2004 to December 31, 2008. We extracted records of all

encounters diagnosed with skin or soft tissue infection (SSTI)

based on ICD 9 codes (680.xx-682.9x). Each record contains

information about the type of infection (first-time infection or

recurrent infection), age group, month and year of hospital or

clinic visit, and whether the patient was treated with mupirocin.

Our data are based on SSTIs related infections, with a stationary

fraction of MRSA-related infections during our study period [24].

We also obtained population data by age groups for our study

setting. An extended data description is given in Text S1.

Methods

Model description
We developed an SEIS (Susceptible-Exposed-Infected-Suscep-

tible) transmission model that incorporates age heterogeneity in

contact rates, infectiousness, and decolonization treatment rates.

Our model also keeps track of individuals with past infections

because these individuals have been observed to have a higher rate

of infection compared to those with no past infections [24], and we

are interested in assessing the effect of age-specific variation in

infectiousness and the effect of targeted interventions. Let S0a, C0a,

I0a be the respective number of susceptible, colonized (asymp-

tomatic), and infected (symptomatic) individuals in age group a

(a~1,2, . . . ,n) with no prior infections. Similarly, let S1a, C1a, I1a

be the corresponding epidemiological states for individuals with

prior infection history. The schematic view of transitions among

the 6 epidemiological states in our model for each age group is

shown in Figure 1. Mupirocin is used for decolonization of CA-

MRSA patients who have been treated by other antibiotics.

Hence, in our model only decolonized individuals coming from

the infected compartments experience the additional decoloniza-

tion rate d1. Our transmission model is given by the following

system of differential equations:

dS0a

dt
~{laS0azd0aC0azmaNa{maS0a, ð1aÞ

dC0a

dt
~laS0a{d0aC0a{t0aC0a{maC0a, ð1bÞ

dI0a

dt
~t0aC0a{caI0a{maI0a, ð1cÞ

dS1a

dt
~{laS1az(d0azd1a)C1a{maS1a, ð1dÞ

dC1a

dt
~ca(I0azI1a)zlaS1a{(d0azd1a)C1a

{t1aC1a{maC1a,

ð1eÞ

dI1a

dt
~t1aC1a{caI1a{maI1a ð1fÞ

for a = 1, 2, …, n. The spontaneous (natural) decolonization rate

per unit of time (month is denoted by d0) and is assumed to be the

same for all colonized individuals independently of their infection

history. The progression rate from colonized to infected is t0 for

those colonized for the first time and t1 for those with prior

infections, where t1.t0, with a relative risk factor s~
t1

t0
w1.

Infected individuals in compartments I0 and I1 progress to the

colonization (with prior infections) stage (C1) following antibiotic

treatment at a common cure rate c. Further, treatment for

decolonization aimed at C1 transfers individuals to compartment

S1 at a decolonization rate d1. Both colonized and infected

individuals contribute to the force of infection, which is given by

la~
Xn

a~1

waabC(C0azC1a)zwaabI (I0azI1a)

N
, ð1gÞ

Author Summary

Community associated methicillin-resistant Staphylococcus
aureus (CA-MRSA) is a bacteria that causes skin infections
in the US. We developed a mathematical model of CA-
MRSA transmission among different age groups at the
population level. We parameterized the model using
monthly time series data on number of SSTIs in children
during the period January 2004–December 2006 in
Maricopa County, Arizona. Our model-based forecast to
additional time series data covering the period 2007–2008
yielded a good fit to data. Using our calibrated model, we
calculated that an infected individual generates on
average 1.3 infected people in a totally susceptible
population in the study area. We assessed the impact of
intervention strategies including reductions in contact
rates between infected and non-infected individuals and
the effect of decolonization strategies aimed at infected
individuals by drug treatment, and found that neither of
the two strategies when implemented alone or in
combination were able to control the disease. In contrast,
we found that decolonization strategies targeting the
pediatric population colonized with CA-MRSA have the
potential of achieving disease elimination.

Modeling CA-MRSA Transmission
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where waa denotes the contact rate for the colonized and infected

individuals with susceptible individuals in age group a. Moreover,

bC and bI are the probabilities of transmission per contact

(contagiousness) for colonized and infected individuals, respective-

ly, which are assumed to be invariant across age groups. Because

infected individuals are assumed to be more infectious than

colonized individuals, bCvbI , with a relative contagiousness

factor f ~
bC

bI

[(0,1). Further, m is the population immigration/

migration rate and Na~S0azC0azI0azS1azC1azI1a is the

total population size with new recruits into the susceptible

population with no past CA-MRSA infection history.

Parameters
Age-specific contact rates. We stratified the population in

our model into six age groups (years), 0–4, 5–9, 10–14, 15–19, 20–

59, and 60+ yrs. The first four refined age groups are referred to as

pediatric groups in this paper and are defined consistently with the

age groups attending daycare/home-care, elementary school,

junior high school, and high school in the US, respectively, as

we are primarily interested in capturing the CA-MRSA transmis-

sion dynamics among young age groups. Contact rates across age

groups were adapted from data on physical contacts previously

derived from population surveys that were conducted in eight

European countries [25] by collapsing the age groups 20–24, …,

55–59 into one adult group of age 20–59, and groups 60–64,65–

69,70+ into a senior group 60+ yrs. following a similar approach as

in [26] (Figure 2).

Epidemiological parameters. The basic epidemiological

parameters and baseline values are listed in Table 1. Most of the

initial (or most likely) values and ranges were obtained from a

literature review while others were proposed by primary analysis of

our epidemiological data. Specifically, we estimated the decoloni-

zation treatment coverage (or rate) (denoted as dca, a[f1,2, . . . ,6g)
for each age group over the years by calculating the percentage of

patients who were prescribed mupirocin (see Text S1 for details).

The overall age-specific decolonization rate, d1a, is then set to be

the product of the treatment efficacy (percentage of successfully

decolonized people among those who were prescribed mupirocin,

denoted by ed in Table 1), the age-specific treatment coverage dca

(values are given by Table S1), and the reciprocal of the duration

of the drug effect (about 2 weeks [10]). Moreover, we assumed

higher transition rates from colonized to infected states for both

first-time and recurrent infections for individuals 0–4 and 15–

19 yrs., as there was a significantly higher number of cases for

these two groups in our epidemiological data, which is in

agreement with other empirical studies[27,28]. That is,

~tti~½f1,1,1,f4,1,1� � ti for i~0 and 1, where f1 and f4 are the

relative factors, and t0(t1) is the progression rate from colonized to

infected for first-time (recurrent) infections for other age groups.

Model calibration, validation and forecast
We calibrated our model given by System 0 with time series

data of first time and recurrent infections for age groups 0–4, 5–9,

10–14, and 15–19 yrs. from January 2004 to December 2006 and

estimated the unknown epidemiological parameters (Table 1). For

this purpose, we assumed as initial conditions that all people in the

population were free of past infections in January 2004 (first time

point). That is, we set to 0 the initial value for S1a,C1a,I1a, for

a[f1,2, . . . ,6g. The initial number of people with first-time

Figure 1. Flow diagram for the compartment model of the transmission dynamics of CA-MRSA for each age group. S0 is the number
of susceptible people with no prior colonization with CA-MRSA, C0 is the number of people colonized for the first time, and I0 are the number of
people with first-time infection. S1, C1, I1 are individuals with a history of past infections. People with infections from both groups (I0 and I1)
become colonized (C1) with a common cure rate (c). Further decolonization treatment (e.g. mupirocin) clears individuals and progress to the
susceptible state (S1). Susceptible individuals with or without past infections progress to the colonized stage with the same force of infection l, but
their progression rate from colonized to infected stages are different (t0 vs t1 , respectively). Colonized individuals without past infections have only
spontaneous decolonization with rate d0 while those with past infections are subject to additional decolonization treatment with rate d1 . m is the
population immigration/migration rate per month.
doi:10.1371/journal.pcbi.1003328.g001

Modeling CA-MRSA Transmission
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infections in adult groups, I05 and I06, as well as the percentage of

completely susceptible people in each age group at the beginning

of 2004, S0p
(common across the age groups), were taken as

unknown parameters to be estimated.

We employed a delayed rejection adaptive Metropolis-Hastings

(DRAM) algorithm in a Markov-Chain Monte-Carlo (MCMC)

simulation framework [29] to estimate unknown model parameters.

We used the widely-used MCMC package coded in Matlab

(available from: http://helios.fmi.fi/,lainema/mcmc/) (Text S3).

For each estimated parameter we assumed uniform prior

distributions with range values as given in Table 1. Posterior

distributions for each parameter were obtained from the resulting

Markov chains [30]. Next, we selected a random sample of size 500

from the Markov chain of parameters to assess parameter

Figure 2. Monthly contact rates among age groups (waa). Calculated from survey data on physical contacts from Mossong et al. [25].
doi:10.1371/journal.pcbi.1003328.g002

Table 1. Epidemiological parameters: definition, symbol, and initial value and range used in parameter estimation using the
MCMC technique.

Definition, unit Parameter Initial Value Range Reference

probability of transmission per contact with infected bI 0.0017 0.0009–0.0025 [44], proposed

relative contagiousness factor for colonized to infected fb 0.25 0–0.5 [24]

spontaneous decolonization rate, month21 d0 0.09 0.02–0.8 [45,46]

efficacy of decolonization by mupirocin ed 0.8 0.5–1 [47]

progression rate from colonized to infected (baseline), month21 t0 0.035 0.01–0.15 [24,48]

relative risk of infection (from colonized) for 0–4 age group f1 1.6 1.0–2.0 proposed

relative risk of infection (from colonized) for 15–19 age group f4 1.4 1.0–2.0 proposed

relative risk of progression rate from colonized to infected due to previous infection ft 2.5 2.0–8.0 [49]

cure rate (1/(infection duration)), month21 c 1 0.25–1.5 [18,24]

immigration/migration rate, month21 m 0.0029 - [50]

‘Proposed’ in reference column means proposed by primary analysis of the data.
doi:10.1371/journal.pcbi.1003328.t001

Modeling CA-MRSA Transmission
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uncertainty. For model validation, we compared our calibrated

model forecast for two subsequent years of time series data covering

the period 2007–2008.

Latin Hypercube Sampling (LHS) and Partial Rank Correlation

Coefficient (PRCC) techniques [31] were used for sensitivity

analysis to assess the impact of control strategies targeting different

age groups on the reproduction number Rc. LHS provides

remarkable efficiency in drawing a highly representative random

sample of small size from a multi-dimensional distribution[32,33].

The magnitude of PRCC quantifies the importance of individual

parameters, with the sign of the PRCC value indicating the

specific qualitative relationship between the input and the output

variable. That is, positive values of PRCC implies that increasing

values of the input variable lead to increasing values of the output

variable. Since a PRCC indicates the degree of the monotonicity

between a specific input variable and a specific output variable,

only input variables that are monotonically related to the output

variable are included in this analysis [32,34]. Hence, we examined

the scatterplots between Rc and each parameter to assess the

monotonicity assumption.

We set out to analyze the effectiveness of the various types of

control interventions including typical interventions targeting

symptomatic infected individuals and novel decolonization

strategies focused on the colonized reservoir pediatric population.

Specifically, we evaluated reductions in contact rates by infected

individuals due to personal awareness of infection. We also

assessed the impact of decolonization treatment of infected people

following regular antibiotic treatment of MRSA infections.

Finally, we examined the possibility of disease elimination by

hypothetical decolonization treatment strategies targeting colo-

nized people (in compartment C0). We modeled the first

intervention by using an age-specific parameter, ga,

a[f1,2, . . . ,6g, to denote the relative reduction in contact rates

between different age groups. Thus, the force of infection given

by Equation (1g) becomes

la~
Xn

a~1

waabC(C0azC1a)z(1{ga)waabI (I0azI1a)

N
: ð2Þ

The decolonization treatment targeting symptomatic infected

individuals was modeled by varying the decolonization

treatment coverage dca (in ½0,1�), for a[f1,2, . . . ,6g. The effect

of decolonization treatment for colonized people was modeled

by adding an additional age-specific rate dia, a[f1,2, . . . ,6g, to

the spontaneous decolonization rate d0, as the new transition

rate from C0 to S0 (Figure 1). Parameter dia is the product of

decolonization coverage (age-specific) and reciprocal of dura-

tion of drug effect (2 weeks [10], common across age groups)

by assuming perfect drug efficacy. We estimated the associated

reduction in Rc and determined whether infections ap-

proached zero as we varied the age-specific decolonization

coverage.

Results

Model-based estimates
Model parameter estimates and their corresponding geweke

indices are shown in Table 2. Overall the model yielded a good fit

to the incidence curve covering the period 2005–2006 albeit three

of the parameter estimates did not achieve high convergence based

on their geweke indices (fb, d0 and c) (Figure 3). Moreover, the

model forecast for two subsequent years 2007–2008 tracked

closely the additional incidence data.

Uncertainty and sensitivity analysis for Rc

We estimated the control reproduction number Rc using

Equation (S2). which we derived using the next generation matrix

method [35,36] (Text S2).Parameters bI , fb, d0, t0, ft and c
satisfied the monotonicity assumption and the corresponding

PRCCs are shown in Figure 4B. We found that Rc is most

sensitive to the parameters t0 (progression rate from colonized to

infected) followed by c (reciprocal of the duration of being

infected). Rc is also fairly sensitive to d0 (spontaneous decoloni-

zation rate). All of them are significant from zero at the 0.001 level

according to their p-values.

Evaluating the effect of intervention strategies
The effectiveness of reducing contact rates by infected

individuals. In order to assess the impact of contact rate

reductions by infected individuals across different age groups, we

used mean estimates of model parameters as given in Table 2. We

drew a random sample of parameters ½g1, . . . ,g6� of size 100 from

its 6-dimensional uniform distribution using LHS to calculate the

distribution of Rc and the corresponding PRCCs of each of ga’s.

As expected, the greater the reduction in contact rate by infected

individuals the higher the reduction in Rc, with the age group 10–

14 yrs being slightly more influential on reducing Rc relative to

other age groups. Specifically, we estimated the reduction levels in

Rc as we decreased the contact rates from 0 to 100% among

infected individuals aged 10{14 yrs (Figure 5A2) or across all age

groups (Figure 5A3). For instance, mean Rc was reduced by only

1.0% when infected individuals aged 10–14 yrs did not make

contacts with other individuals while Rc was reduced by 4% in the

scenario that all infected individuals across all age groups did not

make contacts with others.

Evaluating the effect of decolonization treatment on

infected individuals. To examine the effect of decolonization

treatment strategies targeting symptomatic infected individuals, we

quantified the sensitivity of each age-specific decolonization

coverage dca on Rc. We found that All PRCCs across age groups

for dcas followed the same pattern (Figure 5B1) except for dc6, the

decolonization treatment coverage for the 6th age group (60+ yrs.),

Table 2. Statistics for estimated parameters based on the
Markov chain generated by the adaptive Metropolis Hastings
algorithm with 2004–2006 data.

Parameter mean std geweke

bI 0.0021 0.00026 0.70

fb 0.40 0.081 0.48

d0 0.19 0.058 0.31

ed 0.59 0.082 0.85

t0 0.014 0.0017 0.78

f1 1.85 0.075 0.92

f4 1.93 0.043 0.94

ft 1.80 0.14 0.93

c 1.18 0.21 0.53

C0p
~1{S0p

0.093 0.0047 0.92

I05 459 90 0.78

I06 270 47 0.78

The geweke index closes to 1 means good convergence of the MCMC chain for
that parameter.
doi:10.1371/journal.pcbi.1003328.t002

Modeling CA-MRSA Transmission
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which showed no monotonic relation with Rc (not shown in

Figure 5B1). The mean Rc decreased by 2.1% when all infected

individuals aged 10–14 yrs were treated by decolonization drugs

for regular antibiotic treatment for CA-MRSA infections

(Figure 5B2) while Rc was reduced by 7.8% when all infected

individuals across all age groups were treated by decolonization

drugs (Figure 5B3). We found that decolonization treatment

strategies targeting symptomatic infected individuals were not

sufficient to achieve disease control. Simulations of decolonization

treatment strategies targeting all infected individuals in pediatric

Figure 3. Model fit to MRSA infection data using MCMC toolbox. The wider band shows 95% probability limits for individual observations,
the darker narrower band shows 95% probability limit for mean prediction and the black curve in the middle is the median prediction. Little squares
are data points; the vertical dashed line indicates the calibration period (2004–2006) and the validation period (2007–2008).
doi:10.1371/journal.pcbi.1003328.g003

Modeling CA-MRSA Transmission
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age groups or across all age groups are shown in Figure 6. We

found that recurrent infections were essentially brought under

control, but first-time infections remained well above zero even

when all infected individuals across all age groups underwent

decolonization treatment.

Effectiveness of combinations of the two strategies

targeting symptomatic infected people. We assessed if a

combination control strategy that includes reduction in contact

rates by infected individuals with others and decolonization

treatment for infected individuals was capable of achieving disease

control. The effective values of Rc as a function of different

reduction levels in contact rates by infected individuals and

different levels of decolonization treatment coverage targeting

symptomatic infected individuals across all age groups are shown

in Figure 7. Rc was no less than 1.18 under the combination of two

strategies regardless of their intensity levels. In addition, the long

term effect of single or combined intervention strategies on disease

levels are illustrated in Table 3. It shows that decolonization

treatment for the infected reduced much more total infections in

the pediatric population than reducing contacts of infected people

did, and a combination control strategy implementing both

intervention strategies was not sufficient to achieve disease

eradication.

Evaluating the impact of decolonization treatment

strategies targeting colonized people. Whereas routine

intervention strategies targeting symptomatic infected individuals

were not found to be capable of achieving disease control, we also

evaluated the impact of hypothetical intervention strategies

targeting colonized (asymptomatic) individuals (compartment C0

in Figure 1). We found that treatment of colonized asymptomatic

individuals in any single age group was not enough to achieve

disease control. However, by exploring decolonization treatment

targeting combinations of two pediatric age groups, we found that

decolonization treatment targeting colonized individuals in age

groups 5–9 and 10–14 yrs. achieved Rcv1 whenever coverage

levels w25% (Figure 8). By targeting colonized people across 4

pediatric age groups, we also found that the minimum decoloni-

zation treatment coverage necessary to achieve Rcv1 was 5%.

The long-term disease dynamics forecasts with decolonization

treatment coverage at 30% implemented continuously starting in

year 2009 on age groups 5–9 and 10–14 yrs. and across all

pediatric groups are shown in Figure 9. Findings indicated that

targeting individuals aged 5–14 yrs. required 20 years to achieve

disease elimination while disease control could be achieved within

5 years when the intervention was focused on all pediatric groups.

Discussion

We have developed and parameterized the first age-structured

model of the transmission dynamics of MRSA transmission at the

community level using data on skin and soft tissue infections in

children and teenagers who were enrolled in the Medicaid

Program in Maricopa County, Arizona. Our compartmental

epidemic model includes age heterogeneity in contact rates,

infectiousness, and decolonization treatment rates, and keeps track

of individuals with past infection history. We estimated the control

reproduction number at 1.3 with 95% confidence interval [1.2,

1.4]. Sensitivity analysis of Rc on the model parameters revealed

that Rc is most sensitive to the parameters t0 (progression rate

from colonized to infected) followed by c (reciprocal of the

Figure 4. Uncertainty and sensitivity analyses on the control reproduction number Rc. Histogram of Rc (A) and PRCC of parameters with
Rc (B) with parameter uncertainty (based on a random sample of size 500 of Markov chain for parameters).
doi:10.1371/journal.pcbi.1003328.g004

Modeling CA-MRSA Transmission
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duration of being infected) and d0 (spontaneous decolonization

rate). Using our calibrated model, we found that typical strategies

focused on infected individuals were not capable of achieving

disease control when implemented alone or in combination. In

contrast, our results suggest that novel decolonization strategies

that target the general pediatric population colonized with CA-

MRSA have the potential of achieving disease elimination.

We performed numerical simulations to explore the impact of

various feasible intervention strategies such as reductions in

contact rates by infected people owing to personal awareness of

infection and effect of decolonization treatment targeting symp-

tomatic infected individuals belonging to specific age groups or

across the entire population. We found that neither a single or

combined strategy was able to achieve Rcv1. We also forecasted

short-term disease dynamics in the presence of both types of

interventions strategies starting in 2009. Our results suggest that

reductions in contact rates by infected people has little effect on the

disease prevalence, and that neither of the two strategies was

capable of achieving disease control particularly among first-time

infections. Given that these two intervention strategies are the

most widely practiced (intuitively and clinically), our model-based

results provide an explanation to the persistent levels of CA-

MRSA in many US regions over 20 years since its first appearance

[3–6]. We also tested the effectiveness of some hypothetical

decolonization treatment strategies targeting asymptomatic colo-

nized people. We found that Rc could be reduced below 1 when

Figure 5. PRCC and Rc under different intervention strategies. Upper panel: PRCC of ga (a[f1,2, . . . ,6g, level of contact reduction in age
group a), with Rc based on a sample of size 100 using LHS (A1); Rc for different levels of contact reduction under uncertainty of other model
parameters (A2); and Rc for different level of population-wide contact reduction under the uncertainty of other parameters(A3). Lower panel: PRCC of
dca (a[f1,2, . . . ,6g, decolonization treatment coverage in age group a), with Rc based on a sample of size 100 using LHS (B1); Rc for different levels of
decolonization treatment coverage under uncertainty of other model parameters (B2); and Rc for different levels of population-wide decolonization
treatment coverage under the uncertainty of other parameters (B3).
doi:10.1371/journal.pcbi.1003328.g005
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the treatment was focused on 5–9 and 10–14 yrs. age groups

with coverage at 25%, and an even smaller coverage (5%) was

sufficient when all pediatric groups groups were targeted. Long-

term forecast of the infections showed that disease elimination

is feasible within 5 years through decolonization treatment at

30% of colonized people in the pediatric population starting in

2009.

Compared with published models on MRSA transmission, our

model is novel in several ways. First, our model accounts for

transmission in a heterogeneous population based on age-specific

contact rates calibrated using survey data on physical contacts

[25]. This enables our model to capture much more essential

elements of the complex MRSA transmission problem and test

the effect of different control strategies that target different age

groups. Second, our model was calibrated and provided a good

fit to time series data using solid estimation techniques rather

than solely relying on assumed parameter values from the

literature. It is worth mentioning that our estimate of the control

reproduction number at 1.3 is in line with that assumed in prior

studies (e.g., [37]). Moreover, it important to note that while our

model incorporates key features of the transmission process

including a realistic population contact structure and dominant

features of MRSA epidemiology, there are many limitations to

policy models with respect to the incorporation of bio-medical,

operational, political, and economic features. No one model can

claim to incorporate all assumptions and features given the

limited data available to calibrate them. We believe our

transmission model could be useful to evaluate further control

scenarios and formulate rational policy based on the best

available evidence.

There are limitations to note about our model calibration.

Some of the Markov chains did not converge perfectly within

10000 steps in terms of the geweke index. However, our

objective here was to find reasonable values of parameters so

that our model captured qualitatively the overall trend of the

age-specific time series data. In this sense, the MCMC

algorithm worked much better than other sampling methods

(e.g., Latin Hypercube Sampling or simple random sampling

with repetition). Moreover, we also calculated the R-

squared(R2), a widely-used index for goodness of fit for a

general model, for each of the eight output variables, and it

turned out that the R2s for first-time infections were much

poorer (less than 0.5) than those for the recurrent infections

(greater than 0.7). Hence, our model did a better job in

modeling recurrent infections than first time infections. Of

note, our model described by System (1) does not account for

seasonality patterns [38], which may explain a significant

fraction of variation in data that remained unexplained by the

model. Moreover, we did not account for the changing medical

practice as our understanding of this pathogen has increased

Figure 6. Model prediction for first-time and recurrent infections for pediatric groups until December 2023 with mean parameter
values and different decolonization treatment coverage after 2008. 100% coverage for the first 4 age groups and 0 for adult groups (slim
lines); 2). 100% coverage for the whole population (bold lines). The age-specific decolonization treatment coverage for till 2008 are time-dependent
step functions with extreme values given by Table S1 for 4 pediatric groups and 0 for 2 adult groups.
doi:10.1371/journal.pcbi.1003328.g006
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Figure 7. Mean value of Rc for a combined strategy of with different levels of reduction in contact of infected individuals (ga) and
decolonization treatment coverage the infected (dca) in all age groups under parameter uncertainty.
doi:10.1371/journal.pcbi.1003328.g007

Table 3. Model-based forecast of the number of first-time infections (I0a)and recurrent infections (I1a) for the first age groups
(a[f1,2,3,4g), and reduction of total infections in the pediatric population (0–19 years) compared with baseline (no intervention) at
the end of 2023 under different population-wide intervention strategies.

Strategy I01 I02 I03 I04 I11 I12 I13 I14 total reduction

Baseline 150 133 137 143 182 146 172 312 0

Strategy 1 128 116 121 126 124 104 125 214 23%

Strategy 2 26 26 28 27 3 1 1 4 91%

Strategy 1 and 2 19 19 20 20 2 1 2 2 94%

Strategy 1: 100% reduction in contact of infected with others; Strategy 2: decolonization treatment for all infected.
doi:10.1371/journal.pcbi.1003328.t003
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since 2004. The infection duration decreased over these years

as the appropriate antibiotics changed from second line

medications to first line medications [39–41]. Therefore the

model prediction might have overestimated the infection

prevalence.

Our dataset itself has several limitations. First, our data

correspond to general SSTIs which may not be directly related

to CA-MRSA. However, it has been observed from microbiolog-

ical analyses that the fraction of MRSA-related SSTIs remained

stationary among the total SSTIs in our study population for our

study period [24]. Given that it will be difficult to truly determine

the exact cases of MRSA-related SSTIs and their microbiological

spectrum at the population level, our data set is the best among

those available. Second, the target population of the data set

corresponds to the children and young adults in the Medicaid

program in Maricopa County, AZ. It is important to note that

patients under Medicaid coverage belong to a lower income

population, where the rate of infection has been described to be

higher than that of the general population[5,42]. Hence, our

model prediction likely overestimates the prevalence in the overall

population in Maricopa County. Further studies are needed to

shed light on whether our findings can be generalized to other

settings.

In summary, our model indicates that intervention strategies

targeting only infected people, either by reducing their contact

frequency with healthy people or by pharmaceutical decoloniza-

tion are not capable of eliminating CA-MRSA infections at the

population level. By contrast, substantial reductions in the

prevalence of HA-MRSA could be achieved via contact

reductions via patient isolation, enhanced hand hygiene and

screening and health-care worker cohorting strategies (e.g., [43]).

Our control scenarios based on decolonization treatment

strategies that target asymptomatic colonized individuals indicate

that finding a cost-effective method to locate colonized individ-

uals and conducting decolonization treatment on a limited

fraction of them could prove to be an effective intervention.

However, the possibility of resistance emerging from increased

use of mupirocin cannot be overemphasized. Future modeling

studies could be carried out to to evaluate the effect of strategies

aimed at reducing the impact of resistance emerging from large-

scale use of mupirocin. Moreover, further work should focus on

the collection of morbidity data and quantification of the attack

rates and transmission dynamics of CA-MRSA in other world

settings with different socio-economic and climatic characteristics.

While our transmission model is based on key epidemiological

features of CA-MRSA including age-specific heterogeneity in

Figure 8. Mean Rc with different levels of decolonization treatment coverage for colonized people in various combinations of two
of pediatric groups. The error bars are based on standard deviations of Rcs under parameter uncertainty.
doi:10.1371/journal.pcbi.1003328.g008
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contact rates, infectiousness and decolonization treatment rates,

predictions from more elaborate models that incorporate, for

instance, seasonality in transmission efficiency or a more detailed

picture of the transmission process (e.g., household level

transmission models) could be undertaken in future work as

relevant epidemiological data become available.
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