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Abstract Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA 
conservation between closely related species remains unclear. By comparing tissue- specific tran-
scriptomes across over 70 million years of primate evolution, we identify that within 3 million years 
circRNA expression profiles diverged such that they are more related to species identity than organ 
type. However, our analysis also revealed a subset of circRNAs with conserved neural expression 
across tens of millions of years of evolution. By comparing to species- specific circRNAs, we identi-
fied that the downstream intron of the conserved circRNAs display a dramatic lengthening during 
evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of 
the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.

Introduction
An important question in biology is how has the complexity of biological systems expanded while 
the number of protein- coding genes has remained mostly stable. Through decades of research, it 
has been shown that increased biological complexity has arisen in part by the dynamic generation of 
unique cell- specific transcriptomes, and as a consequence of the highly versatile programs of gene 
expression (Brawand et al., 2011; Cardoso- Moreira et al., 2019). However, studies of tissues across 
distant animal lineages have shown that gene expression is highly conserved between the same tissues 
in different species (Barbosa- Morais et al., 2012; Brawand et al., 2011; Cardoso- Moreira et al., 
2019; Merkin et al., 2012; Reyes et al., 2013). Hence, gene expression alone is unlikely to explain 
the heterogeneous expansion in complexity (as defined by the number of cell types) across vertebrate 
evolution. Instead, it is becoming increasingly evident that the plethora of post- transcriptional mech-
anisms (Cheetham et al., 2020; Fiszbein et al., 2019; Gueroussov et al., 2017; Ha et al., 2018; 
Ha et al., 2021; Mattick, 2018) capable of greatly expanding transcriptomic diversity also underlies 
these advances.

Among these, an intriguing class produced by pre- mRNA processing are circular RNAs (circRNAs) 
(Zhang et al., 2013; Memczak et al., 2013; Li et al., 2018b; Gokool et al., 2020a). These RNAs 
can regulate protein localization (Liu et al., 2019), miRNA functionality (Piwecka et al., 2017), and 
a range of other processes (Li et al., 2018a; Gokool et al., 2020a), enabling increased regulatory 
complexity, especially in the immune and nervous systems (Gokool et al., 2020b; Li et al., 2017; Liu 
et al., 2019; Piwecka et al., 2017). CircRNAs form by back- splicing whereby an exon’s 3′-splice site is 
ligated to an upstream 5′-splice site forming a closed circRNA transcript (Barrett et al., 2015; Starke 
et al., 2015). Back- splicing occurs both co- and post- transcriptionally and is facilitated by inverted 
repeat elements that promote complementarity between adjacent introns favoring circRNA formation 
over linear splicing (Ivanov et al., 2015; Jeck et al., 2013; Liang and Wilusz, 2014; Zhang et al., 
2014). These RNA- RNA interactions can be facilitated by RNA- binding proteins, such as Quaking 
(Conn et al., 2015), that help stabilize the hair- pin structure promoting circRNA formation.
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The production of circRNAs can also arise due to the perturbed expression of trans- factors and 
the inhibition of the core splicing machinery (Aktaş et al., 2017; Liang et al., 2017). These spuriously 
produced circRNAs are maintained as their circular shape protects them from the activity of cellular 
exonucleases (Gokool et al., 2020b). In contrast, the variable usage of cis- regulatory elements in 
exons and flanking introns can be selected to promote circRNA expression in a cell- type, condition- 
or species- specific manner (Irimia and Blencowe, 2012; Nilsen and Graveley, 2010). Changes in 
circRNA expression may therefore represent a major source of species- and lineage- specific differ-
ences or error- prone mis- splicing. To provide insight into this quandary, here we describe a genome- 
wide analysis of circRNAs across physiologically equivalent organs from primate species spanning 
70 million years of evolution. Our analysis uncovers extensive evidence of species- specific circRNAs 
that display no evidence of conservation even across relatively short evolutionary time periods. 
However, we also identify a small subset of circRNAs that are conserved across tens of millions of 
years displaying increased inclusion rates across evolutionary time. Our analysis comparing conserved 
circRNAs to species- specific circRNAs reveals that these circRNAs are flanked by newly inserted trans-
posons that correlate with circRNA genesis and extend intron downstream of circRNA. Overall, our 
results identify evidence of circRNA conservation within closely related species and identify a reoc-
curring mechanism that correlates with circRNA genesis facilitating the expansion of transcriptomic 
complexity of primate cells.

Results
A core subset of circRNAs show conserved expression signatures but 
most are species-specific
To address the outstanding questions about the conservation and functional importance of circRNAs, 
we collected transcriptomic (RNA- seq) data (Peng et al., 2015; Pipes et al., 2013) from across nine 
tissues from eight primate species, consisting of three old- world monkeys, two hominoids, two new- 
world monkeys, and one prosimian (Supplementary file 1). These species were chosen on the basis 
of the quality of their genomes and their close evolutionary relationships enabling the evaluation 
of transcriptome changes between species ranging from <3 million years to >70 million years (see 
Figure 1A). For each species, we considered all primate- conserved internal exons as potential origins 
of back- spliced junctions (BSJs) with no restrictions on backward exon combination. Only canonical 
and annotated splice sites were used in analysis. RNA- seq reads were mapped to exon- exon junctions 
(EEJs) to determine ‘percent spliced in’ (PSI) for all circRNA with respect to the linear transcript. We 
also calculated PSI values for linear splicing of each internal exon and transcript per million (TPM) 
values to estimate gene expression. Orthology relationships between genes and exons were estab-
lished to enable direct cross- species comparisons.

The circRNA analysis was done using Whippet because, according to our benchmarking results 
(see Materials and methods for details), it is an accurate and fast circRNA quantification tool. Our 
analysis of both simulated and collected RNA- seq data found that Whippet has a low false positive 
rate (<2%, see Materials and methods for details), which is in line with other methods (Szabo et al., 
2015, Gokool et al., 2020a), a high rate of circRNA identification even at low read depths (~90% ; 
Figure 1—figure supplement 3C) and is faster (~69 min) with less computational overhead (<3 GB 
of memory on a single core) than other highly cited circRNA algorithms we compared with (CIRC-
explorer3 [Ma et al., 2019], CIRIquant [Zhang et al., 2020], and find_circ [Memczak et al., 2013]; 
Figure 1—figure supplement 3A and B).

We initially explored the expression relationships within our datasets using hierarchical clus-
tering and Pearson’s correlations to determine the gene expression relationships between ortholo-
gous genes (see Materials and methods). In agreement with previous results (Brawand et al., 2011; 
Merkin et al., 2012; Barbosa- Morais et al., 2012; Reyes et al., 2013) from analysis across vertebrate 
species, a clear pattern emerged of tissue- specific conservation of gene expression (Figure 1B). This 
pattern suggests that most tissues possess a tissue- specific gene expression signature such that, for 
example, a liver- specific gene in chimp will likely also be liver- specific in lemur. In contrast to previous 
observations in vertebrates (Merkin et al., 2012), there are no clear species- specific exceptions to 
these patterns likely reflecting the closer evolutionary relationships studied.

https://doi.org/10.7554/eLife.69148


 Research article      Evolutionary Biology | Genetics and Genomics

Santos- Rodriguez et al. eLife 2021;0:e69148. DOI: https:// doi. org/ 10. 7554/ eLife. 69148  3 of 22

Figure 1. Circular RNA (circRNA) expression signatures are conserved in some tissues. (A) Phylogenetic tree of analyzed species with distance from 
human in millions of years (MYA) (divergence time according to TimeTree http://www.timetree.org/). Tissue datasets used in analysis identified on right 
with white squares denoting lack of dataset. (B) Clustering of samples based on expression values (transcripts per million). The variance of expression 
values was calculated, and the top 1000 most variable genes were used to calculate Pearson’s correlation (n = 1000 genes in 88 samples). Red colors 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.69148
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To understand circRNA relationships between species, we performed an analogous pairwise clustering 
analysis using circRNA inclusion values. Replicates from the same tissue invariably clustered together. 
However, in contrast to gene expression, circRNA expression is segregated by species (Figure 1—figure 
supplement 1A). This suggests that despite all the exons studied being conserved across primates the 
majority of circRNAs showed species- specific expression with no orthologous circRNAs in other species 
(Figure 1C, ~67%  are species- specific, n = 11,201). To evaluate the expression patterns of circRNA ortho-
logs, we identified circRNAs with matched BSJs (see Materials and methods) conserved across ~45 million 
years of evolution. In this analysis, more complex patterns of circRNA conservation emerged with tissue- 
dominated clustering observed across all types of brain samples (Figure 1D) in line with previous obser-
vations (Rybak- Wolf et al., 2015; Venø et al., 2015; You et al., 2015). In contrast, for all other tissues 
circRNAs showed primarily species- specific clustering.

We next assessed if these changes may be explained by gene expression changes in the host 
gene. A comparison of genes containing conserved and species- specific circRNAs did not show any 
significant differences (Figure 2—figure supplement 4A and B, p=0.584 Wilcoxon rank- sum test), 
suggesting that differences between these subgroups are not driven by gene expression differences. 
We next evaluated if tissue- specific changes observed in the conserved circRNAs were due to tissue- 
specific gene expression or alternative splicing. Interestingly, genes containing conserved circRNAs 
neither displayed neural- specific gene expression (Figure  1—figure supplement 1B) or neural- 
specific alternative splicing changes (Figure 1—figure supplement 1C). This suggests that circRNA 
conservation and expression is independent of these regulatory layers.

We next investigated the genes containing circRNAs. Many orthologous genes consistently express 
circRNAs even if the precise BSJ is not conserved (Figure 1C). This phenomenon persisted across 
species with a median of 10 circRNAs detected per gene across tissues (Figure 1—figure supplement 
1D). However, this circRNA production only occurred in a limited number of expressed genes (20.4%  
of orthologous expressed genes). This suggests that certain genomic areas are circRNA factories that 
are prone to produce large numbers of lowly expressed circRNAs.

These observations suggest that a core set of circRNAs show conserved tissue- specific patterns 
across neural tissues. However, the great prevalence of circRNAs showing species- specific expres-
sion indicates that the cis- regulatory or trans- regulatory environments may differ between even very 
closely related species to promote the species- specific production of circRNAs.

Features of conserved circRNAs
Our analysis (Figure 2A) reveals clear subsets of several hundred circRNAs exhibiting highly conserved 
circRNA expression. The circRNA ERC1 and many other examples from our data (Figure 2B, Supple-
mentary file 2, and Figure 2—figure supplement 1A) demonstrate that circRNA expression can be 
conserved for tens of millions of years.

To assess the phylogenetic distribution of circRNA across primates, we grouped them by PSI values 
requiring PSI ≥ 5 and at least five read support. Out of the approximately 56,000 internal exons with clear 
orthologs across primates, we identified a large set of circRNA expressing a ‘species- specific’ expres-
sion, as well as a set of ~773 ‘conserved circRNAs’ that shared expression across at least human, chimp, 
and baboon (Figure 2—figure supplement 1B and C). Using our transcriptomic data, we found that a 
circRNA identified in human was approximately five times more likely to be identified in baboon than in 
lemur, in line with the closer phylogenetic relationship of human to baboon than human to lemur.

indicate high correlation between samples, and blue describes low correlation. Vertical and horizontal adjacent heatmaps describe tissues (see A for 
key). (C) Barplot showing conservation of circRNAs based on back- spliced junction and based on occurrence within orthologous genes. (D) Clustering 
of conserved circRNAs based on percent spliced in (PSI) values. Clustered using Pearson’s correlation as in (B) (n = 149). Vertical and horizontal adjacent 
heatmaps describe tissues (inner heatmap; see A for key) and species (outer heatmap).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. circRNAs expression and exons splicing patterns across primates species and in neuronal tissues.

Figure supplement 2. Validation of identified circRNAs using RNase R data.

Figure supplement 3. Benchmarking of Whippet for circRNA quantification.

Figure 1 continued

https://doi.org/10.7554/eLife.69148
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Figure 2. Features of conserved circular RNAs (circRNAs). (A) Schematic overview of identification of back- spliced junctions (BSJ) between species. 
(B) Percent spliced in (PSI) values for conserved circRNAs (top) CACNA1C_chr12:2504436–2512984 and (bottom) ERC1_chr12:1180540–1204512 across 
tissues and species analyzed. PSI values only calculated for circRNAs with more than five reads support. Gene name is indicated in top right- hand 
corner. (C) Violin plot describing relative expression levels of conserved and species- specific circRNAs. Violin plots show probability densities of the data 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.69148
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To validate the quality of our identified circRNAs, we initially overlapped our data with circRNAs previ-
ously reported in circAtlas (Wu et al., 2020). This analysis found that 99.5%  of the conserved circRNAs 
and 97.03%  of species- specific circRNAs have been previously reported. Additionally, we verified our 
circRNAs dataset using RNase R data (see Materials and methods for details). This analysis of human 
data validated 82.7%  of the conserved circRNAs (648 conserved circRNAs), despite these datasets not 
being from matched tissue samples (Figure 1—figure supplement 2A; see Materials and methods for 
details). To validate the conservation of our neuronal circRNAs, we next analyzed RNase R samples from 
different brain macaque regions. This analysis identified ~89%  of the conserved circRNAs (324 conserved 
circRNAs;) (Figure 1—figure supplement 2F; see Materials and methods for details).

Initial analysis of conserved circRNAs revealed enrichment within neural tissues with over 70%   
showing consistent tissue expression across 30  million years of evolution (Supplementary file 2), 
in line with previous observations (Rybak- Wolf et al., 2015; Venø et al., 2015; You et al., 2015). 
Analysis of expression levels revealed no clear trends for increased expression of conserved circRNAs 
(Figure 2—figure supplement 2A, p<0.187, Wilcoxon rank- sum test vs. species- specific); however, 
these circRNAs did display increased inclusion rates or increased circRNA expression as compared to 
linear isoform (Figure 2—figure supplement 2B, p=3.38  × 10⁻74, Wilcoxon rank- sum test vs. species- 
specific). Furthermore, this inclusion (or circularization) increased with the conservation age of the 
circRNA (Figure 2E, p=8.07  × 10–19, Wilcoxon rank- sum test of hominoids vs. species- specific [human- 
specific]; p=2.14  × 10–06, Wilcoxon rank- sum test of hominoids vs. shared until new- world monkeys). 
This suggests that over time these circRNAs are increasingly influencing the transcriptomic abundance 
of the linear isoform and the protein abundance of the gene.

Analysis of the exonic structure of conserved circRNAs showed that conserved circRNAs contain 
fewer exons (Figure 2F, Figure 2—figure supplement 4C, p = 2.23   × 10–20, Wilcoxon rank- sum 
test) with a significant enrichment to contain 2–3 exons (p- value = 4.17  × 10–08, Fisher’s exact test), 
which is in line with observations from previous studies (Ragan et al., 2019). Conserved circRNAs also 
rarely overlap with other circRNAs (Figure 2G, p=4.08  × 10–64, Fisher’s exact test; see Materials and 
methods) displaying back- splicing at unique 5′- and 3′-splice sites. This indicates a tight control of the 
number of exons within a circRNA and the BSJs used.

Conserved circRNAs have extensive downstream introns and are 
flanked by inverted repeat elements
To investigate the role of cis- regulatory elements within conserved circRNAs, we analyzed almost 150 
features associated with circRNA formation including a multitude of trans- and cis- regulatory factors 
and all major groups of transposons (see Materials and methods and Supplementary file 3). To eval-
uate the influence of these features on defining conserved circRNAs, we used two background data-
sets (see Supplementary file 2 and Materials and methods). The first is a background set of randomly 

with internal boxplot. Boxplot displays the interquartile range as a solid box, 1.5 times the interquartile range as vertical thin lines and the median as a 
horizontal line. p- Value calculated using Wilcoxon rank- sum test (p<0.187). TpM: transcripts per million. (D) Cumulative distribution plot of change in 
PSI values across all conserved (yellow) and species- specific (gray) circRNAs. A cumulative distribution plot describes the proportion of data (y- axis) less 
than or equal to a specified value (x- axis). Cumulative distribution F(x), cumulative distribution function. p- Value calculated using Wilcoxon rank- sum test 
(p<3.38  × 10–74). (E) Cumulative distribution plots of circRNAs with different levels of conservation, as defined by consistent observation of BSJ across 
species indicated. See (D) for description of cumulative distribution plot. (F) Barplot describing number of exons per circRNA for conserved and species- 
specific circRNAs. Exons are defined by Ensembl and must show evidence of expression (PSI >5 and > 5 reads support) in tissue analyzed. (G) Barplot 
describing uniqueness of start (5′-splice site) and end (3′-splice site) for conserved and species- specific circRNAs. p- Values calculated from Fisher’s exact 
test (p<4.08  × 10-64;; unique start and end – also see Figure 2—figure supplement 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Tissue- specific expression and conservation of circRNAs across primates species.

Figure supplement 2. Comparison of the expression of conserved and species- specific circRNAs across tissues samples.

Figure supplement 3. Overview of approach to identifying unique circular RNAs (circRNAs) for Figure 2G (see Materials and methods for details).

Figure supplement 4. Comparison of gene expression distribution of genes containing conserved and species- specific circRNAs across tissues 
samples.

Figure 2 continued

https://doi.org/10.7554/eLife.69148
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combined alternative (10 < PSI < 90) exons extracted from genes containing conserved circRNAs 
(background set). The second is the group of ‘species- specific circRNAs’ defined previously.

Using logistic regression combined with a genetic algorithm for model selection taking into account 
multicollinearity (see Materials and methods), we initially sought to determine the relative contribution 
of this diverse range of features in defining conserved circRNAs. After initially training our model on a 
subset of conserved and background circRNAs (80%), we next assessed its performance on the rest of 
20%  cirRNAs and observed a high average true- positive rate of 86.7%  (AUC, area under the receiver 
operating characteristic [ROC] curve; Figure 3—figure supplement 1A) for a model including 24 
variables selected by feature analysis. This identifies a core set of 24 cis- and trans- regulatory features 
enriched within the conserved formation of circRNAs compared to our background set of introns 
(Figure 3A and B). This includes multiple features previously associated with conserved circRNAs, 
such as inverted repeat Alu elements (Jeck et al., 2013; Zhang et al., 2014), as well as exon and 
intron length (Ashwal- Fluss et al., 2014; Ivanov et al., 2015; Jeck et al., 2013; Liang et al., 2017).

Figure 3. Characterization of cis- and trans- regulatory features of conserved circular RNAs (circRNAs). (A) Barplot describing feature importance for 
logistic regression model of conserved circRNAs compared to background. Colors represent positive or negative influence. Transparency reflects 
log10(p- value of z- statistic). Error bars represent standard error. ‘_1’ is relative to first exon of circRNA and ‘_2’ is relative to final exon of circRNA. 
ss3: 3´-splice site; ss5: 5´-splice site; Alt3ss: alternative 3´-splice sites. Inverted repeats are repetitive elements on opposite strands in introns adjacent 
to circRNAs. See Supplementary file 3 for details of features. (B) Barplot describing feature importance for logistic regression model of conserved 
circRNAs compared to species- specific circRNAs. See  (A) for plot interpretation and descriptions. (C) Cumulative distribution plots describing (left; 
p<1.39  × 10–09) 5´-splice site strength at final exon of circRNAs and (right; p<1.37  × 10–05) distribution of nucleosomes on intron downstream of circRNA. 
p- Values calculated by Wilcoxon rank- sum test and corrected for multitesting (Bonferroni). See Figure 2D for interpretation of cumulative distribution 
plot. (D) Pyramid plot showing the mean fraction of circRNAs with selected inverted repeat retrotransposon elements in adjacent introns.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Performance assessment of logistic regression model.

https://doi.org/10.7554/eLife.69148
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We next used the same approach to determine features differentiating conserved and species- 
specific circRNAs. As expected, our model distinguished these categories less efficiently but was still 
able to achieve a true- positive rate of 65.4%  (Figure 3—figure supplement 1B) driven by 12 features. 
Notable among these features was the depletion of nucleosomes in the downstream intron of the 
circRNA (Figure 3—figure supplement 1D, 1.57 × 10–03, Bonferroni- corrected Wilcoxon rank- sum 
test [BH- Wilcox] vs. species- specific) and the presence of a more defined 3′-splice site at the final 
exon (p=2.04 × 10–03, BH- Wilcox vs. species- specific). Introns adjacent to conserved circRNAs also 
exhibited a significant enrichment for repeat elements (Figure  3D, all p<1 × 10–5, BH- Wilcox vs. 
species- specific) in particular inverted- repeat L1 and AluJ retrotransposons (:Figure 3D, L1: p<1.22 
× 10–23| AluJ: p<1.48 × 10–18, BH- Wilcox). A further key distinguishing feature of interest was intron 
length. Conserved circRNAs exhibited shorter introns downstream of the first exon and an extended 
intron downstream of the final exon (Figure 4A and B). In species- specific circRNA, this adjacent 
downstream intron has a median length of 4624 nucleotides whilst in conserved circRNA the median 
is almost twice as long at 9923 nucleotides (Figure 4B, p<1.07 × 10–35, BH- Wilcox). Finally, when 
comparing the major drivers of both models, we noticed over 90%  (11/12) of features overlapped 
between the models. This suggests that conserved circRNAs are an extreme continuum of species- 
specific circRNAs. Therefore, understanding the processes contributing to circRNA conservation may 
also provide insight into the genesis of circRNAs across species.

Insertion of young transposons increases downstream intron length in 
conserved circRNAs
To investigate the evolutionary origins of the switch of conserved circRNAs from absence in prosim-
ians and new- world monkeys to conservation within hominoids and old- world monkeys, we investi-
gated the changes in intronic length for the orthologous introns between human (hominoids) and 
lemur (prosimians). In contrast to orthologous lemur introns, the human introns downstream of all 
identified circRNAs shows an almost fourfold expansion compared to background dataset of introns 
within circRNA containing genes (Figure 4C, p<3.84 × 10–23, Wilcoxon rank- sum) and the upstream 
adjacent intron (Figure 4—figure supplement 1A, p<1.02 × 10–10, Wilcoxon rank- sum). This differ-
ence is even greater in conserved circRNA, which display an almost twofold greater lengthening 
than species- specific circRNAs (or eightfold over background; Figure 4C, p<3.84 × 10–06, Wilcoxon 
rank- sum). These observations suggest that the expansion of the intron downstream of the circRNA 
may increase the proportion of back- splicing events increasing the likelihood of circRNA conservation.

To investigate the drivers of this intronic expansion, we aligned the lemur and human introns to 
identify regions novel to humans. This analysis revealed the insertion of novel transposons at almost 
double the frequency in introns associated with conserved circRNAs (Figure  4D, p<5.48 × 10–06, 
Wilcoxon rank- sum). Further evaluation of the retrotransposons revealed that this increase in length is 
driven by the novel insertion of AluJ and L1 elements (Figure 4E, AluJ: p<0.018; L1: p<1.73 × 10–04, 
Wilcoxon rank- sum). This retrotransposition is potentially facilitated by the depletion of nucleosome 
occupancy in these introns compared to other human introns (Figure 3B, p<1.15  × 10–07, BH- Wilcox). 
Together, this argues for the role of young transposons in creating longer intronic regions, which 
increases the time for RNA polymerase II to reach next canonical splice site and therefore increases 
likelihood of back- junction splicing to occur.

Discussion
The evolution of circRNAs has been previously studied across extensive evolutionary time revealing poor 
conservation for the majority of circRNAs (Rybak- Wolf et al., 2015; Venø et al., 2015). Our approach is 
unique as it focuses on the conservation of circRNAs in very closely related species, enabling us to account 
for the rapid evolution of these RNAs. This increased resolution allowed us to compare conserved versus 
non- conserved circRNAs, enabling us to reveal two disparate facts about circRNA expression. Firstly, we 
observe extensive variation in the production of the vast majority of circRNAs between species. With 
circRNAs often expressed within the same orthologous genes even if BSJ is not conserved. Conversely, 
we identify a core set of over 700 circRNAs that are conserved across millions of years of evolution. 
These circRNAs have higher inclusion rates and show increased inclusion across evolutionary age. Both 
groups are related in the cis- and trans- regulatory features that correlate with circRNA formation such 

https://doi.org/10.7554/eLife.69148
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Figure 4. Conserved circular RNA (circRNA) downstream intron expanded during primate evolution. (A) Scatterplot of downstream intron length for 
conserved and species- specific circRNAs. (B) Boxplot describing lengths of intron immediately downstream of circRNA for conserved and species- 
specific circRNAs (see Figure 2C for description of boxplots). p- Values calculated by Wilcoxon rank- sum test and corrected for multitesting (Bonferroni). 
nt: nucleotide (C) Cumulative distribution plot of change of length of orthologous downstream introns of conserved, species- specific and background 
circRNAs from lemur to human (see Figure 2D for description of cumulative distribution plots). p- Values calculated by Wilcoxon rank- sum test and 
corrected for multitesting (Bonferroni). (D) Cumulative distribution plot of length of novel repeat elements within the orthologous downstream introns 
of conserved, species- specific and background circRNAs from lemur to human (see Figure 2D for description of cumulative distribution plots). p- Values 
calculated by Wilcoxon rank- sum test and corrected for multitesting (Bonferroni). (E) Pyramid plot of the proportion of repeat elements inserted into 
the downstream introns of conserved, species- specific and background circRNAs from lemur to human. *p<0.05; **p<0.005, ***p<1 × 10–5. p- Values 
calculated by Wilcoxon rank- sum test and corrected for multitesting (Bonferroni). (F) A schematic model of the results describing impact of our 
observations on circRNA formation. Boxes represent exons, straight lines are introns, repeat elements are red, arced lines represent back- spliced 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.69148


 Research article      Evolutionary Biology | Genetics and Genomics

Santos- Rodriguez et al. eLife 2021;0:e69148. DOI: https:// doi. org/ 10. 7554/ eLife. 69148  10 of 22

as evidence of recent transposons insertion and extended adjacent introns (Ashwal- Fluss et al., 2014; 
Ivanov et al., 2015; Jeck et al., 2013; Liang et al., 2017). In line with previous work, the majority of 
circRNAs identified arose from the same gene locus (alternative circularization) (Burd et al., 2010; Jeck 
et al., 2013; Salzman et al., 2012; Zhang et al., 2014); however, we identify that this phenomenon is 
largely limited to species- specific circRNAs and disappears in the conserved group. Similarly, we identify 
that the adjacent introns of circRNAs are significantly longer with inverted Alu repeats (Ashwal- Fluss 
et al., 2014; Ivanov et al., 2015; Jeck et al., 2013; Liang et al., 2017); however, only in the conserved 
group do we observe a bias towards lengthening of the downstream adjacent intron with inverted L1 
repeats dominating. Finally, in contrast to previous work, we do not identify that conserved circRNAs are 
more strongly expressed but instead that conserved circRNAs have greater relative expression compared 
to linear transcript with this ratio increasing with the evolutionary age of the circRNA. This decreased 
diversity of conserved circRNA production and increased relative expression is in line with data from linear 
splicing (Baek and Green, 2005; Barbosa- Morais et al., 2012; Gueroussov et al., 2017; Irimia et al., 
2009; Merkin et al., 2012) and suggests circRNA selection is occurring. However, an important limitation 
of our approach is our usage of annotated splice sites, thus limiting our conclusions to exonic circRNAs 
from canonical splice sites.

A host of endogenous mechanisms dampen down the impact of the retrotransposons within gene 
bodies. For example, the formation of Alu exons is suppressed by the nuclear ribonucleoprotein 
HNRNPC (Zarnack et al., 2013) and the nuclear helicase DHX9 binds to inverted repeat Alu elements 
to suppress circRNA formation (Aktaş et al., 2017). Over time though, in selected examples, these 
inclusions can promote novel functionality (Attig et al., 2016; Attig et al., 2018; Avgan et al., 2019; 
Shen et al., 2011), enabling the creation of tissue- specific exons (Attig et al., 2018), miRNAs (Gu 
et al., 2009; Spengler et al., 2014), and promoter regions (Li et al., 2018a; Zhang et al., 2019). 
Our results suggest that circRNAs are undergoing a similar selection race with the recent insertion of 
multiple retrotransposons promoting increased circRNA production that in some cases stabilizes over 
time. It is important to note though that the production of a large number of circRNAs in itself can 
be functional (Liu et al., 2019). For example, in the immune system a wide diversity of circRNAs are 
produced to sequester- specific RNA- binding proteins. These proteins are released upon viral infection 
to inhibit translation of viral RNA (Liu et al., 2019). A major challenge for the field in the following 
years will arise from determining the contribution of noise versus function for each of these groups.

The investigation of mechanisms controlling circRNA production is a rapid and expanding field (Li 
et al., 2018b). Our results support a kinetic model (Schor et al., 2013) for circRNA function whereby 
trans- factors promote spliceosome recruitment to the final exon and the very long downstream introns 
extend the time window for back- splicing to occur. This is facilitated by inverted repeats increasing the 
proximity of 3′-splice site with the upstream 5′-splice site (see Figure 4G). The extension of the final 
intron therefore increases the likelihood of circRNA formation in time and space. Spatially by intro-
ducing new retrotransposons, which facilitates RNA- RNA duplex formation (Ivanov et al., 2015; Jeck 
et al., 2013; Li et al., 2017; Liang and Wilusz, 2014) to orientate the splice sites in close proximity 
and temporary by increasing the intron length, it expands the time window for such an event to occur 
(Veloso et al., 2014), which acts independent of the rate of RNA polymerase II across the gene body 
(Zhang et al., 2016). This model conforms with the previous observations of enrichment of inverted 
repeat Alu elements and of long introns surrounding circRNAs (Ashwal- Fluss et  al., 2014; Dong 
et al., 2017; Ivanov et al., 2015; Jeck et al., 2013; Liang and Wilusz, 2014; Rybak- Wolf et al., 
2015; Zhang et al., 2014).

The conservation of circRNAs we observe could therefore just be a result of increasing the proba-
bility for such an event to occur rather than evidence of functionality. However, circRNAs represent an 
extreme example of a trend in post- transcriptional regulation whereby low leaky expression creates a 
pool of possible novel substrates (Avgan et al., 2019; Barbosa- Morais et al., 2012; Fiszbein et al., 
2019; Mattick, 2018; Merkin et al., 2012; Reyes et al., 2013), increasing the likelihood for unique 

junction, and dashed lines represent RNA- RNA duplex.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cumulative distribution plot of length of introns adjacent to conserved circRNAs.

Figure 4 continued

https://doi.org/10.7554/eLife.69148
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functionality to arise (Gueroussov et al., 2017; Guo et al., 2020). For circRNAs, this can be aided by 
single- nucleotide changes that enable trans- acting factors, such as Quaking, ADAR, or NF90/110, to 
facilitate circRNA formation (Conn et al., 2015; Ivanov et al., 2015; Li et al., 2017).

In conclusion, our evolutionary analysis identifies that the noisy production of circRNAs is driven 
by the insertion of novel transposons in adjacent downstream introns that can over time stabilize to 
produce conserved circRNAs. This provides a pool of evolutionary potential that could contribute to 
the evolutionary rewiring of the cell.

Materials and methods
Data processing
All fastq files were quality- checked using FastQC (Andrews, 2010). Adapters and low- quality 
sequences were removed using Cutadapt (Martin, 2011).

Datasets
Ribo- minus RNA- seq data was extracted from the publicly available Nonhuman Primate Reference 
Transcriptome Resource (NHPRTR) resource (http://www. nhprtr. org/; Peng et al., 2015). The analyzed 
samples were from chimpanzee, rhesus macaque, cynomolgus macaque mauritian, olive baboon, 
common marmoset, squirrel monkey, and mouse lemur to cover the ~70  millions of years (MYA) of 
primate evolution (Supplementary file 1). The primates samples of the above species were chosen 
based on the availability of chain files for LiftOver analysis. Human samples were retrieved from 
different publicly available Ribo- minus datasets searching for the SRA IDs in the circAtlas 2.0 database 
(http:// circatlas. biols. ac. cn/; Wu et al., 2020; Supplementary file 1). Replicates of certain samples 
across the different primates data were merged to achieve a higher sequencing depth required for 
alternative splicing quantification (Supplementary file 5).

Alternative splicing, back-splice junction, and gene expression 
quantification
Whippet (Sterne- Weiler et al., 2018) was used to analyze the RNA- seq samples to quantify cassette 
exon (CE) events, circRNAs (BSJs), and gene expression. To enable BSJ quantification, we used 
the setting with the --circ parameter when running Whippet- quant (https:// github. com/ timbitz/ 
Whippet. jl, Timothy, 2021).

The splice graphs of all primates used for Whippet quantification were calculated using the genome 
annotation files for each primate from Ensembl (Yates et al., 2020; Supplementary file 6). The genome 
annotation files were supplemented with novel EEJs derived from whole- genome alignment of primates 
samples using STAR (Dobin et  al., 2013) with the 2- pass setting and outFilterMultimapNmax==10 
parameters. Whippet index command was run with the --bam and --suppress- low- tsl parameters.

Gene expression of orthologue genes was retrieved from the  gene. tpm. gz files from Whippet- 
quant output. The correlations of gene expression of orthologue genes between tissue samples from 
all primates were calculated using Pearson’s correlation. Clustering of correlation values was assessed 
and visualized with a heatmap using the p.heatmap function in R.

Identification of expressed circRNAs and CEs
All the BSJ events present in orthologue genes between the species mentioned above were filtered 
to find conserved circRNAs identified by Whippet. The orthologue list of genes was retrieved from 
Ensembl using the bioMart R package (Smedley et al., 2009). Expressed BSJs were defined according 
to an expression and PSI cutoff of at least five reads and ≥5%  of PSI, respectively. CE events from 
Whippet output were also filtered, keeping those present in orthologue genes and with PSI ≥ 10% .

Conservation analysis of circRNAs
We defined a circRNA as conserved if the exon(s) that formed the BSJ are orthologous to the human 
exon(s) that also formed the BSJ. To achieve this, the exon coordinates of orthologue genes of each 
primate were retrieved from the GTF files downloaded from Ensembl (Supplementary file 6). Then, 
the exon coordinates from the GTF files were intersected with the CE coordinates from Whippet using 
bedtools intersect (Quinlan and Hall, 2010) with - wa parameter.

https://doi.org/10.7554/eLife.69148
http://www.nhprtr.org/
http://circatlas.biols.ac.cn/
https://github.com/timbitz/Whippet.jl
https://github.com/timbitz/Whippet.jl
https://www.biostars.org/p/418890/
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Then, the resulted exon coordinates (GTF- CE coordinates) were intersected with the circRNAs 
coordinates within orthologue genes using bedtools intersect with - loj parameter to find which exons 
were forming the circRNA. The exon coordinates within the circRNA coordinate of the non- human 
primates were mapped to human coordinates using the UCSC LiftOver (Navarro Gonzalez et al., 
2021) to retrieve orthologue exons.

The orthologue exons between primates and human were matched to human exon coordinates 
within the circRNAs coordinates in human to find conserved circRNAs. We defined if a circRNA was 
conserved between a primate and human if the exon(s) forming the BSJ of the circRNA were also 
conserved and if the exon(s) start and end coordinates were ≤100 nc from the start and end of the BSJ 
coordinate (see Figure 2 and S5 for schematic). We defined as non- conserved circRNAs all the human 
circRNAs that do not have orthologue exons forming the BSJ of the circRNA with other primates.

Conserved and tissue-conserved circRNAs
The list of orthologous circRNAs was plotted in an UpSet plot to visualize the intersection of circRNAs 
between primates species. We defined the set of conserved circRNAs as the circRNAs within the 
intersections between primates species where human, chimpanzee, and baboon always appeared.

The correlation of inclusion of conserved and tissue- conserved circRNAs between all samples was 
calculated using Pearson’s correlation. Then correlation values were plotted in a heatmap using the 
p.heatmap function in R.

Differential gene expression analysis and enrichment analysis of genes 
with conserved circRNAs
EdgeR (Robinson et al., 2010) library was used to perform the differential gene expression analysis 
between neuronal samples (brain, cerebellum, and frontal cortex) and non- neuronal samples (heart, 
skeletal muscle, liver, lung, spleen, and colon). This analysis showed 8817 differentially expressed 
genes according to a log fold change cutoff of log2(1.5) and FDR of 0.05.

There were 212 genes of the conserved circRNAs (total of 442 genes) in the set of differentially 
expressed genes. The enrichment of genes with conserved circRNAs was statistically tested with a 
hypergeometric test using the phyper function in R. The parameters were q = 212, m = 8,817, n = 
11,278, k = 442, and  lower. tail = FALSE.

Conserved CEs in primates
All exon coordinates of orthologue genes from the GTF files and CE exon coordinates from Whippet 
were mapped to human coordinates using UCSC LiftOver (Navarro Gonzalez et al., 2021). The PSI 
values of orthologous exons in genes of conserved and tissue- conserved circRNAs were retrieved from 
all tissue samples of human, chimpanzee, and baboon and calculated Pearson’s correlation values. The 
correlation values were plotted in a heatmap using the p.heatmap function.

Comparison of circRNAs expression and conservation circRNAs expression of conserved, tissue- 
conserved, and non- conserved circRNAs was calculated using relative transcripts per million (TpMs). 
Relative TpMs are the expression of circRNAs measured in TpMs. Relative TpMs were calculated as the 
proportion of gene expression measured in TpMs relative to the number of reads of the circRNA using 
the formula

 Relative TpMs = circRNA Reads∗Gene TpM
Gene Reads   

where circRNA Reads refers to the number of reads in the BSJ/circRNA, Gene TpM refers to the 
TpM value of the gene with the exons of the circRNA, and Gene Reads refers to the number of reads 
of the gene with the exons of the circRNA.

The expression values of conserved and non- conserved circRNAs, and tissue- conserved and non- 
conserved circRNAs of replicates of the same tissue in human samples were plotted in scatter plots.

The median relative TpMs of conserved (and tissue- conserved) and non- conserved circRNAs of 
human samples were also calculated. The expression values between mentioned sets were statistically 
compared using a Wilcoxon test. The parameters of the Wilcoxon test were x = conserved (or tissue- 
conserved) circRNAs TpMs, y = non- conserved circRNAs TpMs, alternative = ‘greater.’ The median 
relative TpM was plotted in violin plots using the ggplot2 R library (Wickham, 2016).

https://doi.org/10.7554/eLife.69148
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The median PSI values of conserved, tissue- conserved, and non- conserved circRNAs across all 
human samples were calculated. Their inclusion levels were statistically compared using the Wilcoxon 
test function in R with the parameters x = conserved (or tissue- conserved) circRNAs median PSI, y = 
non- conserved circRNAs median PSI, alternative = ‘greater.’ The distribution of the median PSI values 
of conserved and non- conserved circRNAs, and tissue- conserved and non- conserved circRNAS was 
plotted in a cumulative plot using the ggplot2 library in R.

The median PSI values of shared circRNAs between evolutionary interesting sets (human [species- 
specific circRNAs]; hominoids; hominoids and baboon; hominoids and old- world monkeys; hominoids, 
old- world monkeys and marmoset; and hominoids, old- world monkeys and new- world monkeys) 
shown in the UpSet plot were calculated, plotted in a cumulative plot, and statistically compared 
using a Wilcoxon test.

Seven of our reported circRNAs from the lists of conserved and tissue- conserved circRNAs were 
of special interest as they were previously reported (Gokool et al., 2020a) to be highly expressed 
in human cerebellum and frontal cortex. The PSI values of such circRNAs were compared across all 
tissues in the eight primates species.

Comparison of the number of orthologue genes producing a circRNA 
and number of conserved circRNAs between species
The number of times an orthologue gene produces at least one circRNA in any of the analyzed species 
was counted, as well as the number of times a circRNA was shared between another primate. The 
percentage of shared genes or circRNAs between the eight species was calculated and plotted in a 
barplot using the ggplot2 library in R.

Comparison of start and end position of circRNAs between conserved and non- conserved circRNAs 
circRNAs can be formed from unique start and end exons forming the BSJ, repeated start exons, 
repeated end exons, or repeated start and end exons (see Figure 2—figure supplement 3 for sche-
matic). The percentage of conserved and non- conserved circRNAs that fall in the above categories 
was calculated and plotted using the ggplot2 library in R.

Generalized logistic regression
All continuous data were normalized to ensure a fair comparison between features using scale() 
package in R environment. Multicollinearity was assessed using the vif() from the R package car.

The dataset was split into training (80%) and test (20%). To optimize the selection of the model 
and the importance of each feature, we used the R package glmulti (Calcagno and De Mazancourt, 
2010). To select from all possible models, the selection process used a genetic algorithm (method = 
‘g’) with Akaike information criterion (AIC – crit = ‘aic’). To calculate the generalized logistic model, 
glmulti used the R module glm with family = binomial(). ROC curve was calculated using R’s pROC 
library with test data. Data extracted from this model is reported together with p- value and z- values 
in Supplementary file 7.

Background datasets
Two background datasets were used in this study: background and species- specific (Supplementary 
file 2). The ‘background’ datasets consisted of exon combinations only within genes with circRNAs. 
The dataset was constructed by identifying alternative exons within gene of interest (10 < PSI < 90 l 
within any of the tissues studied) and using Python function random to assign these exons together. 
The ‘species- specific’ dataset was constructed as described above of human circRNA with no evidence 
of their BSJ being conserved in any other primate species. For both datasets, only genes with orthol-
ogous genes in all tested primates species were used (based on Ensembl annotation) and only orthol-
ogous exons (based on LiftOver – see above) were used.

circRNA features
MaxEntScan (Yeo and Burge, 2004) was used to estimate the strength of 3′ and 5′-splice sites. 
5′-splice site strength was assessed using a sequence including 3 nt of the exon and 6 nt of the adja-
cent intron. 3′-splice site strength was assessed using a sequence including −20 nt of the flanking 
intron and 3 nt of the exon. SVM- BPfinder (Corvelo et al., 2010) was used to estimate branchpoint 

https://doi.org/10.7554/eLife.69148
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and polyprimidine tract strength and other statistics. Scores were calculated using the sequence of 
introns to the 3′ end of exon between 20 and 500 nt.

Transcription start sites (TSS) were downloaded from Biomart. GC content was calculated using 
Python script. Transposon information was download from RepeatMasker as described below.

Nucleosome occupancy for HepG2 cells was calculated using data from Enroth et al., 2014. Color-
space read data was aligned using Bowtie (Langmead, 2010) (- S -C -p 4 m 3 --best –strata) using 
index file constructed from Ensembl Hg38. Nuctools (with default settings) was used to calculate 
occupancy profiles and calculate occupancy at individual regions (Vainshtein et al., 2017).

All CLiP- seq data and CHiP- seq data were downloaded preprocessed bed data files from ENCODE 
(Sundararaman et al., 2016) with only narrowpeaks calculated using both isogenic replicates used. 
Bedtools intersect (- wao) was used to identify overlap with candidate regions. Overlap for all groups 
of trans- factors was collated and scores normalized by nucleotide length. Groups were based on 
annotation and split into positive regulators of splicing (SR: serine/arginine region containing proteins) 
and negative regulators of splicing (hnRNP: heterogeneous nuclear ribonucleoproteins).

In feature analysis, only first and last exons of circRNA, and their surrounding introns, were included 
in the analysis. The upstream portion is considered as the region 5′ of elements (i.e., first exon) and 
downstream portion is 3′ of elements.

Overlap with known repeat elements
Repeat elements identified by RepeatMasker were downloaded from UCSC table browser (Navarro 
Gonzalez et al., 2021) in bed format. Bedtools intersect (−wao) was used to identify overlap of trans-
posons with novel exons.

The frequency of transposable events is calculated as the proportion of transposons overlapping 
area of interest (i.e., exon 1). All transposons were grouped together into 12 categories (AluJ, AluS, 
AluY, L1, L2, L3, MIR, MER, FLAM, AT_rich, SINE, and everything else into ‘other’) based on annotation 
from RepeatMasker. Inverted repeat regions are defined as having the same transposable elements 
on different strands in both introns adjacent to the circRNA.

Intronic length and transposons comparison of human and lemur
Orthologous exons between human and lemur containing circRNAs were identified using the procedure 
described above. Intron length was determined based on the nearest exon from Ensembl annotation 
(Yates et al., 2020) with evidence from RNA- seq data of expression (PSI > 10). To identify regions unique 
to human, the intronic regions unique to human were split into windows of 20 nt. LiftOver was used to 
identify conserved regions between human and lemur genomes for each of these windows. Regions with 
no evidence of conservation were overlapped (using bedtools intersect –wao) with UCSC RepeatMasker 
(Navarro Gonzalez et al., 2021) annotation to identify novel transposon insertion.

Previously reported circRNAs from circAtlas circRNAs reported in the circAtlas database were 
downloaded from their webserver (http:// circatlas. biols. ac. cn/). As the circRNA coordinates in the 
bed file had all types of circRNAs, we used bedintersect to keep only those circRNAs from annotated 
exons (hg38 GENCODE). Using bedtools, the filtered exonic circRNAs from circAtlas were intersected 
with the conserved and species- specific circRNAs to calculate the percentage of shared circRNAs.

Benchmarking Whippet for circRNA detection
Whippet has been previously benchmarked for the detection of linear splicing events (Sterne- Weiler 
et  al., 2018). However, it has not been previously validated for detection of back- splicing events 
that create circRNAs. To benchmark Whippet’s performance on circRNA detection, we analyzed both 
circRNA detection and computational performance.

Simulated dataset comparison
CIRIsimulator (Gao et al., 2015) was used to make four simulated datasets with sequencing levels 
of 10-, 20-, 30-, and 40- fold read depth. Simulated sequencing data was generated using the chro-
mosome 1 fasta from the hg19 human genome and its GTF annotation file obtained from the CIRI 
software repository (https:// sourceforge. net/ projects/ ciri/). The parameters used were default insert 
length, 75 read length, and no sequencing errors.

https://doi.org/10.7554/eLife.69148
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With the simulated datasets, we ran Whippet (Sterne- Weiler et al., 2018), CIRCexplorer3 (Ma 
et al., 2019), CIRIquant (Zhang et al., 2020), and find_circ (Memczak et al., 2013). Whippet param-
eters were the same as previously described (see Materials and methods). CIRCexplorer3 was run 
using CIRCexplorer2 output file (https:// github. com/ YangLab/ CLEAR, Xiao- Ou, 2021). To run CIRC-
explorer2, we used the ‘run with One Command’ option of CIRCexplorer2 (https:// circexplorer2. 
readthedocs. io/ en/ latest/ tutorial/ one_ step/). In line with recommendation from authors, we used 
STAR to map the RNA- seq reads according to defined parameters (https:// circexplorer2. readthedocs. 
io/ en/ latest/ tutorial/ alignment/). CIRIquant and find_circ were run according to the recommended 
parameters for each program (Ma et al., 2019; Memczak et al., 2013; Sterne- Weiler et al., 2018; 
Zhang et al., 2020). The performance of the programs was evaluated by assessing the number of 
circRNAs found versus the number of circRNAs in the simulated datasets.

RNase R samples analysis
RNase R samples from human and macaque were downloaded from SRA database after defining a 
curated list of potential samples to analyze. Info about SRA ID, the title of the sample, and sequencing 
depth is given in Supplementary file 1.

The quality of samples was analyzed with FastQC (Andrews, 2010) and, if needed, adapters and 
low- quality sequences were trimmed using Cutadapt (Martin, 2011).

Quantification of circRNAs using Whippet was done as previously described for each corresponding 
primate. In the case of human samples, for the set of species- specific circRNAs, there was 62.3%  of 
overlap (Figure 1—figure supplement 2B).

Macaque RNase R samples analysis
As the set of conserved circRNAs is defined as ‘all circRNAs present at least in human, chimpanzee, 
and baboon,’ we first filter all those conserved circRNAs that are present in the macaque samples. 
According to this filter, we found 454 conserved circRNAs also conserved in macaque (conserved- 
macaque circRNAs). From the total of conserved- macaque circRNAs, we calculated the percentage of 
shared conserved- macaque circRNAs in the RNase R dataset. circRNAs in the RNase R dataset were 
defined as expressed with a ≥2 reads cutoff.

Conserved- macaque circRNAs were also filtered to keep those with neuronal tissue expression. 
Neuronal tissue expression of the circRNAs was defined as all those circRNAs that had a PSI value (in 
neuronal samples: cerebellum and frontal cortex samples) of at least 5% . From this filter, there are 385 
conserved- macaque circRNAs with neuronal expression. The percentage of shared of circRNAs with 
the RNase dataset was also calculated. The circRNAs in the RNase R dataset was defined as expressed 
with a ≥2 reads cutoff.

False-positive rate
PolyA+ and ribodepleted strand RNA- seq data from human brain regions samples (Gokool et al., 
2020a; Supplementary file 1) were analyzed with Whippet, CIRCexplorer3, CIRIquant, and find_circ 
using the recommended parameters for each program (Ma et  al., 2019; Memczak et  al., 2013; 
Sterne- Weiler et al., 2018; Zhang et al., 2020). Indices needed for mapping reads were built using 
the hg38 genome version and with default parameters. All circRNAs from all the programs were 
defined to be expressed with a ≥5 reads cutoff. The false- positive rate for each program was calculated 
as the percentage of circRNAs shared between polyA+ and ribodepleted samples. We calculated the 
FPR of Whippet, CIRCexplorer3, CIRIquant, and find_circ. The false- positive rate was calculated as 
the percentage of circRNAs shared between polyA+ and ribodepleted samples with previous reports 
showing FPR < 2 (Gokool et al., 2020b) and with other reports finding that polyA+-based FPR of 
many algorithms ranges from ~3% to 8% (Szabo et al., 2015).

Time and memory computation comparison
Quantification of time and memory used for each of the programs (Whippet [Sterne- Weiler et al., 
2018], CIRCexplorer3 [Ma et  al., 2019], CIRIquant [Zhang et  al., 2020], and find_circ [Memczak 
et al., 2013]) was done using the built- in time function in GNU Linux, version 1.7, when analyzing 
the same sample (GOK5490A11_S15_ba9RD) from the ribodepleted dataset. The total run time was 
calculated as the sum of user time and system time from the time program output. The memory used 

https://doi.org/10.7554/eLife.69148
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for each program is the maximum resident set size value from the time program output. Time and 
memory quantification was done for each of the steps needed to get the final output of the circRNA 
quantification without considering building indices for each mapping program. Total time was trans-
formed from seconds to minutes and total memory from kbytes to Gbytes.

Gene expression of genes with conserved and species-specific circRNAs
Gene expression of genes with exons from conserved circRNAs was compared with the gene expression 
of genes with exons from species- specific circRNAs. The gene expression comparison was done in each 
tissue and the median expression of all tissue samples (Supplementary file 1). In the case of each tissue 
comparison, the mean gene expression (TpM) was calculated for all replicates of each tissue.

In all the gene expression comparisons (tissue- specific and median tissue expression), the set of 
gene expression of conserved circRNAs was statistically compared with the set of gene expression of 
species- specific circRNAs using the Wilcoxon rank- sum test. Gene expression distribution of both sets 
of genes was transformed to log2 and then plotted in violin plots.

Comparison of number of exons between conserved and species-
specific circRNAs
The number of exons in conserved and species- specific circRNAs was quantified according to the 
number of exons that were present in the BSJ of the circRNAs. The exon coordinates were defined 
according to Ensembl and all exons most have evidence of expression (≥ 5 reads and ≥5%  PSI). The 
distribution of the number of exons was plotted in violin plots and statistically tested using Wilcoxon 
rank- sum test in R with the parameter alternative = ‘less’. To test if conserved circRNAs were enriched 
in circRNAs species with number of exons of 2–3, we performed Fisher’s exact test in R with the 
parameter alternative = ‘greater.’ For this analysis, we defined the below contingency table:

CircRNAs with 2–3 exons
CircRNAs with more or with less of 2–3 
exons

Conserved 198 575

Species- specific 1966 9235
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