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Abstract: AMPK (5’-adenosine monophosphate-activated protein kinase) is heavily involved in
skeletal muscle metabolic control through its regulation of many downstream targets. Because of
their effects on anabolic and catabolic cellular processes, AMPK plays an important role in the control
of skeletal muscle development and growth. In this review, the effects of AMPK signaling, and those
of its upstream activator, liver kinase B1 (LKB1), on skeletal muscle growth and atrophy are reviewed.
The effect of AMPK activity on satellite cell-mediated muscle growth and regeneration after injury
is also reviewed. Together, the current data indicate that AMPK does play an important role in
regulating muscle mass and regeneration, with AMPK«1 playing a prominent role in stimulating
anabolism and in regulating satellite cell dynamics during regeneration, and AMPKa?2 playing a
potentially more important role in regulating muscle degradation during atrophy.
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1. Introduction

5’-adenosine monophosphate-activated protein kinase (AMPK) is an intracellular sensor of ATP
consumption that emerged in the late 1990s as a key regulator of skeletal muscle metabolism [1-3].
Its role in the promotion of ATP-producing catabolic processes involved in glucose and fat oxidation
is well characterized. Its general identity as a catabolic agent is further illustrated by its stimulation
of protein degradation and autophagy [4-6]. Additionally, AMPK inhibits anabolic processes that
consume ATDP, such as protein synthesis [7]. Given these general actions, AMPK’s potential negative
effect on skeletal muscle growth has been well-studied over the past 20 years.

In this review, a very brief overview of AMPK structure and function will be presented. Then,
AMPK'’s effect on cell processes that are relevant to the control of cell size, such as protein synthesis,
protein degradation and autophagy, will be reviewed. Finally, the known experimental effects of
AMPK modulation on skeletal muscle growth and regeneration will be presented.

2. AMPK and Its Activation

2.1. AMPK Structure and Activation

Many excellent sources are available in the literature that provide a thorough review of the
molecular and mechanistic details of AMPK structure and activity (e.g., [3,8,9]). Only a brief
summary is provided here. Active AMPK is a heterotrimer comprised of three subunits: «, 3, and vy.
The actual kinase domain is contained within the « subunit, along with the predominant regulatory
phosphorylation site, Thr172, which must be phosphorylated to produce any significant activity. The o
and y subunits serve scaffolding and regulatory roles. The 'y subunit confers AMP sensitivity to the
enzyme through four cystathionine 3-synthase (CBS) domains, which can bind AMP, ADP, or ATP.
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This interaction with three of these nucleotides confers on AMPK its ability for effectively detecting
cellular energy status. During energy stress, when ATP breakdown to ADP accelerates, AMP is
generated through the action of adenylate kinase, which transfers a phosphate from one ADP molecule
to another, resulting in the production of ATP and AMP. As AMP levels rise, it (and to some degree,
ADP) activates AMPK by: (1) increasing AMPK phosphorylation by upstream kinases; (2) decreasing
AMPK dephosphorylation by phosphatases; and (3) allosterically activating phosphorylated AMPK [8].
AMPK'’s response to the decrease in the ATP:AMP ratio are crucial for the cell’s ability to maintain
appropriate ATP levels because it promotes ATP-generating catabolic processes, while inhibiting
ATP-consuming anabolic processes [3,8,9].

Different isoforms exist for each of the AMPK subunits. Two « (x1 and «2), two (1 and 32),
and three v (v1, v2, and y3) isoforms result in the possibility of up to 12 distinct AMPK configurations.
In human skeletal muscle, however, these configurations are likely limited to «2/(32/vy1 (most
abundant), «2/32/v3, and «1/32/v1 [10]. Of these three, «2/2/y3 accounts for the majority
of AMPK activation due to high-intensity exercise [11]. In contrast to human muscle, mouse muscle
contains 1 trimers (x131y1 and «231y1), although these still only contribute slightly to the overall
AMPK activity [12]. While some functional implications of these different configurations have been
determined, a full understanding of the full impact of differing trimer contents in tissues and within
muscles is still being worked out.

2.2. Upstream AMPK Kinases

In mature skeletal muscle, liver kinase B1 (LKB1) is generally considered the primary AMPK
kinase since total AMPK activity is essentially eliminated by muscle-specific LKB1 knockout [13-16].
LKB1 seems, however, to play a more important role in AMPKa2 activation, since AMPK«1 activity is
not heavily impacted in skeletal muscle by LKB1 knockout [13,14,17-19].

Calcium/calmodulin-dependent protein kinase (CamKXK) [20,21], and transforming growth factor
B-activated kinase-1 (TAK1) [19,22] likely also play important roles in the activation of AMPK in
skeletal muscle under certain circumstances.

2.3. AMPK Activators in Skeletal Muscle

2.3.1. Exercise

As would be expected given its role as a cellular energy sensor, AMPK is strongly activated in
skeletal muscle by repeated muscle contraction [23] and exercise [2,11,24] in both rodents and humans.
Activation of AMPK«2-containing trimers by endurance exercise occurs within 5 min of the onset of
exercise [25], and likely requires a relatively high intensity effort, usually somewhere above 50% of
VO2max [24,26]. AMPK activity returns to baseline levels within 3 h after exercise [26].

While AMPKa?2 activity is readily increased by exercise and muscle contraction in rodents [27],
increases in AMPK«1 activity after exercise/contraction are less consistent. For example, AMPK«1
activity in mouse quadriceps muscle was approximately four times higher immediately after 90 min of
treadmill running at 13-17 m/min [28], but was not activated at all after running at 10-15 m/min for
60 min [29]. Similarly, 30 min of treadmill running at 30% of maximum running capacity activated
AMPK«2 in mouse skeletal muscle, but not AMPK«1, while running at 70% of maximum activated
both isoforms [30]. In vitro contraction of the extensor digitorum longus (EDL) muscle for 25 min
activated AMPK«1, while 20 min of in situ contraction of the tibialis anterior (TA) failed to do so [29].
The data from rodents is confirmed in human studies where cycling for 1 h at 50% and 70% VO2max
failed to activate AMPKo1 [24], while a single 30 s sprint [31] or high intensity interval cycling
(4 x 30 s bouts of cycle sprints) [32] activated both AMPK«1 and «2 isoforms. Thus, activation of
AMPKal isoforms by exercise requires greater intensity work and/or duration than for the activation
of AMPK«x2. As discussed below, this has important implications in relation to AMPK’s impact on
muscle growth and repair, as AMPKoa1 appears to be critical in the regulation of anabolism.
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2.3.2. AICAR

The 5-amino-4-imidazolecarboxamide ribonucleoside (AICAR) has been used for nearly
25 years to activate AMPK in various tissues in the body [33], including skeletal muscle [1,34,35].
Upon administration, it is converted into ZMP (AICAR monophosphate), an AMP mimetic that
activates AMPK without altering intracellular adenine nucleotide levels. Similar to relatively
low-intensity exercise, intraperitoneal injection of AICAR activates AMPK«2 but not AMPK«1 in
rat gastrocnemius [7]. Furthermore, AICAR-stimulated glucose uptake is eliminated in AMPK«x2
knockout muscle, but not in AMPK«1 knockouts [36], suggesting that at least some of AICAR’s
metabolic effects are specifically AMPKa2 dependent. Nonetheless, AICAR can activate AMPK«1,
since incubation of isolated rat epitrochlearis muscle with 2 mM AICAR activated AMPK«1, albeit to a
lesser degree than AMPKa2 [27].

2.3.3. Metformin

Metformin has long been used as a front-line drug in the treatment of insulin resistance and
diabetes because of its ability to improve hyperglycemia in an insulin-independent manner. Shortly
after AMPK’s metabolic actions began to be described, which are similar to those of metformin, it was
discovered that at least some of metformin’s effects are, indeed, AMPK-dependent, although some
are not [37,38]. The activation of AMPK by metformin is mainly indirect, where metformin inhibits
mitochondrial oxidative phosphorylation, thereby decreasing ATP production and generating an
energetic stress on the cell [38]. Although the liver is considered the principal site of metformin’s
glucose-regulating effects, chronic, therapeutic dosing of metformin over a 10 week period does
increase AMPK«x2 (but not AMPK«1) activity in diabetic skeletal muscle [39]. However, it isn't known
whether this is a direct effect of the metformin on skeletal muscle since the effect persisted after
metformin withdrawal. In mice, a metformin injection modestly increased AMPKa1 and «2 activity,
while treatment of isolated epitrochlearis and soleus (SOL) muscle ex vivo with 10 mM (but not 2 mM)
metformin markedly activated AMPKa1 and «2 isoforms [40]. However, the relevance of these high
concentrations to in vivo metformin action is questionable.

2.3.4. Small Molecule AMPK Activators

A-769662 was the first small molecule AMPK activator described in the literature [41].
It specifically targets 31-containing AMPK trimers, and in skeletal muscle only activates the
scarcely-expressed «1f31 complexes [42]. Several additional activators have subsequently been
identified, with varying specificities for the different AMPK subunit isoforms. Of them, Ex229 (small
molecule 991), PF-739, and MK-8722 have been demonstrated to activate AMPK in skeletal muscle [43],
though effects on muscle growth, atrophy, and regeneration are unknown.

3. Regulation of Growth-Related Cell Processes by AMPK

Skeletal muscle growth, in essence, occurs when the rate of protein anabolism exceeds the rate of
protein catabolism. Atrophy results when protein catabolism exceeds anabolism [44]. AMPK is known
to regulate both processes.

3.1. Effect of AMPK on Protein Synthesis

The first indications that AMPK played a role in the regulation of protein metabolism came
in 2002 when it was shown that the fractional rate of protein synthesis in skeletal muscle deceased
approximately 45% 1 h after an injection of the AMPK-activating drug, AICAR [7]. This inhibitory
effect of AMPK activation on protein synthesis was subsequently observed in cultured muscle cells [45]
as well as hepatocytes/liver [46-48], cardiac myocytes [49,50], and cancer cells [51,52], among other
cell types and tissues.
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AMPK'’s inhibition of protein synthesis is mediated by regulation of protein translation through
the mechanistic target of rapamycin, complex 1 (mTORC1) pathway. Regulation of mTORC1 activity
is complex, as it serves as a signaling checkpoint for many environmental inputs including nutrients,
energy status and mechanical strain. When activated, mTORC1 drives cell growth in part by stimulating
protein synthesis through its phosphorylation of several downstream targets, the best characterized of
which are the 70-kDa ribosomal protein S6 kinase (p70S6K1) and eukaryotic initiation factor 4E-binding
protein 1 (4E-BP1).

AMPK has been shown to inhibit mTORC1 activity through multiple mechanisms. First, AMPK
phosphorylates mTOR, a key component of the mTORC1 complex, at Thr2446 [53], which is thought
to impair mTORCI activity by preventing phosphorylation at Ser2448. This site (Ser2448) was initially
thought to promote mTORC1 activity when phosphorylated. Since then, its relevance to mTORC1
activity has been reassessed, and it seems probable that phosphorylation of both sites (i.e., Thr2446
and Ser2448) is inhibitory on mTORC1 activity [54]. Nonetheless, AMPK also inhibits mTORC1 by
phosphorylating tuberous sclerosis complex 2 (TSC2). Activation of mTORC1 occurs at the lysosomal
membrane through interaction with GTP-bound Rheb [55]. TSC2 acts, in complex with binding
partners tuberous sclerosis complex 1 and TBC1 domain family member 7 (TBC1D7) [56], as a GTPase
activating protein that converts GTP to GDP, thereby greatly diminishing the ability of Rheb to
promote mTOR activity. Finally, AMPK phosphorylates raptor, an mTOR binding partner that is
essential for mTORC1 activity. This phosphorylation leads to sequestration of raptor by 14-3-3 proteins,
and impaired mTORCI activity [57].

In addition to its inhibitory action on mTORC1, AMPK also regulates protein synthesis through
inhibition of eukaryotic elongation factor 2 (eEF2) activity. Phosphorylation of eEF2 at Thr56 inhibits
binding of the elongation factor to the ribosome, thereby slowing elongation rate. Phosphorylation of
eEF?2 at this site is mediated by eEF2 kinase (eEF2K). AMPK impacts eEF2K activity in two ways. First,
p70S6k phosphorylates and inhibits eEF2K (leading to eEF2 activation), and AMPK can prevent this
by inhibiting the mTOR pathway, as described above. Secondly, AMPK directly phosphorylates and
activates eEF2K, leading to eEF2 inactivation [47,58]. While translation initiation is often considered the
rate-limiting step in protein synthesis, control of elongation can, under certain circumstances, be critical
in protein synthetic rate [58,59]. For instance, inhibition of eEF2K partially blocks the acute inhibitory
effect of contractions on protein synthesis, although this effect does not appear to be regulated by
AMPK [60]. Thus, the capacity for eEF2 regulation by AMPK in skeletal muscle remains unclear.

3.2. Effect of AMPK on Catabolic Processes

3.2.1. AMPK and Autophagy

Defective cellular content (organelles, pathogens, etc.) is degraded and recycled through
the process of autophagy under low-energy conditions such as nutrient deprivation and exercise.
Autophagy involves several subprocesses including engulfment of the target components in an
autophagosome, fusion of the autophagasome with a lysosome (forming an autophagolysosome),
followed by degradation of the cargo. This is a complex process and a complete description will
not be presented here (see reference [61] for an excellent review). However, several key points of
autophagy regulation are important in the context of the current topic. Under low-energy conditions,
uncoordinated 51-like kinase 1 (ULK1) phosphorylates and activates multiple downstream targets
that promote the progression of autophagy, including several autophagy related (ATG) proteins and
beclin-1. Under conditions of energy abundance mTORC1 inhibits ULK1 through phosphorylation at
Ser757. This, along with its targeting of other autophagy components, leads to mTOR’s inhibition of
autophagy [61].

AMPK has long been known to regulate autophagy. Initial observations in rat hepatocytes
suggested that AICAR-induced AMPK activation inhibited autophagy [62], but subsequent work
demonstrated that the AMPK inhibitor, Compound C, and dominant negative AMPK expression
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also inhibited autophagy, suggesting that AICAR’s effects might be AMPK-independent [63]. Since
then, AMPK’s role in the process remains complicated because its effect seems to be dependent
on cell type and metabolic context. Nonetheless, it appears that AMPK generally supports and
promotes autophagy [64,65], and this is true in skeletal muscle [66]. It does this through multiple
mechanisms. As noted above, AMPK inhibits mTORC1 activity. This relieves mTORC1 inhibition
of ULK1, and thereby promotes autophagic flux. Additionally, AMPK directly phosphorylates
components of the autophagy regulatory machinery. AMPK phosphorylates ULK1 at several sites [67],
and also targets autophagy related protein 9 (ATG9) [4] and beclin-1 [68] downstream of ULKI,
promoting autophagy.

3.2.2. AMPK and Ubiquitin-Proteasome Mediated Catabolism

The 26S proteasome degrades proteins that have been tagged for destruction through the
attachment of ubiquitin chains. The covalent attachment of ubiquitin to targeted proteins is catalyzed
through the action of three enzymes (E1, E2, and E3). E3 actually refers to one of multiple ubiquitin
ligases, each of which is specific for the degradation of particular proteins. In skeletal muscle, two E3
enzymes, Atrogin-1 and muscle ring finger-1 (MuRF-1), are known to play a prominent role in
proteasomal protein breakdown during muscle atrophy [69].

Expression of the atrophy-related genes Atrogin-1 and MuRF-1 is regulated through members of
the forkhead box (FoxO) transcription factors. Anabolic signaling that activates Akt (e.g., via nutritional
and hormonal cues mediated by insulin and other growth factors) results in their cytoplasmic
localization and subsequent degradation so that they do not induce atrogene transcription. Catabolic
stimuli, such as oxidative stress and inflammation, increase MuRF-1 and Atrogin-1 expression in muscle
through the mitogen-activated protein kinase (MAPK) p38 as well as nuclear factor-xB (NF-«B) [69].

AMPK stimulates FoxO activity. AICAR injection into mice increases FoxOl and FoxO3
expression [28,70], although AICAR’s upregulation of FoxO1l is not impacted by knockout
of AMPKa2 [28]. Treatment of C2C12 myotubes with AICAR results in protein breakdown
accompanied by increased expression of FOXO, Atrogin-1, MuRF-1, and two other FoxO target
genes, microtubule-associated protein 1A /1B-light chain 3 (LC3), and Bnip3 [71], and these effects
are Akt/mTOR independent [6]. AMPK also phosphorylates FoxO3a at a site known to activate the
transcription factor and thereby induce generalized protein degradation but this may not necessarily
affect its localization in the nucleus [72-74]. AICAR also increases Foxo3 binding to the MuRF-1 and
Atrogin-1 promoters [6]. Furthermore, AMPK activation increases nicotinamide adenine dinucleotide
(NAD™) concentration which activates the sirtuin 1 (SIRT1) deacetylase. SIRT1-mediated deacetylation
of FoxO proteins increases their transcriptional activity [75,76].

4. Influence of AMPK on Skeletal Muscle Size

4.1. AMPK Regulation of Basal Muscle Size

Initial observations in dominant-negative AMPK (AMPK-DN) transgenic mice in which a
dominant negative AMPK«&2 subunit was overexpressed under the muscle creatine kinase promoter
(expressed in heart and skeletal muscle) showed that EDL muscles tended to be larger than in wild-type
(WT) mice, suggesting that AMPK might negatively regulate basal muscle mass [77], as would
be expected given AMPK’s stimulation of catabolism and activation of anabolism. Those initial
findings are consistent with later work in which skeletal muscle specific AMPKal and a2 double
knockout (AMPKa1/«2 dKO) soleus muscles were larger by mass and fiber diameter compared to
WT muscles [78]. Myotubes derived via primary muscle cell cultures from these AMPK«1/ o2 dKO
muscles were likewise larger than from those from WT muscles [78]. On the other hand, muscle-specific
AMPKf1/p2 double knockout (AMPKP1/32 dKO) SOL and EDL muscles were reportedly not
different in size compared to WT muscles [79]. Why the double knockout of 3 isoforms did not lead to
increased muscle size is not clear, but might be related to the promoter used to drive the Cre-mediated
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deletion of floxed AMPK. In the case of the AMPKR1/32 dKO mice, the muscle creatine kinase (MCK;
cardiac and skeletal muscle specific) promoter was used, while in the AMPKa1/«2 dKO mice it was
the human skeletal muscle actin (HSA; skeletal muscle specific) promoter. Alteration of AMPK activity
in the heart in the AMPKf1/ 2 dKO mice could have influenced the response of skeletal muscle to
the knockout since cardiac dysfunction is well-known to induce skeletal muscle atrophy. Thus, not all
AMPK deficiency models support the notion that AMPK inhibits basal muscle mass, but these findings
are usually derived from AMPK knockout models that are not specific to skeletal muscle. Plantaris
muscles from germline AMPK«1 knockout mice are smaller than those from WT mice [80]. The lack
of AMPK«1 in all tissues in this model, however, doesn’t allow for conclusions regarding the role of
AMPK in the muscle specifically, since the lack of AMPKa1 in other tissues may have impacted muscle
size (e.g., by decreasing systemic growth factors or other humoral inputs). Furthermore, the lack of
AMPKal was associated with compensatorily elevated AMPKa?2 activity in the muscles, which could
have resulted in decreased mass. In agreement with this interpretation, primary cultured myotubes
derived from these cells (removed from the systemic environment of the mouse) were larger than
WT muscles [80]. Another study found that muscle fibers, especially type IIb fibers, are smaller in
whole-body AMPKf32 knockout mice [81]. The TA muscles from the aforementioned cardiac/skeletal
muscle AMPK 31/32 dKO mice are also smaller vs. WT muscles [82]. Again, the smaller size of these
muscle fibers in these studies could be secondary to systemic effects of altered function of other tissues
(e.g., heart), though this has not been directly tested.

4.2. Role of AMPK in Skeletal Muscle Hypertrophy

Given AMPK’s pro-catabolic and anti-anabolic actions, it was hypothesized that AMPK activity
would block overload-induced muscle growth, and the available data generally support this. When
comparing the hypertrophic response of rat muscle to synergist ablation-induced overload, AMPK
phosphorylation in the hypertrophying muscle was associated with decreased muscle hypertrophy [83],
and diminished mTOR pathway signaling [84]. Several subsequent studies have reported negative
associations between AMPK phosphorylation or activity and skeletal muscle growth. Indeed, impaired
overload hypertrophy in obese rats [85,86], attenuated mTOR phosphorylation in metabolic syndrome
patients [87], myotube hypertrophy during differentiation [88], myostatin inhibition of eEF2 and
protein synthesis in myotubes [89], and differences in hypertrophy with varied ladder-climbing
protocols in rats [90] are all associated inversely with AMPK activity.

Direct pharmacological evidence showing that AMPK inhibits muscle growth has also been
demonstrated. An AICAR injection 1 h prior to a bout of resistance exercise-mimicking contractions
greatly attenuated the mTOR signaling response to the contraction bout [35], suggesting that AMPK
activation would impair the normal increase in protein translation that occurs post resistance exercise.
Likewise, continuous perfusion of overloaded plantaris muscles with AICAR after synergist ablation
greatly attenuated muscle hypertrophy [91].

Genetic evidence for the inhibitory effect of AMPK on in vivo skeletal muscle hypertrophy was
provided by Mounier, et al. [80], who performed synergist ablations on AMPK«1 knockout mice.
After 7-21 days of overload, AMPK«1 expression and activity was significantly increased in WT
mice (but not AMPK«1-KO mice, as expected). Despite lower basal muscle mass, whole muscle
hypertrophy and muscle fiber hypertrophy at 7 and 21 days was greater for the AMPKa1 knockouts.
In line with the hypertrophy measurements, mTOR pathway signaling, as assessed by p70S6k and
4E-BP1 phosphorylation was greater, while eEF2 phosphorylation was lower (corresponding to
increased eEF2 activity) after overload in the AMPK«x1-KO muscles. Importantly, this occurred
despite a compensatory increase in AMPK«2 activity basally and at 7 and 21 days after overload in
the KO muscles, demonstrating that AMPK«1 is likely the major isoform involved in regulation of
overload-induced muscle growth.

On a related note, old age leads to the loss of muscle mass (sarcopenia) and a blunted anabolic
response to hypertrophic stimuli. AMPKoa?2 activation by exercise and AICAR is typically blunted in
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old age [34,92]. However, AMPK phosphorylation in old overloaded muscle is elevated vs. young
overloaded muscles and is negatively correlated to mTOR signaling and hypertrophy [83,84]. Similarly,
AMPK phosphorylation 1-3 h after resistance exercise is elevated in old vs. young human muscle,
and is associated with delayed mTOR pathway activation [93]. Interestingly, 10 min of continuous
electrically stimulated muscle contractions resulted in increased AMPKoa?2 activity in muscles from
young adult (8 months-old) and old (30 months-old) rats, but this response was attenuated by old
age [34]. However, under this stimulation protocol, AMPK«l1 activity increased after stimulation only
in old muscle, and not young, suggesting that old muscle may be hypersensitive to exercise-induced
AMPKu«1 activation which perhaps contributes to sarcopenia.

4.3. Role of AMPK in the Regulation of Skeletal Muscle Atrophy

The response of the AMPK system to muscle atrophy is unclear. Disuse atrophy of rodent
skeletal muscle after 1-4 weeks of hindlimb unloading (HU) has been reported to increase [94] or
decrease AMPK phosphorylation [95-97], while others observed no effect of HU on AMPK«1 and
AMPKa2 activity or on acetyl-CoA carboxylase (ACC; AMPK target and marker of AMPK activity)
phosphorylation [98]. Similarly, AMPK activity is reported by some to increase after 4 and 7 days
of denervation in mice and/or rats [99-102], while spinal cord transection does not alter AMPK«x2
activity in muscle [103]. In the denervation model, these conflicting results may be due to timing
since AMPK phosphorylation in denervated soleus muscles is decreased during at least the first 24 h
post-denervation, is not different at 3 days, and is elevated by 7 days post-denervation [104] compared
to control muscles. Thus, it appears that AMPK activity in general decreases initially, then increases
later on during the adaptation to disuse, at least in the denervation model.

Consistent with a catabolic role for AMPK, HU-induced atrophy of the soleus muscle was
partially attenuated in AMPK-DN soleus muscles, potentially through decreased ubiquitin-proteosome
activity [98]. It should be noted, however, that in this model, AMPKu«l activity was only mildly
decreased by dominant-negative (DN) expression in the transgenic muscles, so the anti-atrophy
effect was mainly due to the loss of AMPK«&2 activity. Similarly, atrophy in denervated TA muscles
from AMPKa«2-KO mice was partially blocked compared to WT muscles [101], and this was also
associated with decreased autophagic markers, Atrogin-1/MuRF-1 expression and ubiquitination. Akt
and 4E-BP1 phosphorylation were unaffected by AMPK«x2-KO, suggesting that the attenuation of
atrophy was due to decreased protein degradation rather than increased mTOR activity and synthesis.
Together, these findings suggest that in contrast to AMPK«1’s role in inhibiting skeletal muscle mTOR
and hypertrophy, the presence of AMPK«?2 plays a more pronounced role in supporting an atrophy
response to disuse, and in promoting protein degradation through the ubiquitin-proteasome system.

While the lack of AMPK«&2 attenuates atrophy, increased activation of AMPK above normal
does not appear to accelerate the loss of muscle mass since daily AICAR injections during 3 days
of tibial nerve denervation in rats did not significantly affect skeletal muscle atrophy in soleus
and gastrocnemius muscles [105]. Furthermore, 4 weeks of AICAR treatment of mdx mice (a
model for Duchenne muscular dystrophy) did not exacerbate atrophy associated with dystrophy,
and actually improved muscle function, probably through enhanced autophagic clearing of damaged
cell components [106], and /or promotion of a more oxidative muscle phenotype [107].

4.4. Effect of Disruption of LKB1 on Skeletal Muscle Size and Hypertrophy

LKB1 knockout in skeletal muscle results in a nearly complete elimination of basal, exercise,
and AICAR-induced AMPK«&2 activity [14,18,19] and overall AMPK phosphorylation [13,16,108-110],
while it has little [13,14] to no [17,18] effect on AMPK«1 activity, which is an important consideration
since AMPK«l seems to be the major isoform regulating muscle growth [78,80]. LKB1 also
phosphorylates several other AMPK family members, at least one of which, sucrose non-fermenting 1
AMPK related kinase (SNARK) is important in the maintenance of muscle mass [111].
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The weight of muscles from relatively young mLKB1-KO mice is not statistically different from
that of WT muscles [16,19]. However, after approximately 30 weeks of age, muscle mass begins to
decline in mLKB1-KO muscles [15]. This atrophy is associated with the development of heart failure,
however [15,112], and thus may be primarily due to cardiac cachexia. Consistent with that speculation,
muscle weights were, for the most part, similar in a skeletal muscle specific dominant negative LKB1
model, though quadricep muscles were smaller, and diaphragms were larger [113].

Nonetheless, since LKB1 is a primary upstream activator of AMPK in skeletal muscle,
McGee et al. [19] hypothesized that the lack of LKB1 in muscle would result in a greater hypertrophic
response to overload. However, when plantaris muscles from conditional muscle-specific LKB1
knockout mice (mLKB1-KO; cardiac and skeletal muscle knockout) were overloaded via synergist
ablation (of the gastrocnemius muscle), there was no significant difference in the degree of mTOR
pathway activation or hypertrophy compared to WT muscles. Importantly, overload increased the
activity of AMPK«1 (but not «2) in both WT and KO muscles, showing that this response is regulated
at least in part in an LKB1-independent fashion, perhaps via CamKK or TAK1 signaling [19]. Therefore,
based on the findings of Monier, et al., that it is the x1 subunit that regulates skeletal muscle mTOR
signaling and size [80], the lack of difference in hypertrophic response in the mLKB1-KO muscles is
not surprising.

However, when skmLKB1-KO muscles were subjected to an acute bout of intermittent contractions
designed to mimic hypertrophy-inducing resistance exercise, mTOR signaling (p70S6k and ribosomal
protein S6 phosphorylation) was elevated to a greater extent both basally and immediately
post-contraction in knockout vs. WT muscles, as was protein synthesis at 8 h post contraction [110].
AMPK phosphorylation was increased with contractions in WT but not skmLKB1-KO muscles using
this contraction protocol, suggesting that the increased mTOR signaling in the knockout muscle could
be due to a lack of AMPK activation, but AMPK«1-specific activity was not measured. This suggests
that LKB1 can exert catabolic effects under some circumstances, though evidence that this impacts
gross muscle hypertrophy is lacking.

Potential effects of LKB1 on muscle atrophy during unloading or denervation are
currently unknown.

4.5. Exercise-Induced AMPK Activation and Muscle Hypertrophy

That endurance training interferes with hypertrophy/strength gains has been well-
established [114,115]. The accumulation of evidence demonstrating AMPK’s anti-anabolic and
pro-catabolic effects naturally leads to the question of whether its activation during exercise functionally
impairs the ability of muscle to hypertrophy, which, if true, would mechanistically explain the conflict
between endurance/hypertrophy responses. In support of this hypothesis, Atherton et al. [116]
showed that tissue-autonomous differences in signaling pathway activation may contribute to the
inherent differences in gross adaptation that is observed with endurance vs. resistance exercise
training. Using in vitro electric stimulation protocols that mimic endurance (low frequency, continuous)
and resistance (high-frequency, intermittent) exercise bouts in rat skeletal muscle, they showed
that endurance-type stimulation (but not resistance-type stimulation) resulted in AMPK activation
and accrual of peroxisome-proliferator-activated receptor y coactivator-1 «, while resistance-type
stimulation (but not endurance-type stimulation) increased phosphorylation of Akt, TSC2, mTOR,
downstream mTOR targets, and increased protein synthesis.

In humans, however, the molecular responses to different exercise modalities is less clear and
has generally been interpreted as not supporting the hypothesis that physiological AMPK activation
(e.g., through endurance exercise training) significantly impacts mTOR signaling and/or protein
synthesis [115]. Apro6 et al. showed in trained male subjects that activation AMPK«2 via 1 h of intense
cycling did not significantly impair subsequent activation of mTOR pathway components or mixed
muscle fractional protein synthesis after a resistance training bout [117]. However, AMPK«x1 was not
activated by either exercise bout in this case. Since AMPK«1 is the major AMPK isoform regulating
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skeletal muscle growth, at least in rodents [80], the lack of an effect of this endurance exercise bout on
mTOR or protein synthesis would be expected and does not preclude an AMPK effect if the «1 subunit
were actually activated (e.g., by more intense or prolonged exercise than that employed in this study).

Furthermore, while acute AMPK activation immediately after exercise is suppressed in
endurance-trained muscle [118,119], chronic endurance exercise training increases basal AMPKo1
protein content and activity. Twelve weeks of treadmill training (90 min/day, 5 days/week) elevated
both AMPK«1 and &2 protein content in rat muscle [120]. Similarly, in humans, AMPK«1 (but not
AMPK«2) protein concentration [118,121,122] and basal AMPK«1 activity [122] is greater in endurance
trained vs. untrained individuals. Thus, the question of whether or not resistance exercise-induced
anabolic signaling and hypertrophy are impacted by AMPK«1 activation by endurance exercise
training remains unresolved.

4.6. Does Pharmacological AMPK Activation Limit Skeletal Muscle Hypertrophy?

Data showing the effect of pharmacological AMPK activation on load-induced muscle
hypertrophy is quite limited. As noted previously, AICAR activation of AMPK attenuates
contraction-induced increases in mTOR signaling and overload-induced hypertrophy in rodent
muscles [35,91].

Interestingly, metformin treatment of patients with severe burn injury at dosages
(8502550 mg/day for 8 days) previously shown to activate AMPK«2 but not AMPK«1 in skeletal
muscle [39] led to a significant increase in protein synthesis [123]. Similarly, in tumor-bearing cachexic
rat muscle, metformin treatment rescued protein synthesis and decreased protein degradation while
activating AMPK, though isoform-specific activity measures were not taken [124]. This improvement
in muscle anabolism may be attributable to the long-appreciated impact of metformin on insulin
sensitivity. Improved insulin action at the skeletal muscle would not only improve glucose handling,
but protein synthesis as well.

5. Influence of AMPK on Skeletal Muscle Regeneration after Injury

5.1. The Regenerative Process in Skeletal Muscle

Skeletal muscle regeneration after injury is dependent upon the action of muscle stem cells
(MuSCs), primarily satellite cells (5Cs) which, in uninjured muscle, reside underneath the basal lamina
next to mature muscle fibers in a quiescent, mitotically inactive state. Upon muscle damage, these cells
activate and proliferate, with their subsequent progeny either engaging in a process of self-renewal to
maintain the MuSC pool, or differentiating into myoblasts that then fuse together with other myoblasts
or existing myofibers, leading to repair or replacement of the damaged tissue. Many excellent reviews
are available for more detail on these events (e.g., [125-127]).

Muscle regeneration is a precisely ordered process that is dependent on the actions and influence
of many cellular players at or near the myogenic niche, including SCs, mature muscle fibers, immune
cells, fibroblasts, fibroadipogenic progenitors (FAPs), and others [125,126]. Although AMPK likely
plays an important role in the regulation of many of these cell types (in macrophages, for instance [128]),
the discussion here will be limited to its role in SCs.

5.2. Effect of AMPK on Myogenesis in Culture

The C2C12 adult skeletal muscle myoblast cell line is frequently used as an in vitro culture model
for studying the process of myogenesis. C2C12 myoblasts, prior to differentiation in low-serum media,
express the «2, y2, and yv3 AMPK isoforms, but minimal expression of «1, 1, 32, and y1 isoforms.
Differentiation of the myoblasts into myotubes by exposure to low-serum media, however, induces the
expression of all isoforms except for y1 [129]. Consistent with the lack of 3 isoforms in myoblasts, which
should preclude AMPK activation, stimulation of the cells with oligomycin and serum withdrawal
activated AMPK much more strongly in myotubes vs. myoblasts [129]. However, other findings show
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that AICAR is able to activate AMPK in undifferentiated myoblasts [130], suggesting that the lack of 3
isoforms and AMPK activity in myoblasts is not a generalizable finding.

Activation of AMPK impairs myoblast proliferation. When C2C12 myoblasts are cultured
in low glucose conditions (<5 mM), AMPK is activated leading to impaired differentiation into
myotubes. The same phenomenon is true for primary myoblasts, but only at even lower glucose
concentrations [131]. Pharmacological AMPK activation with AICAR, metformin and other drugs
accomplishes the same impairment in differentiation [130,131].

AMPK also impairs myoblast differentiation in culture. Activation of AMPK with AICAR in
differentiating C2C12 myoblasts decreased p21 expression (which normally increases dramatically
during differentiation) and cell cycle transition, and decreased myotube formation and myosin heavy
chain expression [130]. A similar inhibitory effect of AICAR on primary bovine myoblasts was also
observed [132]. Furthermore, transfection of C2C12 myoblasts with CamKKJ, an established AMPK
activator, resulted in AMPK activation in myoblasts, cell cycle arrest and impaired proliferation as
well as impaired subsequent differentiation, and this effect on proliferation and differentiation was
AMPK-dependent since it was blocked by dominant-negative AMPK expression [133]. Together, these
in vitro findings suggest that hyperactivation of AMPK in myoblasts blocks muscle proliferation
and differentiation.

5.3. Effect of AMPK on Muscle Regeneration In Vivo

Although hyperactivation of AMPK in culture impairs both proliferation and differentiation of
myoblasts, the lack of AMPK in SCs in vivo blocks normal muscle regeneration after injury. AMPK«1
is the predominant catalytic isoform in quiescent, activated and differentiating satellite cells [134-136].
Regeneration of damaged muscle is impaired (vs. WT) in both constitutive AMPK«1-KO mice,
as well as in mice with AMPKax1-KO induced just before injury [137], and this is associated with
decreased satellite cell number and Pax7, myogenic factor 5 (Myf5), and myogenin expression in
basal muscles. Furthermore, AMPK«1-KO satellite cells have diminished myogenic capacity when
transplanted into WT muscles, showing that the defect in regeneration is mediated by the lack of
AMPK«l1 in the satellite cells themselves, rather than in other cells in the KO animals (such as
fibroblasts, macrophages, etc.) [137].

A similar impairment of regeneration is demonstrated by satellite cell-specific AMPKx1-KO.
Fu et al. reported that satellite cells lacking AMPK«1 activate and proliferate more slowly both in
culture and in single fiber preparations, and result in a subsequent impairment of muscle regeneration
after cardiotoxin injury [136]. SCs, with their scant mitochondria, depend heavily on glycolytic
metabolism and, according to the findings of these authors, the lack of AMPK impairs SC activation
and proliferation by decreasing Warburg-like glycolysis [136].

Theret et al. also reported that satellite cell-specific AMPKx1-KO impairs muscle regeneration [135].
They showed that when SCs from AMPKal knockout mice (but not AMPKa2 knockouts) were
collected and differentiated, the lack of AMPK«l1 resulted in increased self-renewal instead of
differentiation [135]. Similarly, deletion of AMPKa&1 in MuSCs in vivo resulted in decreased size
of the regenerating fibers along with decreased differentiation and fusion, but increased proliferation
of MuSCs. However, in contrast to the report of Fu et al., the impaired regeneration was attributed by
these authors to increased lactate dehydrogenase activity and enhanced Warburg-like glycolysis in the
AMPKo1-KO SCs. The reason for this discrepancy is not clear, but could be due to different transgenic
constructs. Regardless, both studies demonstrate the importance of SC AMPK«1 in allowing for proper
regeneration through metabolic regulation. Together with the culture data, the available evidence
indicates that AMPK activity must be kept within relatively tight bounds (not too high or too low) for
optimal muscle regeneration.
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5.4. LKB1’s Role in Skeletal Muscle Regeneration

The content of the upstream AMPK kinase, LKB1, increases during myoblast differentiation [138].
Overexpression of LKB1 in C2C12 myoblasts enhances differentiation, while RNAi-mediated
knockdown of LKB1 impairs differentiation [138]. While some of this effect is likely due to the
action of LKB1 on other targets within the AMPK family, AMPK phosphorylation is also increased
substantially during muscle differentiation [138].

The lack of LKB1 in SCs promotes proliferation and self-renewal of the satellite cell pool,
but impairs myoblast differentiation [139,140]. The effect on self-renewal is due in part to the activation
of the Notch signaling pathway in LKB1-deficient cells, leading to overexpression of Pax7 that appears
to be dependent on the decreased AMPK activation in these cells [139]. Other findings indicate that
AMPKu«l also regulates self-renewal in a LKB1-independent manner [135]. Furthermore, LKB1’s role
in SC differentiation is at least partly independent of AMPK through regulation of glycogen synthase
kinase (GSK3)/Wnt signaling [140].

6. Conclusions and Future Perspectives

AMPK's role as a signaling nexus for cellular processes that control energy balance has been well
established over recent decades. While it certainly is not the only player in the regulation of skeletal
muscle development, size, and/or growth, it, and especially the AMPKa1 subunit, has emerged as a
key factor that limits muscle size and capacity for hypertrophy. AMPKo2, on the other hand, may play
a more substantial role in promoting muscle atrophy than AMPK«1 through its actions on autophagy
and protein degradation (summarized in Figure 1). AMPK also limits myogenesis and regeneration
after injury, although the loss of AMPKa1 also blocks these processes, showing that some (but not too
much) AMPK activity is required for proper regenerative functioning. While many questions regarding
AMPK’s role in muscle growth and regeneration have been answered, others still remain unanswered.
Does AMPK«1-specific activity after endurance exercise interfere with concomitant resistance-training
adaptations? What cellular mediators control AMPK’s effects on muscle growth and development?
How does AMPK activity in neighboring accessory cells support or impair satellite cell function in
muscle regeneration? Can pharmacological AMPK activation or inhibition be harnessed to improve
hypertrophic and regenerative responses, especially in populations where these are impaired (aging,
obesity, diabetes, myopathies, etc.)? What role do LKB1 and other AMPK family members play in
these processes? Continuing work in this area will surely shed additional light on these and other
important questions.
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Energy Stress LKB1
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Disuse Atrophy? Prolonged
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Training

Hypertrophic Loading

T mTOR
T Foxo3a | mTOR T sek/4E-BP1
T Atrogin-1/Murf1/ubiquitin 1 S6k/4E-BP1 1 Protein synthesis

T Autophagy { Protein synthesis
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Figure 1. Proposed regulation of skeletal muscle size by 5-adenosine monophosphate-activated

protein kinase (AMPK). Energy stress (decreased ATP/AMP ratio; as in moderately intensive exercise)
predominantly activates AMPK«2 via liver kinase B1 (LKB1), while AMPK«1 is only activated by
highly-intense or prolonged exercise. Basal AMPK«1 content and activity is also increased by long-term
endurance training, perhaps via Calcium/calmodulin-dependent protein kinase (CamKK) action,
or other AMPK kinases. AMPK«2 stimulates catabolic processes by increasing Foxo3a, Atrogin-1
and MuRF-1 expression/activity and increasing autophagy, leading, under certain circumstance,
to muscle atrophy, but has little effect on protein anabolism. AMPKal impairs mTOR signaling,
slows protein synthesis, and blocks hypertrophy. Hypertrophic loading (i.e., resistance exercise)
stimulates mechanistic target of rapamycin (mTOR) signaling, protein synthesis, and hypertrophy,
but also activates AMPKa1 independent of LKB1 (perhaps via CamKK or other means), limiting the
hypertrophic growth. 1: increase expression or activity; |: decreased expression or activity.
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4E-BP1 eukaryotic initiation factor 4E binding protein 1
ACC acetyl-CoA carboxylase

AICAR 5-amino-4-imidazolecarboxamide ribonucleoside
AMPK AMP-activated protein kinase

CamKK calcium/calmodulin-dependent protein kinase
CBS cystathionine 3-synthase

dKO double knockout

DN dominant negative

EDL extensor digitorum longus

eEF2 eukaryotic elongation factor

eEF2K eEF2 kinase

FAP fibroadipogenic progenitor

FoxO forkhead box

GSK3 glycogen synthase kinase 3

HU hindlimb unloading

HSA human skeletal muscle actin

KO knockout

LC3 microtubule-associated protein 1A /1B-light chain 3
LKB1 liver kinase B1

MAPK mitogen activated protein kinase

MCK muscle creatine kinase
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mLKB1-KO muscle-specific LKB1 knockout

mTORC1 mechanistic target of rapamycin, complex 1

MuRE-1 muscle ring finger-1

Myf5 myogenic factor 5

NF-«B nuclear factor kappa B

SC satellite cell

SIRT-1 sirtuin 1

skmLKB1-KO  skeletal muscle-specific LKB1 knockout

SNARK sucrose non-fermenting 1 AMPK related kinase

SOL soleus

TA tibialis anterior

TAK1 transforming growth factor 3-activated protein kinase
TBC1D7 TBC1 domain family member 7

TGFp transforming growth factor 3

TSC2 tuberous sclerosis complex 2

ULK1 uncoordinated 51-like kinase 1

Wnt wingless/integrated

WT wild-type
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