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Abstract

In this work, we investigated the suitability of performing partial least square regression (PLSR) 

on genotype-phenotype datasets to identify marker-trait associations. We utilized data collected on 

a cotton (Gossypium hirsutum L.) recombinant inbred line (RIL) mapping population that was 

evaluated under contrasting irrigation treatments, well-watered and water-limited conditions, in a 

hot, arid environment in 2012. Two phenotypic data sets were used in combination with the 

genetic data which consisted of 841 marker loci assigned to 117 linkage groups. The first dataset 

contained canopy traits that were gathered using a mobile, high-throughput phenotyping platform 

and included canopy temperature (CT), normalized difference vegetation index (NDVI), and 

canopy height (CHT) with leaf area index (LAI) being derived from NDVI and CHT 

measurements. The second phenotypic data set consisted of 14 elemental concentration 

measurements corresponding to the following elements: P, K, Ca, Mn, Fe, Zn, Ni, Cu, As, Co, Rb, 

Mo, S, and Mg. To conduct the PSLR analyses we used the “pls” and “pls depot” available in R 

statistical software version 3.2.4. The PLSR bi plot from the analysis of the first dataset showed 

that three (LAI, NDVI, and CHT) out of the four canopy traits were highly correlated, and by 

using multivariate analysis of variance (MANOVA), we detected 22 significant (p<0.01) marker-

trait associations for the four traits. In contrast to the canopy trait analysis, our PLSR bi plot for 

the second dataset showed varying correlations for each of the 14 traits. Because of the lack of 

distinct trait similarities, MANOVA was not an ideal option to test for marker-trait associations so 

we implemented a jackknife re sampling technique. Jackknife re sampling failed to detect 

significant marker effects for several of the 14 elemental concentration traits. Thus, our future 

work aims to test other re sampling techniques such as boot straping for traits that do not exhibit 
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high correlation. Overall, PLSR was a very informative way to comprehend data structure, 

displaying correlations within markers, within traits, and between marker and traits in one bi plot. 

Further studies are still needed to leverage detection of additional variance in correlated datasets 

and to prevent spurious results. To the best of our knowledge, this is the first time PLSR has been 

reported in such a context.
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Introduction

Although many quantitative traits that are measured on populations exhibit moderate to high 

correlations, standard marker-trait association methods are univariate and thus unable to 

capitalize on this trait relatedness. A common approach to handling this situation so that 

standard univariate approaches can be used is to create a composite score that combines the 

measurements of multiple traits into one. However, the analysis of these composite scores is 

known to entail loss of statistical power [1].

Aiming to improve complex marker-trait association studies and to contribute to a better 

understanding of correlated datasets, we performed partial least square regression (PLSR) in 

two drought-related cotton phenotypic datasets. To the best of our knowledge, this is the first 

time PLSR has been reported in such context.

PLSR was first proposed to solve the multi collinearity problem in regression or calibration 

[2,3]. In this approach, predictors (X) are described by a principal components type of 

model, combined with a regression relation between the X scores (component or factor 

matrix) and the response variable (Y), also referred as response matrix [2,4].

In PLSR, X and Y are projected into new spaces. The projection matrices are named T and 

U, respectively. P and Q are the orthogonal loading matrices for X and Y, respectively [4]. 

Through simultaneous decomposition of X and Y, PLSR aims to explain as much as possible 

of the variance between predictors and response variables [5].

In our work, we used markers as predictors, X, and traits as the responses variable, Y, to find 

the multidimensional direction in the X space that explained the maximum multidimensional 

variance direction in the Y space. Through the construction of a bi plot, correlations within 

markers, within traits, and between markers and traits, can all be detected and displayed [6].

Methods

Datasets

PLSR was performed on two cotton datasets that were collected during 2012 at the 

University of Arizona’s Maricopa Agricultural Center (MAC) in Maricopa, AZ. Phenotypic 

data were collected on 95 recombinant inbred lines (RILs) from the TM-1×NM24016 bi 

parental mapping population [7,8] evaluated under contrasting irrigation regimes, well-
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watered and water-limited conditions. This population has been previously genotyped with 

841 molecular markers which are assigned to 117 linkage groups.

The first dataset analyzed contained three traits that were directly measured on the cotton 

canopy using a mobile, high-throughput phenotyping platform which has been previously 

described [9]. These canopy traits were canopy temperature (CT), normalized difference 

vegetation index (NDVI) and canopy height. Using the data for NDVI and CHT, leaf area 

index (LAI) was derived according to [10] with parameter estimates specific to 

Southwestern Arizona obtained previously [11]. Canopy data were collected twice per day, 

at 10 am and 1 pm, several times throughout the growing season starting at flowering and 

going through plant maturity.

The second dataset analyzed for this work is a set of 14 elemental concentrations measured 

on the seeds of the RIL population evaluated in 2012. The elements assayed for this work 

include P, K, Ca, Mn, Fe, Zn, Ni, Cu, As, Co, Rb, Mo, S, and Mg. All the data collection and 

univariate association tests were conducted and published by [12] or are under review.

Data Processing and Analyses

Data processing of the phenotypic measurements was performed in both datasets using a 

differential between the well-watered and the water-limited treatments. The idea of a trait 

differential was to have only one measurement for each of the traits analyzed to avoid having 

to conduct separated multivariate analyses for each irrigation treatment. For instance, if a 

plant reaches a canopy height of 10 cm if well-watered, and of 6 cm if water-limited due to 

drought-stress, we would use the difference in growth of 4 cm as the differential phenotype 

in Y.

Marker-trait association studies in plants are generally conducted using quantitative trait loci 

(QTL) analyses. QTL software that are currently available can use multiple markers, 

however they can only use one trait at the time. Our goal was to use all the traits and all the 

markers in one analysis.

In this work, we propose using PLSR as a multivariate tool due to the simultaneous 

correlations input and the increase power. Further more, its bi plot offers a great graphical 

display of all the data to aid researchers in decision-making processes. For the first dataset 

with four drought-related traits we performed PLSR as well as a principal component 

analysis (PCA) followed by multiple analysis of variance (MANOVA).

PCA extracted the dominant patterns in the trait matrix in terms of a complementary set of 

scores and loading plots [13], by replacing the p original variables by a smaller number, q, of 

derived variables [14]. The first few principal components were integrated into a MANOVA 

to detect significant marker effects on the four traits. Markers were then annotated using the 

information available at a publicly available cotton dataset (https://www.cottongen.org/

species/Gossypium_hirsutum/nbi-AD1_genome_v1.1).

For the second dataset, we also performed PLSR but not MANOVA. MANOVA generally 

requires further discriminant analyses or univariate comparisons, which are still under 

preparation by [12]. To estimate variances, we then followed PLSR with jackknife re 
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sampling technique. Jackknife computes statistics on n separate samples of size n-1, where 

each sample is the original data with a single observation omitted [15].

All statistical analyses were performed using R statistical software version 3.2.4. [16], 

mainly employing the R packages pls and pls depot packages [16].

Results

Identifying markers associated with CT, NDVI, CH and LAI

In the first dataset, we performed PLSR, PCA and MANOVA to detect associations between 

markers and the canopy traits CT, NDVI, CHT, and LAI.

Through PLSR it was possible to detect correlations within markers, within traits, and 

between markers and traits as demonstrated by the biplot (Figure 1). The biplot shows that 

latent vectors for NDVI, LAI and CHT presented high correlation among them. However, 

the CT vector was shown in the opposite direction of the other traits, suggesting an inverse 

relationship between CT and the other three traits.

Partial correlation coefficients were then extracted for the traits (Table 1). Negative 

correlations were detected for most trait responses when looking at the latent vectors t1, t2, 

t3. For instance, in t1 the coefficients were −0.72 for LAI, −0.61 for NDVI, and −0,63 for 

CT. A positive correlation was detected for CHT with a respective coefficient of 0.56 (Table 

1).

Partial correlation within markers, and between markers and trait were difficult to observe in 

the biplot due to the high number of markers in one plot (841). Statistical significance was 

also difficult to find just based on the regression coefficients obtained from the PLSR. An 

efficient multivariate method to detect association is a MANOVA.

To reduce the dimensionality of this complex dataset without the use of an index, we first 

needed to extract the principal components (PC) of the trait measurements. The first few 

principal components captured the major data variation and were then used for the 

MANOVA (Figure 2).

After performing MANOVA, we detected 22 markers that were significantly associated 

(p<0.01) with drought resistance/tolerance in plants based on the Pillai-Bartlett Trace test 

[17] (Figure 3).

Significant markers were then annotated from the previously reported cotton dataset (Table 

2). Successfully annotated markers with their respective functions are listed as follows: 

BNL3594a -uncharacterized protein, MUSB1117a- ribosomal protein S25 family protein, 

SHIN-1490a- predicted protein, SNP0365- ubiquinol-cytochrome C reductase hinge protein, 

SNP0119- putative uncharacterized protein, SNP0132-neurochondrin family protein, 

SNP0168- topless-related protein, SNP0129- tesmin/TSO1-like CXC domain-containing 

protein, SNP0004-DDB1-binding WD40 protein hypersensitive to ABA 1, SNP0348- NAC 

domain-containing protein, and SNP001 -ABA receptor PYL8 OS.
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Identifying markers associated with elemental traits

The second dataset contained the same 841 markers used in the first set of analyses. 

However, instead of looking at four drought related traits, we have 14 elemental traits P, K, 

Ca, Mn, Fe, Zn, Ni, Cu, As, Co, Rb, Mo, S, and Mg. For these analyses, we performed 

PLSR followed by jackknife.

The biplot originated from the PLSR was very informative, showing that some traits were 

more correlated than others (Figure 3).

For instance, latent vectors for Ni and Zn shows a high correlation as they are very close in 

the graph. In the same area, there is Fe, Cu, and Ca that can be said to have correlation with 

Ni and Zn. Another correlated set includes Rb, Mo, S and P. Mg is standing alone in 

opposition to Zn. In addition, the following ions also stand alone: Co, K, and As.

Partial correlation coefficients within the traits were then extracted (Table 3). Considering 

the first latent vector (t1), positive correlations were detected for P, K, Mo, S, As, Mg, Co, 

Rb; while negative correlations were detected for Ca, Mn, Fe, Zn, Ni, and Cu. With such a 

variety of results it would not be appropriate to proceed with a MANOVA, as some of the 

traits are totally independent of others.

In order to detect statistical significance for the marker effect on the trait we 

performedjackknife resampling. Then, we were able to list the most singificant markers for 

P, K, Ca, Mn, Mo, and Rb (Table 4). The resampling failed to detect any significant markers 

for Fe, Zn, Ni, Cu, As, Co, S, and Mg.

Discussion

In this work, we proposed the use of multivariate approaches to detect marker-trait 

associations in two cotton databases. For both, PLSR was effective as an exploratory 

method, especially to display correlation within traits.

We have also observed that from the drought-related traits LAI, NDVI, and CHT are highly 

correlated. This finding suggests that LAI, NDVI and CHT can be combined in analyses as 

reliable drought indicators. CT was inversely correlated to the other three traits in our study. 

Even though we did not find correlation between CT and the other drought-related traits, 

there is evidence that CT relates to yield reductions associated with high temperature events 

[18].

Pearson’s pair wise correlation coefficients tables are standard in plant research reports. 

Such tables can have massive information. Our PLSR bi plot can aid researchers to explore 

all their data, and visualize correlations in a more informative way.

Conducting a MANOVA in addition to the PLSR, enabled the identification of 22 important 

markers for candidate drought related genes. After annotation, some important markers were 

found to be related to the 5- ubiquinol-cytochrome C reductase hinge protein, topless-related 

protein, tesmin/TSO1-like CXC domain-containing protein, DDB1-binding WD40 protein 

hypersensitive to ABA 1, NAC domain-containing protein, and the ABA receptor PYL8 OS.
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Ubiquinol-cytochrome C reductase hinge protein is involved in mitochondrial electron 

transport and it is in the mitochondrial respiratory chain complex III [19]. The topless-

related protein may activate TIR-NB-LRR R protein-mediated immune responses through 

repression of negative regulators such as CNGC2/DND1 (PubMed: 20647385). It is also a 

negative regulator of jasmonate responses [20]. Tesmin/TSO1-like CXC domain-containing 

protein plays a role in development reproductive tissues [21].

Marker annotation was important to elucidate how drought is affecting plant development as 

well as to find lines that might have some tolerance to this a biotic stress. The annotation 

also confirmed that our analyses were useful, as they could detect markers associated with 

the drought-related traits. An example is the ABA markers DDB1-binding WD40 protein 

hypersensitive to ABA 1 and the ABA receptor PYL8 OS. The degree of biosynthesis and 

accumulation of ABA in a crop cultivar is a possible indicator of drought tolerance [22]. In 

addition, NAC domain-containing protein was characterized in response to water deprivation 

[23].

From the significant marker detected in this work, SNP013222 (a neurochondrin family 

protein) on linkage group 22, and MUSB1117a (a ribosomal protein S25 family protein) on 

linkage group 45 were also detected by a univariate quantitative trait local (QTL) inclusive 

composite interval mapping (ICIM) approach performed by [12].

For the second dataset with 14 elemental traits (P, K, Ca, Mn, Fe, Zn, Ni, Cu, As, Co, Rb, 

Mo, S, and Mg) we also conducted PLSR. The biplot with correlation among traits was very 

informative, showing highly correlated traits, inversely correlated traits and traits that were 

independent of the others.

PLSR correlation coefficients within traits, within markers, and between markers and traits 

could be extracted from the analysis to give estimates of the marker effect on each trait.

However, as mentioned previously, to find significant marker-trait associations, we applied a 

jackknife resampling technique. The newest updates on the pls R package became available 

on December of 2016 and included a jackknife option to perform approximate t-tests of 

regression coefficients based on jackknife variance estimates. In the literature, bootstrapping 

is also cited as an applicable resampling technique.

The resulting p-values after performing jackknife should not be used uncritically, and should 

perhaps be regarded as mere indicator of (non) significance. This to the fact that the 

distribution of the regression coefficient estimates and the jackknife variance estimates are 

unknown (at least in PLSR/PCR) [24].

Conclusion

PLSR is a very informative way to help comprehend how data are structured, displaying 

correlations within markers, within traits, and between marker and traits in one biplot.

For the first dataset, PCA followed by MANOVA seemed to be an effective approach to 

detect association. However, further discriminant analyses might be needed if univariate 
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analyses are not available. Furthermore, our first dataset univariate analyses were published 

by [7].

PLSR offers partial correlation coefficients and resampling techniques are necessary to 

estimate variances. In this work, we used jackknife resampling but it failed to detect 

significant marker effects for several traits. This fact could also be due to no real effects of 

markers on the studied traits.

Future work will include performing PLSR in other crops as well as looking at bootstrap as 

an alternative resampling technique. Overall, multivariate approaches in marker-trait 

association studies still need to be improved and broadly tested to leverage detection of 

additional variance and prevent spurious results.
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Figure 1. 
Partial Least Square Regression: correlation biplot; showing trait components in red, and 

marker components in gray and black (significantly associated markers). Within traits, 

negative correlations for LAI, NDVI, CHT, and positive correlation for CT were detected.
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Figure 2. 
Principal Component Analysis (PCA) results for each drought-related trait; showing 

variation within each component, from left to right: canopy temperature, NDVI, canopy 

height, and LAI. Y-axis is percent variation explained by PC on X-axis.
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Figure 3. 
Markers associated with drought identified using Principal Component Analysis followed by 

Multivariate Analysis of Variance in different linkage groups (color-coded). The Y axis 

displays the −log(p-value); where −log (0.01) ~ 4.6. A total of 22 significant associations 

were detected at p<0.01 based on the Pillai-Bartlett Trace test.

Bodah and Weir Page 11

Agric Res Technol. Author manuscript; available in PMC 2018 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Partial Least Square Regression correlation biplot; plot showing trait components in blue, 

and markers in gray. Proximity in the graph, such as in the vectors for Ni and Zn, shows that 

the components are highly correlated. Opposing direction for vectors such as in Zn and Mg, 

shows that the traits are inversely correlated.
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Table 1

Partial correlation coefficients between Y (CT, NDVI, CHT, LAI) and Xj were observed for each latent vector 

of matrix T (t1, t2, and t3).

Trait T1 T2 T3

CT 0.56 0.28 0.48

NDVI −0.61 −0.21 −0.5

CHT −0.63 −0.42 −0.13

LAI −0.72 −0.42 −0.22
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Table 3

Partial correlation between Y (P, K, Ca, Mn, Fe, Zn, Mo, S, Ni, Cu, As, Mg, Co, and Rb) and Xj were 

observed for each latent vector of matrix T (t1, t2, and t3).

Ion t1 t2 t3

P 0.32599596 0.35472220 0.333397

K 0.1577072 −0.31668904 −0.30585

Ca −0.17344796 −0.11929882 −0.33944

Mn −0.09707526 −0.50462247 −0.20505

Fe −0.31679096 −0.17088226 −0.02917

Zn −0.45062098 −0.11295626 0.016705

Mo 0.0563702 0.22072761 −0.38464

S 0.13152467 0.20619102 −0.24154

Ni −0.33292305 −0.09658496 −0.00291

Cu −0.20325922 −0.0886891 −0.17913

As 0.41771351 −0.08055791 −0.08282

Mg 0.59218889 0.13912230 0.004347

Co 0.01165428 0.0185707 0.268

Rb 0.01356858 0.11154640 0.32252
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