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Asymptotic variability of (multilevel)
multirater kappa coefficients

Sophie Vanbelle

Abstract

Agreement studies are of paramount importance in various scientific domains. When several observers classify objects

on categorical scales, agreement can be quantified through multirater kappa coefficients. In most statistical packages, the

standard error of these coefficients is only available under the null hypothesis that the coefficient is equal to zero,

preventing the construction of confidence intervals in the general case. The aim of this paper is triple. First, simple

analytic formulae for the standard error of multirater kappa coefficients will be given in the general case. Second, these

formulae will be extended to the case of multilevel data structures. The formulae are based on simple matrix algebra and

are implemented in the R package ‘‘multiagree’’. Third, guidelines on the choice between the different mulitrater kappa

coefficients will be provided.
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1 Introduction

Reliability and agreement studies are of paramount importance in medical and behavioral sciences. They provide
information about the amount of error inherent to any diagnosis, score or measurement. Using unreliable
measurement instruments and procedures can lead to incorrect conclusions from scientific studies and
unreproducible research while disagreement between physicians can lead, in clinical decision making, to
different treatments for the patient. Reliability is classically defined as the ratio between the true score variance
and the total variance and is quantified through different versions of the intraclass correlation coefficient (ICC),
depending on the study design.1 When several observers rate subjects, ICCs for consistency are obtained if the
systematic shifts between the observers are ignored while ICCs for agreement are obtained if they are taken into
account. In parallel to the ICCs, scaled agreement coefficients2–4 were developed outside the classical test theory
and were found to be closely related to ICCs for agreement.

While it is easy to define the agreement between two observers on a categorical scale for a given object (they
agree or they don’t agree), this is not the case when agreement is searched between several observers (R> 2). In this
latter case, the agreement can be defined by an arbitrary choice along a continuum ranging from agreement
between a pair of observers to agreement among all the R observers, i.e. a concordant classification between g
observers (g ¼ 2, . . .,R). Conger5 formalised this framework by defining the g-wise agreement coefficients,
including the less restrictive (pairwise) and the most restrictive (R-wise) definition of agreement. In practice, g
is often equal to 2 or to the majority of the observers (g4R=2). Mielke and Berry6 prefer the R-wise definition to
take all interactions between the R observers into account. Despite this appealing property, attention is restricted
to pairwise agreement coefficients (g¼ 2) in this paper because of their practical interpretation.

The two pairwise agreement coefficients considered in this paper pertain to the kappa coefficient family and
were shown to be asymptotically equivalent to ICCs for agreement when the scale is binary. The first agreement
coefficient is commonly named Fleiss kappa. It was developed by Fleiss7 and was shown to be asymptotically
equivalent to the ICC for agreement based on a one-way ANOVA design.8 In a one-way setting, each object is
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rated by a different set of observers, randomly selected in a population. Therefore, the variation due to the
observers cannot be separated from the error variation and only ICC for agreement can be determined.1 The
second coefficient is the pairwise kappa coefficient developed by Conger5 and equivalently by Davies and Fleiss,9

Schouten10 and O’Connell and Dobson.11 This second coefficient will be referred to as ‘Conger kappa’ to
differentiate it from ‘Fleiss kappa’. When all objects are classified on a binary scale by the same set of
observers randomly selected in a population, Conger kappa is asymptotically equivalent to the ICC for
agreement under a two-way ANOVA setting including the observers as systematic source of disagreement.9,12

Fleiss kappa coefficient is popular, as assessed by more than 4000 citations of his original paper in Google
scholar as compared to the 350 citations of Conger’s paper and 300 citations of Davies and Fleiss’ paper. The three
following issues were identified with the use of multirater kappa coefficients in the literature. First, Fleiss kappa is
used independently of the design of the study. The misuse of Fleiss kappa in the two-way ANOVA setting is likely
to result in an underestimation of the agreement level,13 as Fleiss kappa coefficient gives on average smaller values
than Conger kappa. In the same way, the misuse of Conger kappa in one-way ANOVA settings is likely to
overestimate the agreement level. It is therefore important to use the appropriate multirater kappa coefficient,
based on the study design and the corresponding ANOVA model.

Second, main statistical packages (e.g. R package ‘irr’, STATA, SAS macro MAGREE, SPSS extension
STATS_FLEISS_KAPPA) only provide the standard error of Fleiss kappa under the hypothesis that it equals
zero, despite the existence of a formula for the general case derived by Schouten.10 Worse, with the exception of the
R package ‘magree’, Conger kappa coefficient, when available (e.g. R package ‘irr’, STATA), is reported without
standard error, although an asymptotic formula based on the delta method was also provided by Schouten14 and
O’Connell and Dobson.11

Finally, there is a need to define multirater kappa coefficients and provide statistical inference in the presence of
multilevel data. Multilevel data are commonly encountered in medical and behavioural sciences, where measures
are often obtained on persons nested in organisations (e.g. patients in health care centers), on different parts of the
body or by repeated measurements over time. For example, in the study motivating this paper, seven groups of
four medical observers with different experience levels were asked to assess the presence of crackles and wheezes
(yes/no) on the lung sounds of 20 subjects. The lung sounds were recorded with a stethoscope at three locations on
each side of the thorax, leading to six observations per subject. The aim of the study was to evaluate the level of
agreement within each group of observers. Specific statistical techniques need to be used to account for the
dependency between the objects of the same cluster. It was shown in various contexts that ignoring the
hierarchical structure of the data can lead to incorrect conclusions (e.g. Hox15). Therefore, Barlow et al.16 and
Oden,17 among others, proposed stratified agreement coefficients. They use a weighted average of the agreement
coefficients obtained on each cluster. These coefficients, however, are not asymptotically equivalent to ICCs and
possess a less straightforward interpretation than the coefficients considered here.

The aim of this paper is therefore threefold. First, the formula of the standard error derived with the delta
method by Schouten10,14 and O’Connell and Dobson11 for Fleiss and Conger kappa will be presented in a unified
framework using simple notations. Second, these formulas will be extended to the case of multilevel data
structures, based on recent work.18–20 Third, the paper will emphasise the appropriate use and interpretation of
Fleiss and Conger kappa depending on the study design. The standard error formulae derived by the delta method
are based on simple algebra, easy to program and implemented in the R statistical package ‘multiagree’ available
on Github. As an alternative, the clustered bootstrap method will also be considered and the statistical
performances of the two methods will be compared using simulations.

In Section 2, the two multirater kappa coefficients, Fleiss and Conger kappa coefficients are reviewed and the
general formula derived by the delta method for their standard error is given. These definitions are generalised to
multilevel data in Section 3. The standard error of the multilevel multirater kappa coefficients are derived using the
delta method and the clustered bootstrap method in Section 4. Then, the statistical properties of the delta and the
bootstrap methods are studied using simulation in Section 5. The methods are illustrated on psychological and
medical data in Section 6. Finally, the results are discussed in Section 7.

2 Definition of the classical pairwise agreement coefficients

Suppose that a sample ofN objects is classified by several observers on a K-categorical scale. Two situations can be
distinguished and will lead to different agreement coefficients: (1) each object i (i ¼ 1, . . .,N) is rated by a different
random sample of observers of size Ri and (2) the same R observers rate all objects. Fleiss kappa coefficient is an
appropriate agreement measure in the first case and Conger kappa coefficient in the second case.
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Let the random variable Yij ðrÞ be equal to 1 when observer r classifies object i in category j (
PK

j¼1 Yij ðrÞ ¼ 1) and
yij ðrÞ denote the realisation of the random variable Yij ðrÞ (i ¼ 1, . . .,N; j ¼ 1, . . .,K; r ¼ 1, . . .,Ri). Finally, let
nij ¼

PRi

r¼1 yij ðrÞ be the number of observers classifying object i in category j. When each object i (i ¼ 1, . . .,N) is
rated by a different random sample of observers, only the nij are available. The two pairwise kappa coefficients,
Fleiss and Conger kappas, denoted, respectively, by �1 and �2, are estimated by

�̂l ¼
Po � Pel

1� Pel
ð1Þ

The proportion Po is the observed agreement. It is defined as the mean proportion of agreement between all
possible pairs of observers. In the case of Fleiss kappa coefficient, we have

Po ¼
1

N

XN
i¼1

1

RiðRi � 1Þ

XK
j¼1

nijðnij � 1Þ

( )
¼

1

N

XN
i¼1

Po,i ð2Þ

For Conger kappa, the same expression is obtained, namely

Po ¼
1

NRðR� 1Þ

XN
i¼1

XK
j¼1

XR
r¼1

X
r06¼r

yij,ryij,r0

¼
1

NRðR� 1Þ

XN
i¼1

XK
j¼1

nijðnij � 1Þ

( )
¼

1

N

XN
i¼1

Po,i

ð3Þ

The proportion Pel (l¼ 1, 2) is the agreement expected under the assumption of statistical independence between
any two observers. Its expression differs for the two multirater kappa coefficients �̂1 and �̂2, as explained in the
following section.

2.1 Fleiss kappa coefficient

The expected agreement was defined by Fleiss7 under a one-way ANOVA setting, i.e. when the Ri observers are
not the same for all objects, as

Pe1 ¼
XK
j¼1

p2j ¼
1

N

XN
i¼1

1

Ri

XK
j¼1

nijpj ¼
1

N

XN
i¼1

Pe1,i ð4Þ

where pj ¼
PN

i¼1 nij=ðNRiÞ is the overall proportion of objects classified in category j (j ¼ 1, . . .,K). When the scale
is binary, �̂1 is asymptotically (N � 20) equivalent to the ICC for agreement corresponding to a one-way random
effect ANOVA model including the observers as source of variation in the denominator.8 The difference with the
ICC lies in the definition of the between objects mean sum of squares (i.e. BMS) which is divided by the number of
objects N instead of N� 1. The agreement coefficient �̂1 can be expressed in terms of variance components21 and
reduces to the intraclass kappa coefficient22 when Ri ¼ R ¼ 2.

The asymptotic sampling variance of �̂1 was derived by Schouten10 and can be written as

varð�̂1Þ ¼

PN
i¼1 ð1� Pe1ÞPo,i � 2ð1� PoÞPe1,i � ðPoPe1 � 2Pe1 þ PoÞ
� �2

N2ð1� Pe1Þ
4

ð5Þ

where Po,i is the observed agreement corresponding to object i defined in equation (2). The quantity Pe1,i is the
expected agreement for object i defined in equation (4).

Under the null hypothesis that �1 ¼ 0 and an equal number of observers per object (Ri¼R), the formula
reduces to the formula derived by Fleiss23 and available in statistical software,

varð�̂1Þ ¼
2 1� Pe1ð Þ

2
þPe1 � 2

PK
j¼1 p

3
j

h i
ð1� Pe1Þ

2NRðR� 1Þ
ð6Þ
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2.2 Conger kappa coefficient

The expected agreement is defined as the mean proportion of expected agreement between all RðR� 1Þ pairs of
observers9 and can be expressed as

Pe2 ¼
1

RðR� 1Þ

XK
j¼1

XR
r¼1

X
r06¼r

pj ðrÞpj ðr0Þ ¼
XK
j¼1

p2j �
1

RðR� 1Þ

XK
j¼1

XR
r¼1

ð pj ðrÞ � pj Þ
2

ð7Þ

where pj ðrÞ is the proportion of objects classified in category j by observer r (j ¼ 1, . . .,K; r ¼ 1, . . .,R).
For binary scales, Davies and Fleiss9 have shown that �̂2 is asymptotically (N> 15) equivalent to the ICC for

agreement corresponding to a two-way random effect ANOVA model8 including the observers as source of
variation. Conger kappa can also be expressed in terms of variance components, the difference with the ICC
lies in the denominator. The term RðJMS� EMSÞ=N in the ICC is replaced by RðJMSÞ=ðN� 1Þ, where JMS
denotes the between observers mean sum of squares and EMS the mean residual sum of squares. The agreement
coefficient �̂2 reduces to Cohen’s kappa coefficient when R¼ 2. Davies and Fleiss9 gave the formula of the large
sampling variance in the binary case under the null hypothesis that the agreement coefficient is equal to zero and
proposed a FORTRAN program for scales with more than two categories. However, Schouten14 and O’Connell
and Dobson11 derived a formula in the general case for nominal scales using the delta method, available in the R
package ‘magree’

varð�̂2Þ ¼

PN
i¼1½ð1� Pe2ÞPo,i � 2ð1� PoÞPe2,i�

2=N� ðPoPe2 � 2Pe2 þ PoÞ
2

Nð1� Pe2Þ
4

ð8Þ

where

Pe2,i ¼
1

RðR� 1Þ

XR
r¼1

X
r06¼r

XK
j¼1

pj ðrÞyij ðr0Þ

3 Definition of multilevel multirater pairwise kappa coefficients

Multilevel multirater pairwise kappa coefficients will be defined similarly to the case of two observers.18–20 Suppose
that the population I of objects possesses a 2-level hierarchical structure in the sense that there are C clusters with
nc objects (

PC
c¼1 nc ¼ N). If there are Ri observers rating object i, Pi ¼ RiðRi � 1Þ pairs of observers can be formed.

These pairs will be denoted by the superscript p ¼ ðr1, r2Þ where r1 and r2 correspond to the two observers of pair p.
Let Yij ðrÞ,c equal 1 if object i from cluster c is classified in category j by observer r and yij ðrÞ,c be its realisation. Note
that under a one-way design, only nij,c ¼

PRi

r¼1 yij ðrÞ,c is in general available.
In order to be able to define an overall kappa coefficient, two assumptions are made. First, it is assumed that the

objects are homogeneous in each cluster, in the sense that the probability EðYij ðr1Þ,cYikðr2Þ,cÞ ¼ �
ð pÞ
jk,c of being

classified in category j by observer r1 and k by observer r2 of pair p is the same for all objects in cluster c.
This implies that the probability to be classified in category j by observer r is the same for all objects in cluster
c, namely �j ðrÞ,c. Second, it is assumed that there is no sub-population of objects, i.e. Eð�ð pÞjk,cÞ ¼ �

ð pÞ
jk and therefore

also Eð�j ðrÞ,cÞ ¼ �j ðrÞ.
Let �c ¼ nc=N denote the relative sample size of the cth cluster and p

ð pÞ
jk,c the realisation of �ð pÞjk,c. The multilevel

observed agreement is defined as the average observed proportion of agreement over all possible pairs of
observers. In case of a one-way analysis of variance, this means

Po ¼
XC
c¼1

�cPo,c ¼
XC
c¼1

�c
Xnc
i¼1

1

ncRiðRi � 1Þ

XK
j¼1

nij,cðnij,c � 1Þ

The expected agreement for multilevel data is then defined by

Pe1 ¼
XK
j¼1

p2j

with pj ¼
PC

c¼1 �c
Pnc

i¼1
nij,c
ncRi
¼
PC

c¼1 �cpj,c.
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In the case of a two-way ANOVA setting, if p
ð pÞ
jk ¼

PC
c¼1 �cp

ð pÞ
jk,c, the observed agreement is

Po ¼
1

P

XP
p¼1

XK
j¼1

p
ð pÞ
jj ¼

1

P

XP
p¼1

XK
j¼1

XC
c¼1

�cp
ð pÞ
jj,c ¼

1

P

XP
p¼1

XC
c¼1

�cP
ð pÞ
o,c

In the same way, if the proportion of objects classified in category j is denoted by
pj ðr1Þ ¼

PC
c¼1 �cp

ð pÞ
j ðr1Þ,c
¼
PC

c¼1 �c
PK

k¼1 p
ð pÞ
jk,c for observer r1 of pair p and pjðr2Þ ¼

PC
c¼1 �c

PK
k¼1 p

ð pÞ
kj,c for observer r2,

the expected agreement for multilevel data is defined by

Pe2 ¼
1

RðR� 1Þ

XR
r1¼1

X
r1 6¼r2

XK
j¼1

pj ðr1Þpj ðr2Þ

The multilevel counterpart of Fleiss kappa coefficient (�̂1) and Conger kappa coefficient (�̂2) are obtained by
using the multilevel expression of Po and Pel in equation (1). They reduce to Fleiss and Conger kappa coefficients
when the hierarchical level of the data is ignored.

4 Sampling variability

4.1 Delta method

We will consider the vector bn1
bn1 ¼ Po

p

� �
¼
XC
c¼1

�c
Po,c

pc

� �

for the one-way ANOVA setting, where p ¼ ðp1; � � � ; pKÞ
T and pc ¼ ðp1;c; � � � ; pK;cÞ

T. For the two-way ANOVA
setting, let pðrÞ,c be the vector with the marginal classification proportions relative to cluster c and observer r, that is

pðrÞ,c ¼ ð p1ðrÞ,c, . . ., pKðrÞ,cÞ
T: The observed agreement between observers r1 and r2 of pair p for cluster c is given by

Pð pÞo,c ¼
PK

j¼1 p
ð pÞ
jj,c .

We will consider the vector

bn2 ¼
Pð1Þo
� � �

PðPÞo

pð1Þ
� � �

pðRÞ

0BBBBBB@

1CCCCCCA ¼
XC
c¼1

�c

Pð1Þo,c
� � �

PðPÞo,c

pð1Þ,c
� � �

pðRÞ,c

0BBBBBB@

1CCCCCCA
Similarly to Yang and Zhou18,19 and to Vanbelle,20 it can be shown that asymptotically, under mild regularity

conditions, bn1 and bn2 are asymptotically normally distributed with variance–covariance matrix varðbnjÞ, j¼ 1, 2. The

elements of varðbnjÞ are estimated in Appendix 1, following the technique of Obuchowski.24

The deltamethodwill be applied on successive functions of the vectorbnj to lead to the standard error of themultilevel
Fleiss and Conger kappa coefficients. The aim is to derive the asymptotic variance–covariance matrix of the vector
ðPo,PejÞ

T. Then, a last application of the delta method will lead to the asymptotic variance–covariance of �̂1 and �̂2.

4.1.1 Multilevel Fleiss kappa

When the objects are not all classified by the same set of observers, the vector ðPo,Pe1Þ
T is a function of the vectorbn1 (i.e. bh ¼ fðn̂1Þ) fulfilling the conditions of the multivariate delta method. The asymptotic variance–covariance

matrix ofbh is, by application of the delta method, given by

varðbhÞ ¼ CFvarðbn1ÞFT

where F is the Jacobian matrix corresponding to f ð:Þ with respect to bn1, that is, F is a 2� ðKþ 1Þ matrix with null
elements except elements (1, 1) equal to 1 and element ð2, 2 : ðKþ 1ÞÞ equal to 2pT.
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4.1.2 Multilevel Conger kappa

When the objects are all classified by the same set of observers, the expected agreement is the average of the
expected agreement over all pairs of observers. In matrix notation, the agreement expected under the independence

assumption of the two observers of pair p is given by P
ð pÞ
e1 ¼ pTðr1Þpðr2Þ. The vector

b) ¼ ðPð1Þo , . . .,PðPÞo ,P
ð1Þ
e2 , . . .,P

ðPÞ
e2 Þ

T

is a function of the vector bn2 (i.e., b) ¼ mðbn2Þ) fulfilling the conditions of the multivariate delta method. The

asymptotic variance–covariance matrix of Pð1Þo , . . .,PðPÞo ,P
ð1Þ
e2 , . . .,P

ðPÞ
e2

� �T
is, by application of the delta method,

given by

varðb)Þ ¼ CMvarðbn2ÞMT

where M is the Jacobian matrix corresponding to mð:Þ with respect to bn2, that is
M ¼

IP�P 0P�RK

0P�P M1

� �

where M1 is a P�RK matrix with null elements except elements ð p, r1 : ðr1 þ KÞÞ equal to pðr2Þ and elements
ð p, r2 : ðr2 þ KÞÞ equal to pTðr1Þ, (r1, r2 ¼ 1, . . .,RÞ.

In the same way, the overall observed agreement and expected agreement Po and Pe,2 are the average of the
observed and expected agreement for all pairs of observers given in b), fulfilling the conditions of the multivariate
delta method, ðPo,Pe,2Þ

T
¼ qðb)Þ. The asymptotic variance–covariance matrix of Po,Pe2ð Þ

T is, by application of the
delta method, given by

varððPo,Pe2Þ
T
Þ ¼ Qvarðb)ÞQT

where the matrix Q is the Jacobian corresponding to the function qð:Þ, i.e. a 2� 2P matrix with null elements
except elements ð1, iÞ and ð2,Pþ iÞ equal to 1=P ði ¼ 1, . . .,PÞ.

4.1.3 Multilevel Fleiss and Conger kappa

Finally, the multilevel multirater kappa coefficient �̂1 and �̂2 are function of the vectors ðPo,Pe1Þ
T and ðPo,Pe2Þ

T,
respectively, fulfilling the conditions of the multivariate delta method. �̂l ¼ hððPo,PelÞ

T
Þ, l¼ 1, 2. The variance–

covariance matrix varð�̂l Þ is, by application of the delta method, given by

varð�̂l Þ ¼
1

C
HvarððPo,PelÞ

T
ÞHT ð9Þ

with

H ¼ 1
1�Pel

Po�1

ð1�PelÞ
2

� �
When there is only one unit per cluster (nc ¼ 1 8c), the variance given by equation (9) for the multilevel

multirater Fleiss and Conger kappa coefficients multiplied by a correction factor, namely C=ðC� 1Þ, reduces to
equation (5) for multilevel Fleiss kappa coefficient and equation (8) for multilevel Conger kappa coefficient,
respectively. When there are only two observers, the formula reduces to the formula derived by Yang and Zhou.18

4.2 The clustered bootstrap method

The clustered bootstrap method was applied by Kang et al.25 to derive the standard error of the Cohen’s kappa
coefficient in the presence of multilevel data and by Vanbelle20 to derive the variance–covariance matrix when
comparing several kappa coefficients. The clustered bootstrap consists of three steps:

(1) Draw a random sample with replacement of size C from the cluster indexes.
(2) For each cluster, take all observations belonging to the cluster. If the cluster sizes are different, the sample size

of the bootstrap sample could be different from the original sample size N.
(3) Repeat steps 1 and 2 to generate a total of B independent bootstrap samples.
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Depending on the study design, the multilevel Fleiss or Conger kappa coefficient is determined for each
bootstrap sample b ¼ 1, . . .,B : �̂bl (l¼ 1, 2). The bootstrap estimate of the agreement coefficient �l is then
defined by25

�̂l,B ¼
1

B

XB
b¼1

�̂bl

 !
ð10Þ

with variance

varð�̂l,BÞ ¼

PB
b¼1 ð�̂

b
l � �̂l,BÞ

2

B� 1

Alternatively, percentiles can be considered to construct confidence intervals.

5 Simulations

To study the behavior of the type I error rate (�), multilevel-dependent binary variables with fixed marginal
distribution and dependency between pairs of variables were simulated following the algorithm of Emrich and
Piedmonte.26 Data were simulated under a two-way ANOVA setting, leading Conger kappa coefficient as the
appropriate agreement measure. That is, we supposed that R observers each classified C clusters with each nc¼ n
subjects. For each cluster, a 1� ncR vector of binary correlated random variables was generated using the R
package ‘mvtbinaryEP’ version 1.0.1. Note that the behavior of Fleiss and Conger kappa coefficients is very
similar since they only differ in the definition of the expected agreement. The two measures coincide if the
marginal probability distributions of the observers are exactly the same.

The assessment on a binary scale of C¼ 25, 50 and 100 clusters with each nc ¼ n ¼ 1, 2, 5 or 10 objects by R¼ 2,
5 or 10 observers was simulated. For each cluster, the association structure between the assessments made by the
observers can be characterised by two n� n matrices. The first matrix represents the intra-cluster association
structure. The diagonal elements are equal to 1 (same observer, same object) and the off-diagonal elements
(same observer, different objects), representing the association strength between members of a same cluster,
were fixed to �intra ¼ 0, 0.1, 0.3, 0.5 and 0.7. The second matrix gives the inter-observer agreement structure.
The diagonal elements, representing the inter-observer agreement levels, were fixed to �2 ¼ 0, 0.2, 0.4, 0.6 and 0.8.
The off-diagonal elements, representing the association between the classification of two different objects by two
different observers, were randomly chosen in the possible values allowed by the algorithm, given the Fréchet
bounds. This represents a total of 180 schemes for each number of clusters C.

To allow a wide range of possible agreement values, all observers were assumed to have a uniform marginal
probability distribution. This implies that �1 and �2 reduce to the correlation coefficient for the binary case,
namely the � coefficient.2 For each simulation scheme, the mean squared error, the mean standard error, and the
coverage probability, defined as the number of times the 95% confidence interval covers the theoretical agreement
value, were recorded. For the clustered bootstrap method, the coverage was determined for the 95% confidence
interval based on mean and standard error and based on percentiles. The clustered bootstrap method was based
on B¼ 5000 bootstrap samples. A total of 1000 simulations were performed for each parameter configuration.
Therefore, the 95% confidence interval for the nominal coverage level is [0.936; 0.963].

5.1 Simulation results for nc ¼ 1 (no multilevel data)

The coverage levels obtained for Conger kappa coefficients when there is no multilevel structure are presented in
Figure 1 for observers with uniform marginal probability distribution using the delta and the percentile-based
clustered bootstrap method. The complete results are given as supplemental material.

The coverage levels obtained with the delta and the percentile-bootstrap methods are very similar, except for
high agreement values where the percentile-bootstrap method performs better. The percentile-bootstrap
confidence intervals (CIs) are left-skewed in that case and provide better coverage levels. An important finding
is that the coverage is too low when the sample size is small (C¼ 25) and the kappa coefficient is small (�5 0:2).
This situation worsens when the number of observers increases.

3018 Statistical Methods in Medical Research 28(10–11)



5.2 Simulations results for nc ¼ 2, 5, 10 (multilevel data)

The results obtained with the delta and the clustered bootstrap methods were very similar and stable across
the different number of objects per cluster. Therefore, only the results obtained with the delta method for five
objects per cluster (nc¼ 5) are presented in Figure 2. The complete results can be found in the supplemental
material.

As seen in Figure 2, the coverage level becomes closer to the nominal level when the value of Conger coefficient
increases, when the intra-cluster association level decreases and when the number of observers decreases.
The coverage level was generally within the 95% confidence interval for kappa values above 0.4 and a number
of clusters larger than 50. Here too, the percentile cluster bootstrap method provides better coverage levels for high
agreement values when the number of clusters is small (see Supplemental material, C¼ 25).

6 Examples

6.1 Psychiatric diagnosis

This section focuses on the data analysed in the original paper of Fleiss.7 These data does not present a multilevel
structure. A total of six psychiatrists were unsystematically selected from a pool of 43 psychiatrists to give a
psychiatric diagnosis to a subject. The set of observers can therefore differ from subject to subject, leading to Fleiss
kappa coefficient as agreement measure. A total of 30 subjects were classified as suffering mainly of (1) depression,
(2) personality disorder, (3) schizophrenia, (4) neurosis or (5) other psychiatric disorder. The probability to be
classified in these categories was respectively p1 ¼ 0:144, p2 ¼ 0:144, p3 ¼ 0:167, p4 ¼ 0:306 and p5 ¼ 0:239 (see
Table 1).

Fleiss’ conclusion was that agreement was better than chance for all categories. While 0 is indeed not included in
the confidence interval for each of the five categories, the lower confidence bound is close to 0 for categories 1 and
2 (see Table 1). The observed agreement Po varies between 0.78 and 0.87, meaning that when isolating one
category, pairs of observers agree, on average, on 78–87% of the patients. However, when considering the five
diagnostic categories together, this percentage drops to 56%. This suggests that agreement, when isolating

Figure 1. Simulations. Coverage for Conger’s kappa coefficient against the number of clusters obtained with the delta method

(black) and the percentile-based bootstrap method (gray) in the presence of 2 (dotted), 5 (dashed) and 10 (plain) observers with

uniform marginal probability distribution. The number of objects per cluster is equal to 1.
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one category, does not mainly occur on the isolated category but rather in the category mixing the other
four diagnostic categories. If we focus on the interpretation of the confidence interval for Fleiss kappa
coefficient (0.33–0.53), it can be concluded that we are 95% confident that the actual proportion of
disagreement is between (1–0.53)100¼ 47% and (1–0.33)100¼ 67% lower than the proportion of disagreement

Figure 2. Simulations. Coverage for Conger’s kappa coefficient according to the delta method in the presence of 2 (dotted), 5

(dashed) and 10 (plain) observers with uniform marginal probability distribution, 25 (up), 50 (middle) and 100 (bottom) clusters and

five objects per cluster.
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expected under the independence assumption of the observers. Both observed agreement and Fleiss kappa
coefficients therefore indicate a non-negligible variability in the psychiatric diagnostic within groups of observers.

6.2 Tromsø study (multilevel)

Lung auscultation is routinely used in daily clinical practice by health professionals. While new methodology of
chest imaging such as MRI, CT scans and portable ultrasound are now available, the stethoscope remains
advantageous when it comes to costs, availability, patient care and training of health professionals to use it.
Lung auscultation has proven to be helpful in the diagnosis of several lung and heart related conditions as a
part of routine physical examination. However, there is a lack of information about how the presence of wheezes
or crackles relates to common heart and lung diseases and the prognostic value these findings might have.

The Tromsø study is a population-based study designed to evaluate abnormal auscultation findings against
a wide range of clinical and epidemiological endpoints. Due to the subjective nature of evaluating sounds,

Figure 2. Continued.

Table 1. Fleiss example.

Delta method Bootstrap method

Category pj Po Pe �1 (SE) 95% CI �1 (SE) 95% CI

1 0.144 0.813 0.753 0.245 (0.109) 0.031 0.459 0.232 (0.108) 0.020 0.443

2 0.144 0.813 0.753 0.245 (0.115) 0.020 0.470 0.231 (0.098) 0.040 0.422

3 0.167 0.867 0.722 0.520 (0.100) 0.324 0.716 0.511 (0.078) 0.358 0.664

4 0.306 0.776 0.576 0.471 (0.084) 0.307 0.635 0.459 (0.076) 0.310 0.608

5 0.239 0.842 0.636 0.566 (0.115) 0.341 0.791 0.550 (0.128) 0.298 0.801

Overall 0.556 0.220 0.430 (0.054) 0.324 0.536 0.418 (0.055) 0.309 0.526

Note: Summary of the statistics to compute Fleiss kappa for each category separately and overall.
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the inter-observer agreement among medical professionals in classifying lung sounds was studied before the
implementation of the Tromsø study.27

Seven groups of four observers were asked to assess the presence of crackles and wheezes on the lung sounds of
20 subjects: general practitioners (GPs) from The Netherlands (NLD), Wales (WAL), Russia (RUS), and Norway
(NOR), pulmonologists working at the University Hospital of North Norway (PLN), sixth year medical students
(STU) at the Faculty of Health Sciences in Tromsø and an international group of experts (researchers) in the field
of lung sounds (EXP). Lung sounds were recorded at six different locations, three locations on each side of the
thorax (Anterior thorax (A), upper posterior thorax (U) and lower posterior thorax (L)), leading to a multilevel
data structure. A more detailed description of the study can be found in Aviles et al.27

In this section, we will focus on the detection of crackles. Since the same observers classified all the sounds
obtained at the six body places, the multilevel Conger kappa coefficient is adopted. There are two prerequisites to
the definition of agreement at the patient level: (1) the absence of patient sub-population in terms of crackles
detection and (2) the homogeneity of crackles detection within patients, that is the probability of detecting crackles
should be the same for the three thorax locations. Among the 20 subjects, 13 were recruited in a rehabilitation
center and 7 in the office environment of the researchers. Although differences in the probability to detect crackles
are expected between these two groups of subjects, Conger’s kappa coefficient will be computed overall due to the
limited sample size. The probability to detect crackles is given for the seven groups of observers and the three
thorax locations in Table 2.

Since the probability to detect crackles differs between the three locations, the average proportion of agreement
between pairs of observers is reported for each group of observers and each thorax location separately, on top of
the overall agreement (see Table 3).

When looking at the individual thorax locations, it can be seen in Table 3 that on average, pairs of general
practitioners (NOR, WAL, NLD) agree on the classification of more than 78% of the sounds, independently of the
thorax location except for Russian GPs (RUS) where pairs agree, on 59% to 72% of the sounds. This lower
agreement level might partially be explained by a confusion with the English nomenclature around the term
crackles (see Aviles et al.27 for more details). The experts agree on average on 78–91% of the sounds, the
pulmonologists on 73–80% and the students on 63–79%, depending on the location of the auscultation.

Table 3. Tromsø example.

U L A All

Group Po �2 (SE) Po �2 (SE) Po �2 (SE) Po �2 (SE)

EXP 0.88 0.65 (0.13) 0.78 0.52 (0.08) 0.91 0.04 (0.06) 0.86 0.56 (0.08)

NOR 0.92 0.75 (0.12) 0.78 0.55 (0.10) 0.85 0.10 (0.06) 0.85 0.58 (0.08)

RUS 0.72 0.25 (0.08) 0.64 0.26 (0.07) 0.59 0.06 (0.07) 0.65 0.20 (0.05)

WAL 0.86 0.48 (0.17) 0.88 0.71 (0.10) 0.86 0.01 (0.05) 0.87 0.53 (0.09)

NLD 0.85 0.54 (0.13) 0.86 0.61 (0.12) 0.85 0.07 (0.06) 0.86 0.49 (0.10)

PLN 0.80 0.50 (0.14) 0.76 0.49 (0.12) 0.73 0.05 (0.07) 0.76 0.40 (0.09)

STU 0.78 0.43 (0.15) 0.79 0.56 (0.11) 0.63 0.02 (0.05) 0.74 0.37 (0.08)

Note: Proportion of agreement (Po) and Conger’s kappa coefficient (standard error) for each group of observers reported overall (All) and at each

thorax location (anterior thorax (A), upper posterior thorax (U) and lower posterior thorax (L)).

Table 2. Tromsø example.

Body

location EXP NOR RUS WAL NLD PLN STU

U 0.13 0.11 0.23 0.083 0.12 0.22 0.22

L 0.29 0.38 0.37 0.19 0.16 0.34 0.36

A 0.016 0.048 0.3 0.029 0.046 0.12 0.22

P-value <0.0001 <0.0001 0.031 <0.0001 0.0015 <0.0001 0.0093

Note: Probability to detect crackles according to the location (anterior thorax (A), upper posterior thorax (U) and lower posterior thorax (L). The

probabilities are compared among locations using a multilevel probit regression.
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These agreement proportions translate to relatively low Conger kappa coefficients, especially in the anterior thorax
location. This can be explained by the low probabilities of detecting crackles (see Table 2) combined with the small
sample size. The misclassification of one sound in fact represents a disagreement on 5% of the sounds. The overall
and per location multirater agreement levels within groups of GPs were considered satisfactory by the researchers
for using lung auscultation in the Tromsø study.

7 Discussion

In this paper, the asymptotic formula of the standard error of Fleiss and Conger kappa coefficients using the delta
method was presented in a unified framework. The formula was extended to account for multilevel data structures.
The formula only involves simple matrix calculations and can be easily implemented in practice. A R package

‘multiagree’ was developed by the author and is available on Github. Code to reproduce the results is available
as Supporting Information on the journal’s web page.

The scope of this paper was limited to Fleiss and Conger kappa coefficients for two reasons. First,
they cover two study designs frequently encountered in practice. Second, both are asymptotically equivalent to
ICCs for agreement. Fleiss kappa coefficient was developed as an agreement measure under a one-way ANOVA
model, i.e. when the objects are rated by different sets of observers. On the other hand, Conger kappa was developed as
an agreement measure under a two-way ANOVA model, i.e. when all objects are rated by the same set of observers.
The choice between these two agreement coefficients should therefore be primarily based on the study design.

Two assumptions were made to ensure the existence of an overall multirater multilevel kappa coefficient, i.e. the
homogeneity of the members of a cluster and the existence of a common kappa coefficient across the clusters.
When there is evidence that the assumptions do not hold, as discussed by Yang and Zhou,18 a separate multirater
multilevel kappa coefficient should be computed for each sub-population identified. In the same way, if sub-groups
of observers are identified, it is better to compute agreement separately within the different groups.14

The multilevel delta method, although asymptotic, showed similar coverage levels than the clustered bootstrap
method. In the presence of more than two observers, good statistical performances of the delta method were
observed for moderate number of clusters (e.g. C¼ 50) and multilevel kappa coefficients higher than 0.4,
disregarding the cluster size. For two observers, good statistical properties were observed already for small
sample sizes (C¼ 25). When the sample size is small, confidence intervals based on the percentile clustered
bootstrap method provide better coverage levels for high kappa coefficients (� ¼ 0:8).

One extension of the methods presented in this paper is also implemented in the R package ‘multiagree’. The
results in this paper were combined with the results in Vanbelle20 to allow the comparison of several (multilevel)
multirater agreement coefficients. A further extension could be the inclusion of agreement weights when
computing multilevel multirater agreement coefficients.

To summarise, this paper provides two simple methods to compute the standard error of the multirater kappa
coefficients that perform well when the number of clusters is moderate (C¼ 50). Only the percentile clustered
bootstrap method provided satisfactory coverage levels when the number of clusters was small (C¼ 25) and the
agreement was high (� ¼ 0:8). The delta and the clustered bootstrap methods should therefore be used with
caution when the number of clusters is small.
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Appendix 1. Multilevel Fleiss kappa coefficient

Define the vector bn1 by

bn1 ¼ Po

p

� �
¼
XC
c¼1

�c
Po,c

pc

� �

Denote the vector containing the agreement observed in each cluster by Po ¼ ðPo,1, . . .,Po,CÞ
T and the vector

p� ¼ ðp1, . . ., pCÞ
T. Further let the vector with the weight relative to each cluster be denoted by m ¼ ð�1, . . ., �CÞ

T and

: ¼ I� m1TC�1
� 	

diagð�21, . . ., �2CÞ I� 1C�1m
T

� 	
:

Similarly to Yang and Zhou,18 it can be shown that under mild regularity conditions, the vector bn1 is
asymptotically normally distributed with variance–covariance matrix given by a four block matrix W

varðbn1Þ ¼ 1

C

WA WB

WT
B WD

� �

The elements of varðbn1Þ can be estimated following the techniques of Rao and Scott28 and Obuchowski.24 The
variance of the observed agreement is given by

ŴA ¼ C2

C�1Po:PT
o

The variance–covariance relative to the observed agreement and the marginal probability distribution of the
observers is given in the 1� K matrix WB by

bWB ¼
C2

C� 1
Po:pT

Finally, the variance–covariance relative to the marginal probability distribution of the observers is given in the
K�K matrix WD by bWD ¼

C2

C�1 p:pT

Multilevel Conger kappa coefficient

Denote the vector containing the agreement observed in each cluster by Pð pÞo ¼ ðP
ð pÞ
o,1 , . . .,P

ð pÞ
o,CÞ (p ¼ 1, . . .,P), the

vector with the weight relative to each cluster by m ¼ ð�1, . . ., �CÞ
T, the matrix with the C cluster-specific marginal

classification distributions by pr,� ¼ ðpðrÞ,1, . . ., pðrÞ,CÞK�C for observer r (r ¼ 1, . . .,R). Define the vector bn2 as

bn2 ¼
Pð1Þo

� � �

PðPÞo

pð1Þ

� � �

pðRÞ

0BBBBBBBBB@

1CCCCCCCCCA
¼
XC
c¼1

�c

Pð1Þo,c

� � �

PðPÞo,c

pð1Þ,c

� � �

pðRÞ,c

0BBBBBBBBB@

1CCCCCCCCCA
Using these notations, the vector with the overall marginal classification distribution for the R observers is given

by pr ¼ pr,�m. Similarly to Yang and Zhou,18 it can be shown that under mild regularity conditions, the vector bn2 is
asymptotically normally distributed with variance–covariance matrix given by a four block matrix

varðbn2Þ ¼ 1

C

VA VB

VT
B VD

� �
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The elements of varðbn2Þ can be estimated following the techniques of Rao and Scott28 and Obuchowski.24 The
variances and covariance between the observed agreement in pair s and t are given in the P� P VA matrix.

V̂A,ss ¼
C2

C� 1
PðsÞo :PðsÞTo , ðs ¼ 1, . . .,PÞ and

V̂A,st ¼ V̂A,st ¼
C2

C� 1
PðsÞo :PðtÞTo , respectively

The variance–covariance part relative to the observed agreement and the marginal probability distribution of
the R observers is given in the P�R matrix VB bybVB,sr ¼

C2

C�1P
ðsÞ
o :pTr,�

Finally, the variance–covariance part between the marginal probability distribution of the R observers is given
in the RK�RK matrix VD by bVD,ru ¼

C2

C�1 pr,�:pTu,�
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