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Abstract
The emergence of cellular organisms occurred sometime between the origin of life and the evolution of the last universal 
common ancestor and represents one of the major transitions in evolutionary history. Here we describe a series of artificial 
life simulations that reveal a close relationship between the evolution of cellularity, the evolution of metabolism, and the 
richness of the environment. When environments are rich in processing energy, a resource that the digital organisms require 
to both process their genomes and replicate, populations evolve toward a state of non-cellularity. But when processing energy 
is not readily available in the environment and organisms must produce their own processing energy from food puzzles, 
populations always evolve both a proficient metabolism and a high level of cellular impermeability. Even between these 
two environmental extremes, the population-averaged values of cellular impermeability and metabolic proficiency exhibit a 
very strong correlation with one another. Further investigations show that non-cellularity is selectively advantageous when 
environmental processing energy is abundant because it allows organisms to access the available energy, while cellularity is 
selectively advantageous when environmental processing energy is scarce because it affords organisms the genetic fidelity 
required to incrementally evolve efficient metabolisms. The selection pressures favoring either non-cellularity or cellular-
ity can be reversed when the environment transitions from one of abundant processing energy to one of scarce processing 
energy. These results have important implications for when and why cellular organisms evolved following the origin of life.

Keywords  Origin of life · Digital life · Ancient life · Early evolution · Coevolution · Evolution of cellularity · Evolution of 
metabolism

Introduction

The cell is, by definition, the basic structural unit of all 
organisms. Cellular organization defines the boundaries 
between organisms and their environment, allowing organ-
isms to control their internal chemistry, to generate and store 
their own chemical potential energy, and to build and rep-
licate complex systems with high fidelity. Cellularity also 
confers individuality upon organisms by storing genetic 
material that can be passed on to future progeny through 
cell replication. This vertical inheritance, made possible by 
cellular organization, may have been a prerequisite for the 
first speciation events in early evolutionary history (Woese 
1998).

Supporting this notion, strong evidence suggests that 
the last universal common ancestor of life (Becerra et al. 
2007; Goldman et al. 2013) represents a cellular organ-
ism or a population of cellular organisms. The genome of 
the last universal common ancestor, for example, likely 
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encoded a signal recognition particle and receptor system 
for directing proteins to be embedded within or secreted 
through the cell membrane (Gribaldo and Cammarano 
1998), a process that, today, occurs in the endoplasmic 
reticulum of eukaryotes, but in the cell membrane of bac-
teria and archaea. The genome of the last universal com-
mon ancestor also very likely encoded the ATP synthase 
motor (Gogarten and Taiz 1992), which takes advantage 
of proton gradients across membranes to generate ATP 
from ADP and phosphate. Finally, the genome of the last 
universal common ancestor could likely synthesize its 
own phospholipid membrane constituents. Despite the fact 
that archaeal phospholipids are composed of isoprenoid 
ethers while bacterial and eukaryotic phospholipids are 
composed of fatty acid esters (Kates 1978), this difference 
appears to result from only a few variant metabolic steps 
in an overall pathway that is otherwise shared between 
bacteria and archaea (Peretó et al. 2004).

The last universal common ancestor, though very ancient, 
was the product of many evolutionary transitions following 
the origin of life (Maynard and Szathmáry and 1995; Szath-
máry and Maynard 1995; Poole et al. 1998; Goldman et al. 
2010; Goldman and Landweber 2012; Petrov et al. 2015). 
The origin of life likely began, not as a cellular organism, 
but as a simple genetic or chemical replicator. The RNA 
world hypothesis (Gilbert 1986) proposes that life began as 
a set of catalytic RNAs or pre-RNAs that were capable of 
replicating themselves through polymerase-like enzymatic 
activity (Johnston et al. 2001; Wochner et al. 2011). Other 
hypotheses about the origin of life propose that life arose 
from autocatalytic sets of catalysts that, as a whole, could 
replicate the entire catalytic network (Kauffman 1971). 
Recent work suggests that these two frameworks for under-
standing the origin of life are neither complete nor are they 
mutually exclusive, with many arguing that an RNA world 
could only have existed within a broader chemical context 
(Bowman et al. 2015; Goldman et al. 2016) and others show-
ing that catalytic RNAs can, themselves, form cooperative 
autocatalytic networks (Vaidya et al. 2012).

Even though life likely began as a simple system of 
genetic or chemical replicators, naturally occurring mem-
branes may have also played an important role in the origin 
of life. Membranes have been demonstrated to self-assemble 
from prebiotically plausible compounds such as decanoic 
acid (Namani and Walde 2005) and can even self-assemble 
from the lipid fractions of carbonaceous chondrite mete-
ors (Deamer and Pashley 1989), suggesting that membrane 
structures may have been present during the origin of life. 
Model protocells, which are meant to mimic membrane 
structures following the origin of life but prior to the origin 
of true cellularity, are capable of growth and division (Zhu 
and Szostak 2009) and have been shown to concentrate and 
stabilize compounds that may have been important during 

and after the origin of life (Adamala and Szostak 2013; 
Black et al. 2013).

Alongside these chemistry-oriented accounts of the 
behavior of membranes and protocells during and directly 
after the origin of life, a number of plausible evolutionary 
hypotheses have been developed to better understand the 
selection pressures under which true cellularity may have 
evolved following the origin of life. One early hypothesis 
suggested that selection on groups of genes housed within 
a cell could have counterbalanced the deleterious effects 
of internal selection between genes, thus stabilizing a gene 
complement composed of multiple genes and gene functions 
(Eigen and Schuster 1977; Szathmáry and Maynard 1995). 
In addition, cellular boundaries could potentially act to 
exclude selfish replicators (Eigen et al. 1981; Goldman and 
Landweber 2012) and cellular organization may have also 
selected for the chromosomal linkage of genes (Maynard and 
Szathmáry 1993), which could further alleviate inter-gene 
conflict (Szathmáry 2015). Recent computational modeling 
studies have shown that spatial self-organization without 
compartmentalization can provide similar genetic stabil-
ity (Takeuchi and Hogeweg 2009; Hogeweg and Takeuchi 
2003), but that protocell compartmentalization is superior 
to spatial self-organization because it can better mitigate 
the effects of parasites and can accommodate more extreme 
mutation rates through the cooperative function of polymer-
ases (Shah et al. 2019). Recent microfluidics experiments 
have confirmed these modeling results by demonstrating that 
even transient compartmentalization can protect RNA repli-
cators from parasites (Matsumura et al. 2016).

In addition to these genetic considerations, several 
hypotheses propose that metabolic factors influenced the 
early evolution of membranes and protocells. One general 
proposal by Szathmáry (2007) suggests that early mem-
branes were permeable to metabolites and served only to 
organize the genetic material, but as enzyme-mediated 
metabolism became increasingly sophisticated, membranes 
coevolved alongside metabolism to be more selective and 
to further differentiate the internal and external chemical 
environments. This regulation of the chemical environment 
may have, in turn, allowed organisms to colonize environ-
ments beyond the geochemical setting in which life origi-
nated (Cantine and Fournier 2018). Another, more specific 
metabolic hypothesis proposes that cellular membranes 
evolved as a way to maintain voltage gradients and use them 
to harness chemical potential energy (Martin and Russell 
2003; Lane and Martin 2012), as is seen across extant life 
in the form of the proton-driven ATP synthase motor. These 
genetic and metabolic hypotheses are not mutually exclusive 
and all of them may help explain the evolution of cellularity 
following the origin of life.

Here, we describe a study in which we investigated 
selection pressures that favored either cellularity or 
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non-cellularity using an artificial life simulation system 
in which cellularity is an evolvable trait. The artificial life 
model is naïve to the hypotheses listed above and allows 
several different genetic and environmental parameters to 
be manipulated. Early explorations of the variable param-
eters suggested that the relationship between cellularity 
and metabolism was very strong within the context of our 
model. We did not originally set out to test the Szathmáry 
hypothesis (2007) that membrane permeability coevolved in 
response to increasing metabolic capability, but our results 
provide direct evidence in support of this hypothesis. They 
also demonstrate that Szathmáry’s metabolic hypothesis is 
fundamentally linked to those hypotheses that relate cellular-
ity to genetic fidelity. By controlling certain environmental 
parameters, however, we show that cellularity would have 
been strongly selected against during the early stages of the 
origin of life process, suggesting that cellularity only arose 
after some change in the setting where the origin of life 
took place.

Results

Description of the Artificial Life Simulation

The artificial life simulation system consists of populations 
of organisms that are able to evolve increasingly proficient 
metabolism and impermeable cellular boundaries. Organ-
isms in the simulation can convert food puzzles to pro-
cessing energy, which is required to run their metabolism 
and replicate. Organisms replicate automatically if they 
accumulate a store of processing energy equivalent to four 
times their genome length. The genome of each organism 
consists of metabolic and cellularity genes (Fig. 1). Meta-
bolic genes encode a series of pointers and logic gates 
that allow the organism to solve food puzzles. Cellular-
ity genes simply confer a level of cellular impermeability 
to the organism defined by a cellularity function, which 
in most simulations is cellular impermeability = 1–0.5n, 
where n is the total number of cellularity genes.

Organisms with a low cellular impermeability are leakier 
insofar as they have a higher likelihood of losing genetic 
material and processing energy to the environment or gain-
ing genetic material and processing energy from the envi-
ronment. When an organism loses processing energy to the 
environment, a random amount of its current energy store 
is put into an energy parcel and that energy parcel is lost 
to the environmental pool of processing energy. When pro-
cessing energy is gained from the environment, an energy 
parcel is randomly drawn from the environmental energy 
pool. When an organism loses or gains genetic material, a 
random sequence of genes is transferred to or from the envi-
ronment, and corresponding metabolic changes are made to 

the logic gate network. These random gene transfers are not 
equivalent to the derived horizontal gene transfer processes 
observed through, for example, microbial plasmid exchange, 
and thus are not likely to produce the same kinds of benefits 
to organisms. A value of 0% cellular impermeability indi-
cates a maximum probability of gene and energy exchange 
with the environment while a value of 100% indicates that an 
organism is completely closed to these transfers. This artifi-
cial life system is described in further detail in the methods 
section, below.

Several environmental and genetic parameters are vari-
ables that can be set to different values at the start of each 
simulation. As we were completing the refinement of the 
simulation code and exploring different combinations of 
these environmental and genetic parameters, we observed 
that when there was a very large processing energy pay-
off for metabolizing food puzzles, however incapable that 
metabolism was, populations in the simulation would con-
sistently remain at a cellular impermeability value of zero. 

Fig. 1   Schematic of a simulated genome and its metabolic process-
ing within the artificial life simulation system. The genome is com-
posed of four types of genes. Cellularity genes define the cellular 
impermeability value of the organism in relationship to a certain 
function, typically 1–0.5n, where n = the number of cellularity genes 
in the genome. Three different metabolic genes allow the organism to 
process food puzzles in order to acquire processing energy. The food 
puzzles are strings of eight binary digits. The three types of meta-
bolic genes are input, output, and NAND. A read head processes each 
metabolic gene in the genome in order and associates a binary digit 
with each gene as it is processed. Input genes copy one of the food 
puzzle digits according to an index number associated with each spe-
cific input gene. NAND genes contain pointers that take two binary 
digits associated with any previous genes as input and compute a 
new binary digit by performing a NAND operation on them. Output 
genes copy the previous binary digit to an output register according 
to an index number associated with each output gene. The solution 
to the food puzzle is a string of the opposite binary digits. Processing 
energy rewards are allocated based on the number of correct matches 
between the organism’s output register and the food puzzle solution
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We suspected that processing energy was becoming so abun-
dant in the environment that non-cellularity was selectively 
advantageous because it allowed organisms to easily obtain 
that processing energy from the environment. We subse-
quently conducted a set of simulations in order to explore 
the effect of surplus environmental processing energy on the 
evolution of cellularity.

The Evolution of Cellularity Depends 
on Environmental Energy Availability

We designed a series of simulations to test the hypothesis 
that the evolution of cellularity is directly influenced by the 
availability of processing energy in the environment. In the 
first set of simulations, all organisms began each simulation 
with 0 cellularity genes (i.e., 0% cellular impermeability). 
In half of these simulations, the environment was supplied 
with unlimited processing energy. In this scenario, a low cel-
lular impermeability value was maintained in the population 
throughout the duration of the simulations (Figs. 2a, S1). In 
the second set of simulations, the number of energy parcels 
in the environment was limited to 25% the maximum popu-
lation capacity. In this scenario, the average cellular imper-
meability of the population evolved to values between 80% 
and 100% (Figs. 2b, S2). These results show that low levels 
of environmental processing energy lead to the evolution of 
cellularity and suggest that there is an adaptive advantage 
to cellularity when processing energy is not available within 
the environment.

The above simulations did not, however, directly demon-
strate that high levels of environmental processing energy 
selects for non-cellularity because the simulations started 
with organisms already at 0% cellular impermeability. To 
test whether this sort of environment was actually select-
ing for non-cellularity, we ran a set of simulation in which 
organisms began with 3 cellularity genes (i.e., 87.5% cel-
lular impermeability). As predicted, when the environment 
was supplied with unlimited processing energy, populations 
evolved average cellular impermeability values very close 
to 0%, i.e., non-cellularity (Figs. 2c, S3). When the number 
of energy parcels in the environment was limited to 25% 
the maximum population capacity, populations maintained 
high average cellular impermeability values (Figs. 2d, S4).

In order to explore whether the populations could adapt 
to a reversal of selection pressure, we ran simulations 
in which we provided a burst of environmental process-
ing energy at the beginning of the simulation but did not 
replenish it afterward. All populations first evolved toward 
lower levels of cellular impermeability (often reaching a 
cellular impermeability of 0%), but as the available envi-
ronmental energy was exhausted, populations began to 
evolve a higher level of cellular impermeability, eventu-
ally reaching values close to the maximum allowed within 

our digital life environment (Figs. 3, S5, S6). We ran these 
simulations 100 times in order to test how often popula-
tions could survive the reversal of selection pressure. Out 
of 100 simulations, 66 populations survived this reversal 
of selection pressure and reached the 100,000th step. This 
result demonstrates that selection favoring non-cellularity 
is reversible within the context of our model and occurs as 
a response to the environment. The results of all of these 
simulations are presented in Figs. 2 and 3 as population-
averaged values, while a more complete view of the chang-
ing population over time can be observed in animated gif 
files available as supplemental files S1–S6.

Cellularity Coevolves with Metabolism

Our motivating hypothesis, that non-cellularity is selectively 
advantageous when processing energy is abundant in the 
environment, implies a corollary hypothesis that cellularity 
becomes beneficial when organisms have to perform metab-
olism in order to make their own processing energy from 
food puzzles. Throughout the simulations described in the 
previous section, we also measured every organism’s meta-
bolic proficiency. To measure metabolic proficiency, each 
organism in a simulation is required to solve 1000 randomly 
generated food puzzles initially and whenever its genome is 
altered; the average number of correctly solved digits in the 
food puzzles determines that organism’s metabolic profi-
ciency. An optimal metabolic network has a value of 8 while 
a random genome will likely have a value between 2 and 
4. Metabolic proficiency and cellular impermeability were 
measured at the same time points across all of the simula-
tions described above.

In simulations where processing energy was freely 
available in the environment and where we had previously 
observed a population-wide selection for non-cellularity, 
the average metabolic proficiency always settled at a value 
between 2 and 4 (i.e., the metabolic proficiency of a ran-
dom genome). This observation held whether the starting 
cellular impermeability value was 0% (Figs.  4a, S7) or 
87.5% (Figs. 4c, S8). In simulations where environmental 
energy parcels were limited to 25% the maximum population 
capacity, wherein we had previously observed selection for 
cellularity, the population-averaged metabolic proficiency 
consistently increased. This was true whether the starting 
cellular impermeability value was 0%, where metabolic pro-
ficiency settled between 5 and 7 (Figs. 4b, S9) or the starting 
cellular impermeability value was 87.5%, where metabolic 
proficiency settled between 6 and 8 (Figs. 4d, S10).

These results demonstrate that when populations evolve 
a high level of cellular impermeability, they also evolve a 
high level of metabolic proficiency. Between these initial 
and final values, we also observed that cellular imperme-
ability and metabolic proficiency appeared to increase or 
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decrease alongside one another during the process of evo-
lution. In the simulations where organisms began with a 
cellular impermeability value of 0% and environmental 
energy parcels were limited (Figs. 2b and 4b), we tracked 
the population-averaged values of cellular impermeabil-
ity and metabolic proficiency as both increased over time 
(Fig. 5) and found that these values are very strongly cor-
related (r = 0.84, p = 6.07 × 10–25). These results demonstrate 
that cellularity and metabolism are coevolving within our 
simulations. Again, the results of all of these simulations 
are presented in Figs. 4 and 5 as population-averaged values, 
while a more complete view of the changing population over 
time can be observed in animated gif files available as Sup-
plemental Files S7–S10.

Different Cellularity Functions Produce the Same 
Results

The earliest forms of cellularity may have been produced 
endogenously by the organism or may have been imposed 
by the environment through abiotically produced mem-
brane constituents. To explore the evolutionary conse-
quences of these different scenarios, and to more gener-
ally test whether our initial results are robust to changes in 
the cellularity function, we performed simulations similar 
to those described above but with different functions for 
determining an organism’s level of cellular impermeability 
based on the number of cellularity genes in its genome. 
The first of these functions confers an organism’s cellular 
impermeability as equivalent to 0.5n, where n is the total 

Fig. 2   Change in population-averaged cellular impermeability val-
ues in different conditions of environmentally available processing 
energy. A series of simulations were performed to better understand 
the role of environmentally available energy in the evolution of cel-
lularity. a Organisms began each simulation with 0 cellularity genes 
(i.e., 0% cellular impermeability) in an environment with unlimited 
food puzzles and processing energy. b Organisms began each simula-
tion with 0 cellularity genes (i.e., 0% cellular impermeability) in an 
environment with unlimited food puzzles, but a limited number of 
energy parcels in the environment equivalent to 25% the maximum 
population capacity. c Organisms began each simulation with 3 cel-
lularity genes (i.e., 87.5% cellular impermeability) in an environment 
with unlimited food puzzles and processing energy. d Organisms 

began each simulation with 3 cellularity genes (i.e., 87.5% cellular 
impermeability) in an environment with unlimited food puzzles, but 
a limited number of energy parcels in the environment equivalent to 
25% the maximum population capacity. Each of the above scenarios 
was run three times each at three different maximum population 
sizes: black = 500; red = 1000; blue = 10,000. Simulations were run 
for 100,000 time steps although only the first 20,000 steps are shown. 
Cellular impermeability values were recorded every 1000 steps fol-
lowing the first recording at step 250. Taken together, these results 
demonstrate that environments with limited processing energy select 
for cellularity, while environments with abundant processing energy 
select for non-cellularity
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number of cellularity genes. Here, cellular impermeabil-
ity is 100% when the organism has 0 cellularity genes 
and diminishes to 0.5, 0.25, 0.125, etc., as the organism 
accumulates cellularity genes. We henceforth refer to this 
function as the reverse cellularity function, because it acts 
like the reverse of the original cellularity function. The 
second function is a linear function in which cellularity is 
equivalent to 0.25*n, where n is the total number of cel-
lularity genes. We henceforth call this function the linear 
cellularity function.

Both alternate cellularity functions produce results sim-
ilar to the original set of simulations. In simulations where 
processing energy was freely available in the environment, 
we again observe selection for non-cellularity (Figs. 6a, c). 
This was true whether organisms started at a low cellular 
impermeability value, 3 genes for the reverse cellularity 
function (i.e., 12.5% cellular impermeability) or 0 genes 

for the linear cellularity function (i.e., 0% cellular imper-
meability); or started at a high cellular impermeability 
value, 0 genes for the reverse cellularity function (i.e., 
100% cellular impermeability) or 3 genes for the linear 
cellularity function (i.e., 75% cellular impermeability). In 
simulations where processing energy was limited in the 
environment, we again observed selection for high levels 
of cellular impermeability (Fig. 6b, d). This was also true 
whether organisms started at low cellular impermeability 
values or high cellular impermeability values described 
above. Similarly, under both alternate cellularity functions, 
we observed selection for low metabolic proficiency when 
environmental processing energy was unlimited (Fig. 7a, 
c) and selection for high metabolic proficiency when 
environmental processing energy was limited (Fig. 7b, 
d), coinciding with selection for non-cellularity or cel-
lularity, respectively. These results demonstrate that our 
previous observation regarding the evolution of cellularity 
and metabolism in response to the amount of environmen-
tally available processing energy was not due to the way in 
which cellularity genes encode the cellular impermeability 
phenotype.

Cellularity‑Dependent Food Puzzle Exchange Limits 
the Evolution of Cellularity and Metabolism

In our original simulation, the probability of gain or loss of 
processing energy from or to the environment was depend-
ent on the cellular impermeability value of the organism, 
but the cellular impermeability value had no effect on food 
puzzle acquisition. That is to say, even an organism with 
near 100% cellular impermeability could always acquire 
food from the environment. To test the effects of cellular-
ity-dependent food puzzle exchange, we designed simula-
tions in which the probability of food puzzle acquisition 
was dependent on the level of cellular impermeability in 
the same manner as transfers of processing energy and 
genetic material (Fig. 8).

As we observed in the original simulations, low levels of 
cellular impermeability evolved when processing energy was 
freely available in the environment. This was true whether 
the starting value of cellular impermeability was low (0%) 
or high (87.5%). The selection for low cellular imperme-
ability coincided with a selection for low levels of metabolic 
proficiency just as it had in the original simulations. But 
the results of these simulations differed from those of the 
original simulations when processing energy in the envi-
ronment was limited. Here, the population averaged level 
of cellular impermeability hovered around 0.3 whether the 
starting value of cellular impermeability was low (0%) or 
high (87.5%) and the metabolic proficiency value was only 
slightly higher compared to the simulations in which pro-
cessing energy was freely available. These results suggest 

Fig. 3   Change in population-averaged cellular impermeability lev-
els in response to changing conditions of environmentally available 
processing energy. Each of these simulations began with a large pool 
of processing energy in the environment (10,000 energy parcels 
with 500 processing energy units, each). The initial environmental 
energy pool was not replenished and thus diminished over time due 
to its consumption by organisms. Organisms at the beginning of each 
simulation had three cellularity genes (i.e., 87.5% cellular imperme-
ability). These simulations were run 100 times each with a maximum 
population size of 1000. Out of the 100 simulations, 66 had popula-
tions that survived to the 100,000th time step while 34 had popula-
tions that died out (not shown). Simulations are color-coded by the 
minimum population-averaged cellular impermeability value: 0–0.2 
(blue), 0.2–0.4 (red), 0.4–0.6 (black), and 0.6–0.8 (green). The 
populations in all simulations showed a temporary decrease in aver-
age cellular impermeability in response to environmentally avail-
able processing energy and a subsequent increase in average cellular 
impermeability after that processing energy resource was exhausted. 
These results demonstrate that the selection pressures favoring non-
cellularity in an energy-rich environment and favoring cellularity in 
an energy-poor environment are reversible and that populations can 
often survive that reversal
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that cellularity-dependent food puzzle exchange creates a 
selection pressure that favors non-cellularity because organ-
isms with lower cellular impermeability have a higher prob-
ability of accessing food in the environment. The resulting 
evolution toward middling levels of cellular impermeability 
is likely the result of a balance between this selection pres-
sure and the selection favoring high levels of cellular imper-
meability that was observed in previous simulations.

Specific Causes of Selection Pressures Favoring 
or Opposing Cellularity

Having established a very strong correlation between the 
evolution of cellularity and the evolution of metabolism, we 
designed several simulations in order to better understand 

the underlying causes of the selection pressures that led to 
cellularity or non-cellularity. Cellularity may be selectively 
advantageous when processing energy in the environment 
is scarce because it benefits organisms to retain the prod-
ucts of their own metabolism. Alternatively, cellularity may 
be selectively advantageous when processing energy in the 
environment is scarce because organisms cannot maintain 
a high metabolic proficiency when random gene transfers 
are common and act as an additional source of mutation. 
Similarly, selection may favor non-cellularity when pro-
cessing energy in the environment is plentiful because it 
provides access to that processing energy, or because cel-
lularity genes increase the size of the genome and thereby 
increase the cost of genome processing. To address these 
alternate explanations, we repeated the previous simulations 

Fig. 4   Change in population-averaged metabolic proficiency in differ-
ent conditions of environmentally available energy. The population-
averaged metabolic proficiency was measured alongside the series of 
simulations described in Fig. 2. a Organisms began each simulation 
with 0 cellularity genes (i.e., 0% cellular impermeability) in an envi-
ronment with unlimited food puzzles and processing energy. b Organ-
isms began each simulation with 0 cellularity genes (i.e., 0% cellular 
impermeability) in an environment with unlimited food puzzles, but 
a limited number of energy parcels in the environment, equivalent to 
25% the maximum population capacity. c Organisms began each sim-
ulation with 3 cellularity genes (i.e., 87.5% cellular impermeability) 
in an environment with unlimited food puzzles and processing energy. 
d Organisms began each simulation with 3 cellularity genes (i.e., 

87.5% cellular impermeability) in an environment with unlimited 
food puzzles, but a limited number of energy parcels in the environ-
ment, equivalent to 25% the maximum population capacity. Each of 
the above scenarios was run three times each at three different maxi-
mum population sizes: black = 500; red = 1000; blue = 10,000. Simu-
lations were run for 100,000 time steps although only the first 20,000 
steps are shown. Cellular impermeability values were recorded every 
1000 steps following the first recording at step 250. Taken together, 
these results demonstrate that environments with limited environmen-
tally available processing energy select for an increase in metabolic 
proficiency, while environments with abundant processing energy 
select for a level of metabolic proficiency equivalent to that of a ran-
dom genome
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in which organisms either started with 0% or 87.5% cellular 
impermeability and the environment was either seeded with 
unlimited processing energy or with a limited number of 
energy parcels equivalent to 25% the maximum population 
capacity. However, in these simulations, we manipulated the 
consequences of cellularity such that the probability of ran-
dom gene transfers or energy transfers was set to a constant 
value of either 0% or 100% rather than being determined by 
the level of cellular impermeability.

The simulations in which random gene transfer was held 
constant (either at 0% or 100%) demonstrated that cellularity 
is selectively advantageous because it contributes to genetic 
fidelity. In all simulations in which processing energy was 
freely available in the environment, non-cellularity was 
selected (Fig. 9a, c; green, red) just as it was when the proba-
bility of random gene transfer was determined by the level of 
cellular impermeability (Fig. 2a, c). However, when process-
ing energy in the environment was limited, the level of cel-
lular impermeability remained lower (Fig. 9b, d; green, red), 
which differed from previous simulations in which the prob-
ability of random gene transfer was determined by the level 

of cellular impermeability (Fig. 2b, d). Furthermore, when 
random gene transfer was held constant, cellular imperme-
ability did not consistently settle at a particular value even 
after 100,000 time steps. Even though high levels of cellular 
impermeability did not evolve when random gene transfer 
was held constant, the population-averaged metabolic profi-
ciency did increase over time (Fig. 10b, d; green, red). Taken 
together, these results indicate that while non-cellularity was 
selectively advantageous when processing energy was abun-
dant because it allowed organisms to access that energy, high 
cellular impermeability was selectively advantageous when 
processing energy was scarce, at least in part, because it 
improved genetic fidelity and allowed organisms to evolve 
genomes that could perform metabolism.

The simulations in which energy transfer was held con-
stant (either at 0% or 100%) confirmed that non-cellularity 
was selectively advantageous when energy in the environ-
ment was unlimited because it allows organisms to access 
that environmental energy. When energy was available in 
the environment and the probability of energy transfer was 
set to a constant value of 0%, populations evolved both a 
high level of cellular impermeability (Fig. 9a, c; blue) and a 
high level of metabolic proficiency (Fig. 10a, c; blue), just 
as they did when the probability of random energy transfer 
was determined by the level of cellular impermeability and 
environmental processing energy was limited (Figs. 2b, d; 
4b, d). However, when energy transfer was set to a constant 
value of 100%, the results were less straightforward. Here, 
populations evolved toward high levels of cellular imper-
meability (Fig. 9a, c; black) and low levels of metabolic 
proficiency (Fig. 10a, c black).

It is unlikely that cellularity provided a selective advan-
tage by protecting organisms from random gene transfers in 
this scenario because populations also evolved low levels 
of metabolic proficiency and therefore should be insensi-
tive to genomic disruptions. More likely, selection for low 
cellular impermeability was relaxed because energy transfer 
remained at the maximum level regardless of the level of cel-
lular impermeability. It is possible that under this scenario, 
cellularity genes were allowed to accumulate by random 
chance, leading ultimately to a relatively high level of cellu-
larity. It is already known that genetic drift alone can explain 
a so-called increase trend when the founding character value 
is low (Stanley 1973; Gould 1988). Under this hypothesis, 
the distribution of traits would expand toward progressively 
higher values under random mutation because the founding 
character value is bounded on the low end.

We find, however, that this drift toward high levels of 
cellular impermeability is further enhanced by the effect 
of cellular impermeability on mutation rate. High levels of 
cellular impermeability decrease the likelihood of further 
mutations. As such, lineages with higher levels of cellu-
lar impermeability may be more likely to maintain those 

Fig. 5   The relationship between cellular impermeability and meta-
bolic proficiency. Results are shown from the simulations in which 
organisms began with 0 cellularity genes (i.e., 0% cellular imperme-
ability) in an environment with unlimited food puzzles, but a limited 
number of energy parcels. Cellular impermeability and metabolic 
proficiency values were recorded every 1000 steps following the first 
recording at step 250. Color coding refers to the maximum popula-
tion size of each simulation: black = 500; red = 1000; blue = 10,000. 
In these simulations, both population-averaged cellularity and popu-
lations-averaged metabolic proficiency increased (Figs.  2b and 4b). 
When shown as a scatterplot, it is clear that cellular impermeability 
and metabolic proficiency evolve together. Furthermore, the pop-
ulation-averaged values of these traits are very strongly correlated 
(r = 0.84, p = 6.07 × 10–25), indicating that they are coevolving
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higher levels of cellular impermeability than to drift back 
to lower levels of cellular impermeability because they 
are less likely to mutate at all. To test this hypothesis, we 
designed a naïve simulation in which a genetic fidelity 
trait is allowed to drift randomly, but the higher the level 
of genetic fidelity, the slower the drift. These simulations 
used the same statistical properties as the original simula-
tions, but did not include other elements of the original 
simulations such as genomes, metabolism, replication, and 
death. In these simulations, when a trait value is linked to 
mutation rate, the distribution of trait values after genetic 
drift is altered such that lower values are increasingly pre-
cluded over time (Fig. 11). This result suggests that cel-
lularity could have evolved in the absence of any selection 

pressures simply because it decreases mutation rates and 
reduces genetic drift.

Under all of the above simulations, we also measured 
genome lengths along with levels of cellular impermeabil-
ity and metabolic proficiency (Fig. 12). We did so in order 
to determine whether selection was acting on genome size. 
Interestingly, when processing energy in the environment 
was limited (Fig. 12b, d), the population-averaged genome 
length was always relatively low (~ 20–30 genes). When pro-
cessing energy in the environment was abundant (Fig. 12a, 
c) population-averaged genome length was usually relatively 
high (40–50 genes). An exception to this trend was that the 
population-averaged genome length was also always rela-
tively low, regardless of the availability of processing energy 
in the environment, when the probability of energy transfer 

Fig. 6   Change in population-averaged cellular impermeability levels 
in different conditions of environmental energy using alternate cel-
lularity function. The same simulations were performed as shown in 
Fig. 2 except that the level of cellular impermeability was determined 
by the number of cellularity genes using either a linear function, cel-
lular impermeability = 0.25n, shown in black, or a reverse of the orig-
inal function, cellular impermeability = 0.5n, shown in red. a Organ-
isms began each simulation with 0 cellularity genes (i.e., 0% cellular 
impermeability in the linear function or 100% cellular impermeability 
in the reverse function) in an environment with unlimited food puz-
zles and processing energy. b Organisms began each simulation with 
0 cellularity genes in an environment with unlimited food puzzles, 

but a limited number of energy parcels in the environment equivalent 
to 25% the maximum population capacity. c Organisms began each 
simulation with 3 cellularity genes (i.e., 75% cellular impermeability 
in the linear function or 12.5% cellular impermeability in the reverse 
function) in an environment with unlimited food puzzles and process-
ing energy. d Organisms began each simulation with 3 cellularity 
genes in an environment with unlimited food puzzles, but a limited 
number of energy parcels in the environment equivalent to 25% the 
maximum population capacity. These results demonstrate that the 
previously observed evolution of cellularity in response to the avail-
ability of processing energy in the environment is not affected by 
changes in the way that cellularity is determined by genome content
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was not a consequence of cellularity, but was instead set to 
a constant value of 0%. Thus, environments with limited 
processing energy led to the evolution of smaller genomes, 
likely because the energy required to process those genomes 
would have been harder to acquire.

While the initial observation that cellularity and metabo-
lism coevolve is straightforward, these simulations demon-
strate that the underlying causes are complex. When pro-
cessing energy was abundant in the environment, selection 
favored non-cellular organisms because it allowed them to 
access that environmental energy. Aside from maintaining 
low levels of cellular impermeability, there was no selec-
tion pressure on the genome itself, either to produce a 
proficient metabolism or to maintain a low genome size. 
When processing energy in the environment was limited and 

organisms had to produce their own energy from metabo-
lism, cellularity was selectively advantageous because it 
allowed organisms to maintain a genome that could per-
form metabolism, not because it allowed organisms to retain 
the energy that they created from that metabolism. Fur-
thermore, organisms evolved smaller genomes under these 
conditions despite the need to produce processing energy 
through genomically encoded metabolism. Thus, scenarios 
that favored organisms with a proficient metabolism also 
favored organisms that produced that metabolism efficiently 
by way of a relatively short genome. Finally, in the absence 
of any selection pressure, cellularity could evolve by a direc-
tional genetic drift tending toward higher values of cellular 
impermeability that correspond with lower mutation rates.

Fig. 7   Change in population-averaged metabolic proficiency in dif-
ferent conditions of environmental energy using alternate cellularity 
function. The population-averaged metabolic proficiency was meas-
ured alongside the series of simulations described in Fig. 6, wherein 
the level of cellular impermeability for each organism was deter-
mined by the number of cellularity genes using either a linear func-
tion, cellularity = 0.25n, shown in black, or a reverse of the original 
function, cellularity = 0.5n, shown in red. a Organisms began each 
simulation with 0 cellularity genes (i.e., 0% cellular impermeability 
in the linear function or 100% cellular impermeability in the reverse 
function) in an environment with unlimited food puzzles and process-
ing energy. b Organisms began each simulation with 0 cellularity 
genes in an environment with unlimited food puzzles, but a limited 

number of energy parcels in the environment equivalent to 25% the 
maximum population capacity. c Organisms began each simulation 
with 3 cellularity genes (i.e., 75% cellular impermeability in the lin-
ear function or 12.5% cellular impermeability in the reverse function) 
in an environment with unlimited food puzzles and environmental 
energy. d Organisms began each simulation with 3 cellularity genes 
in an environment with unlimited food puzzles, but a limited number 
of energy parcels in the environment equivalent to 25% the maximum 
population capacity. These results demonstrate that after substitut-
ing very different functions for determining cellular impermeability 
values, the evolution of metabolism behaves the same as previously 
observed in simulations using the original cellularity formula (Fig. 4)
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Discussion

The evolution of cellularity was one of the most important 
transitions in evolutionary history. The results presented 
above contribute to our understanding of this important stage 
in evolutionary history by demonstrating that cellularity and 
metabolism coevolve in response to environmental change. 
Specifically, we found that environments rich in processing 
energy selected for low cellular impermeability and low met-
abolic proficiency while environments poor in processing 
energy selected for high cellular impermeability and high 
metabolic proficiency and that between these two extremes, 
the population-averaged values of cellular impermeability 
and metabolic proficiency were very strongly correlated.

By setting random gene transfer and energy transfer to 
constant values, we were able to ascribe causes to these evo-
lutionary trends. When processing energy was freely avail-
able in the environment, non-cellularity was advantageous 
because it allowed organisms to easily access that energy. 
Organisms did not need to produce their own processing 
energy from food puzzles and metabolic proficiency did 
not evolve beyond the value range equivalent to a random 
genome. When processing energy was not abundant in the 
environment, organisms had to produce their own energy 
from food in order to survive and replicate. This scenario 

created selection pressure for high levels of metabolic pro-
ficiency and also for high levels of cellular impermeabil-
ity, which was essential for maintaining the genetic fidelity 
required to sustain a genome that is capable of producing an 
effective metabolism. However, when no obvious selection 
pressures were present, cellularity appeared to evolve by a 
directional genetic drift that favored relatively high levels of 
cellular impermeability because they caused a decrease in 
the mutation rate and thereby the rate of further genetic drift.

We find that the evolutionary relationship between cel-
lularity and metabolism is not dependent on the cellularity 
function, itself, as we observed similar dynamics when the 
original cellularity function was replaced with a linear or 
(more surprisingly) a reverse cellularity function. The latter 
cellularity function has especially important implications 
for the origin and early evolution of life because it mimics a 
scenario in which cellularity is imposed by the environment, 
rather than endogenously produced by the organisms. In this 
scenario, organisms had to acquire reverse cellularity genes 
to diminish the cellular impermeability value below 100%. 
We found that in simulations that favor non-cellularity, i.e., 
when processing energy in the environment was unlimited, 
organisms did indeed accumulate these reverse cellularity 
genes and thereby acquire low levels of cellular imperme-
ability. In a potential origin of life scenario that included 

Fig. 8   Change in population-averaged cellular impermeability and 
metabolic proficiency levels in different conditions of environmental 
processing energy when the acquisition of food puzzles is depend-
ent on cellular impermeability. The simulations were performed in a 
manner similar to those shown in Figs. 2 and 4 except that the abil-
ity of organisms to acquire food puzzles from the environment was 
dependent on their level of cellular impermeability. Results for both 
population averaged cellularity (left) and population averaged meta-
bolic proficiency (right) are shown for three repetitions of each of 
four different simulations: organisms began each simulation with 0 
cellularity genes in an environment with unlimited food puzzles and 
processing energy (black); organisms began each simulation with 
3 cellularity genes in an environment with unlimited food puzzles 

and processing energy (red); organisms began each simulation with 
0 cellularity genes in an environment with unlimited food puzzles, 
but a limited number of processing energy parcels in the environ-
ment equivalent to 25% the maximum population capacity (green); or 
organisms began each simulation with 3 cellularity genes in an envi-
ronment with unlimited food puzzles, but a limited number of pro-
cessing energy parcels in the environment equivalent to 25% the max-
imum population capacity (blue). These results show that when food 
puzzle acquisition is tied to cellular impermeability, populations do 
not evolve high levels of cellular impermeability and metabolic profi-
ciency, even under conditions that favored these traits in the original 
simulations
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lipid membranes, the same selection pressures could favor 
the disruption of these membranes, or, alternatively, could 
favor the evolution of non-specific membrane pores, selec-
tive membrane channels, or even transporters, assuming that 
the genetic system had evolved a sufficient level of complex-
ity to produce such gene products.

The results of our simulations are, on the other hand, sen-
sitive to whether food puzzles can be acquired by the organ-
ism regardless of its cellularity value. In our original simula-
tions, organisms were just as likely to acquire food if their 
cellular impermeability value was 100% as they were if their 
cellular impermeability value was 0%. This dynamic is simi-
lar to some autotrophic metabolisms, e.g., photosynthesis 
and some forms of chemosynthesis such as methanogenesis, 

in which the metabolic inputs (i.e., light, CO2, H2O, or H2) 
can easily traverse cell membranes even though the meta-
bolic outputs cannot. Other forms of metabolism, especially 
heterotrophic metabolisms, require the active transport of 
nutrients that cannot freely pass through cell membranes. 
We found that when we set the probability of food puzzle 
acquisition as a function of the cellular impermeability 
value, the population-averaged value of cellular imperme-
ability increased, but was never higher than around 50%. 
These results suggest that cellularity would not have been 
selectively advantageous in heterotrophic organism prior to 
the advent of membrane transporters that could have brought 
large organic nutrients into the interior of the cell.

Fig. 9   Change in population-averaged cellular impermeability lev-
els in different conditions of environmental processing energy when 
either random gene transfer or energy transfer is no longer a conse-
quence of cellularity. We performed the simulations described in 
Figs.  2 and 4. a Organisms began each simulation with 0 cellular-
ity genes (i.e., 0% cellular impermeability) in an environment with 
unlimited food puzzles and processing energy. b Organisms began 
each simulation with 0 cellularity genes (i.e., 0% cellular imperme-
ability) in an environment with unlimited food puzzles, but a limited 
number of processing energy parcels in the environment, equivalent 
to 25% the maximum population capacity. c Organisms began each 
simulation with 3 cellularity genes (i.e., 87.5% cellular impermeabil-

ity) in an environment with unlimited food puzzles and processing 
energy. d Organisms began each simulation with 3 cellularity genes 
(i.e., 87.5% cellular impermeability) in an environment with unlim-
ited food puzzles, but a limited number of processing energy par-
cels in the environment, equivalent to 25% the maximum population 
capacity. The consequences of cellularity are manipulated as such: 
Green = probability of gene transfer is set to 0%; Red = probability of 
gene transfer is set to 100%; Blue = probability of processing energy 
transfer is set to 0%; Black = probability of processing energy transfer 
is set to 100%; Purple = no manipulation. All simulations were per-
formed with a maximum population size of 1000
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Cellularity as we have modeled it in our artificial life 
simulations is certainly a simplified abstraction. A broad 
range of molecular functions is required to establish the 
kind of cellularity we see today, including the metabolic 
synthesis of phospholipids and other membrane constitu-
ents, the molecular system for targeting proteins and other 
biomolecules into and across the cell membrane, and the 
ability to faithfully replicate a cell into two similar if not 
identical cells. Here we simply model cellularity by the 
accumulation of general cellularity genes. However, in 
our model, the genomic cost of maintaining cellularity 
is slightly higher than in modern organisms. In an initial-
ized genome in which organisms have a cellular imper-
meability value of 87.5%, the cellularity genes make up 

11.1% of the genome and the ratio of cellularity genes 
to metabolic genes is 1:8. In Escherichia coli, genes that 
encode functions related to cellularity account for 4.1% 
of the proteins in the genome and the ratio of cellularity 
genes to metabolic genes is 1:23.6 (PANTHER DB version 
14.1; Thomas et al. 2003; Mi et al. 2013). Therefore, even 
though our model for genetically encoding cellularity is 
simple in comparison to real organisms, the genomic cost 
of maintaining cellularity is actually higher.

The metabolism modeled by our artificial life envi-
ronment is also a simplified abstraction. Metabolism as 
we have defined it represents a genome’s ability to solve 
a problem and therein convert food puzzles to processing 
energy. The food puzzles represent a nutrient available in the 

Fig. 10   Change in population-averaged levels of metabolic profi-
ciency in different conditions of environmental processing energy 
when either random gene transfer or energy transfer is no longer a 
consequence of cellularity. We performed the simulations described 
in Figs.  2 and 4. a Organisms began each simulation with 0 cellu-
larity genes (i.e., 0% cellular impermeability) in an environment with 
unlimited food puzzles and processing energy. b Organisms began 
each simulation with 0 cellularity genes (i.e., 0% cellular imperme-
ability) in an environment with unlimited food puzzles, but a limited 
number of processing energy parcels in the environment, equivalent 
to 25% the maximum population capacity. c Organisms began each 
simulation with 3 cellularity genes (i.e., 87.5% cellular impermeabil-

ity) in an environment with unlimited food puzzles and processing 
energy. d Organisms began each simulation with 3 cellularity genes 
(i.e., 87.5% cellular impermeability) in an environment with unlim-
ited food puzzles, but a limited number of processing energy par-
cels in the environment, equivalent to 25% the maximum population 
capacity. The consequences of cellularity are manipulated as such: 
Green = probability of gene transfer is set to 0%; Red = probability of 
gene transfer is set to 100%; Blue = probability of energy transfer is 
set to 0%; Black = probability of energy transfer is set to 100%; Pur-
ple = no manipulation. All simulations were performed with a maxi-
mum population size of 1000
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environment and the processing energy represents any prod-
uct that is synthesized from that nutrient and is essential for 
the organism to survive and reproduce. As such, our artificial 
life simulation can incorporate a range of hypotheses about 
the origin of life. Processing energy in the simulation could 
represent charged nucleotides in an RNA world, multiple 
constituents of an autocatalytic network, etc. As such, our 

results have important consequences for the origin of life 
regardless of how it specifically occurred.

Most origin-of-life hypotheses require, either explic-
itly or implicitly, a rich geochemical environment to sup-
port the chemical or genetic replicators that preceded bona 
fide organisms (e.g., Rode et al. 1999; Parnell 2004; Mar-
tin and Russell 2007; Johnson et al. 2008; Stüeken et al. 

Fig. 11   A generalized simulation demonstrating the effect of genetic 
drift over a trait that determines mutation rates. Because increased 
cellular impermeability leads to a lower mutation rate, we proposed 
that genetic drift would favor increased cellular permeability in the 
absence of any other selection pressures (see Fig. 9, black line). The 
test simulation mimics the effects in cellularity genes as an evolvable 
“fidelity value” (probability of mutation = 0.5x, where x is the fidelity 
value). An additional mutation step mimics the probability of inser-
tion or deletion mutations in the original model, which are independ-
ent of cellularity. Controls mimic the mutation rates of populations 

with a constant cellular impermeability value of 100% (“Minimum 
Control”) or 0% (“Maximum Control”). Simulations were run 106 
times for each case and fidelity values were recorded at the 1000th 
step (top) or the 10,000th step (bottom). These simulations show an 
important effect of genetic drift occurring over a character that affects 
mutation rate. Specifically, the distribution appears to preclude low 
values, unlike both controls wherein the mode value is 0. As such, 
relatively high levels of cellular impermeability are nearly certain to 
evolve within our model in the absence of any selection pressures
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2013). The first metabolic pathways are thought to have 
evolved in order to synthesize important compounds that 
had previously been, but were no longer being, produced 
by the rich geochemical setting of life’s origin (Horowitz 
1945; Lazcano and Miller 1999; Yamada and Bork 2009). 
Our results confirm the hypothesis (Szathmáry 2007) that 
cellularity also emerged during this stage in evolution. As 
important compounds became scarce in the environment 
and a capable metabolism evolved to produce those com-
pounds biosynthetically, cellular organization very likely 
coevolved along with that early metabolism. This cellular 
organization served to protect proto-organisms from the 
genomic disruptions of random gene losses and gains. In 
this way, our results are consistent with previous modeling 
studies that show that cellular organization may have ben-
efitted early replicators by mitigating the effects of parasites 
(e.g., Takeuchi and Hogeweg 2009; Matsumura et al. 2016; 
Shah et al. 2019). In other words, both our results and the 

results of these previous studies suggest that cellularity was 
selectively advantageous because it increased genetic fidel-
ity. This increased genetic fidelity, in turn, may have further 
facilitated the evolution of both metabolic and cellular sys-
tems in an evolutionary feedback loop.

Our results also suggest that the emergence of cellular-
ity is more complicated than the basic assumption that life 
originated as non-cellular and then subsequently evolved 
cellularity once it had become sufficiently complex. Our 
simulations show that the kind of rich geochemical envi-
ronment in which the origin of life likely took place would 
have maintained life as non-cellular because selection would 
have favored the replicators that could most easily access 
important compounds in the environment. Even in a sce-
nario where cellularity was imposed by the environment, 
not produced endogenously by the organism, our results 
show that selection favored non-cellularity. This observation 
does not rule out membrane compartmentalization during 

Fig. 12   Change in population-averaged genome lengths in different 
conditions of environmental processing energy when either random 
gene transfer or energy transfer is no longer a consequence of cel-
lularity. We performed the simulations described in Figs. 2 and 4. a 
Organisms began each simulation with 0 cellularity genes (i.e., 0% 
cellular impermeability) in an environment with unlimited food puz-
zles and processing energy. b Organisms began each simulation with 
0 cellularity genes (i.e., 0% cellular impermeability) in an environ-
ment with unlimited food puzzles, but a limited number of processing 
energy parcels in the environment, equivalent to 25% the maximum 
population capacity. c Organisms began each simulation with 3 cel-
lularity genes (i.e., 87.5% cellular impermeability) in an environment 

with unlimited food puzzles and processing energy. d Organisms 
began each simulation with 3 cellularity genes (i.e., 87.5% cellular 
impermeability) in an environment with unlimited food puzzles, but 
a limited number of processing energy parcels in the environment, 
equivalent to 25% the maximum population capacity. The conse-
quences of cellularity are manipulated as such: Green = probability of 
gene transfer is set to 0%; Red = probability of gene transfer is set to 
100%; Blue = probability of energy transfer is set to 0%; Black = prob-
ability of energy transfer is set to 100%; Purple = no manipulation. 
All simulations were performed with a maximum population size of 
1000
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the origin of life, but suggests that some additional mecha-
nism for concentrating nutrients within protocells would be 
required (e.g., Damer and Deamer 2015). Indeed, we find 
that a selection pressure favoring increased genome stability 
through cellularity is still present in simulations with rich 
environments, but that this selection pressure is outweighed 
by selection favoring non-cellularity as a means of accessing 
environmental energy.

Taken together, our results indicate that true cellularity, 
as opposed to transient protocells, likely evolved only after a 
change in the setting of life’s origin. This reduction in avail-
able nutrients may have been due to their depletion in the 
environment as life multiplied, or a change in the underlying 
geochemistry that had previously produced those nutrients. 
As some hypotheses about the origin of metabolic path-
ways suggest, this environment could have been abundant 
enough to sustain life during its origin, but depleted soon 
after, necessitating the evolution of metabolism (Horowitz 
1945; Lazcano and Miller 1999; Yamada and Bork 2009). 
Our results suggest that the evolution of cellular organi-
zation likely occurred during this metabolic transition as 
well. This transition toward cellular organization would have 
subsequently promoted linear descent, i.e., the transfer of 
genetic information from parent to offspring, as the princi-
pal mechanism of gene transfer. As such, the evolution of 
cellular organization may have been a prerequisite for the 
taxonomic diversification (Woese 1998) and the ecological 
dispersal (Cantine and Fournier 2018) that, together, have 
shaped the evolution of the biosphere.

Methods

Simulation Overview

The artificial life simulation system described above con-
sists of populations of organisms that require processing 
energy to survive and reproduce, which can be obtained 
by metabolizing food puzzles available in the environment. 
Organisms can replicate when excess processing energy 
is accumulated. The genome of each organism consists of 
separate metabolic and cellularity genes. Metabolic genes 
are encoded as a series of pointers and logic gates that allow 
them to solve food puzzles. Cellularity genes simply confer 
the overall level of cellular impermeability of the organ-
ism as 1–0.5n, where n is the total number of cellularity 
genes. Each genome is subjected to a predefined probability 
of insertions, deletions, and pointer mutations. At each time 
step, organisms proceed a single step through their genome 
and consume one unit of processing energy. All mutations, 
random gene transfers, processing energy transfers, and tests 
of metabolic proficiency happen at set intervals of 100 time 
steps. Organisms may be born or die at any given time step. 

The simulation is built with no spatial component, so organ-
isms are equally likely to gain food, available processing 
energy, or genes from the environment without any relative 
positioning of components within the ecosystem. The soft-
ware we developed to perform these artificial life simula-
tions is available at https​://githu​b.com/Goldm​anLab​/Simme​
rpop.

Food puzzles

A food puzzle consists of a randomly generated eight-bit 
input register and a solution register. An organism can 
solve the food puzzle using its metabolic genes in order to 
obtain processing energy (see below). The solution to each 
food puzzle is a Boolean NOT operation at every index 
of the input register. For example, if the food particle is 
[1,0,1,0,1,1,0,0], its solution is [0,1,0,1,0,0,1,1].

Metabolism

The metabolic genes comprise a set of instructions that 
execute Boolean logic operations to solve the food puzzles. 
The use of Boolean operators as genes was inspired by the 
Avida software platform (Lenski et al. 2003; Ofria et al. 
2004). Each organism has a genome of variable length and 
an eight-bit output register. A read head denotes the cur-
rent instruction being executed. When an organism receives 
a food puzzle, it starts to execute at the beginning of its 
genome and progresses linearly one step at a time until the 
read head reaches the end of the genome. Once finished, the 
output register is compared against the solution register of 
the food. The processing energy reward is calculated based 
on (n3−x × 0.1), where n is the number of correct bits in 
the output and x is a reduction factor. This reduction fac-
tor dynamically adjusts the processing energy reward from 
food puzzles based on the population size. The reduction 
factor will increment by one every time step that the popu-
lation size exceeds 85% of the population capacity. Conse-
quently, the processing energy reward from food puzzles will 
decrease to increase competition in the population. On the 
other hand, when the population size drops below 25% of the 
population capacity, the factor will decrement by one every 
time step to promote survival by providing more processing 
energy per solved food puzzle.

There are three different instruction types within the met-
abolic component of an organism’s genome, which taken 
together create a Boolean logic gate network (see Fig. 1): (1) 
An input gene has a pointer referring to one of the eight indi-
ces of the food’s input register. When an input instruction is 
executed, it evaluates to the value referred to by its pointer. 
(2) An output gene has a pointer referring to the preceding 
instruction and a pointer referring to one of the eight indices 
of the organism’s output register. When an output instruction 

https://github.com/GoldmanLab/Simmerpop
https://github.com/GoldmanLab/Simmerpop
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is executed, it evaluates to the same value as the previous 
instruction, and also places that value in the output register. 
(3) A NAND gene has 2 pointers referring to certain preced-
ing instructions. When a NAND instruction is executed, it 
evaluates to the logical NAND (or NOT-AND) of the values 
of the previous instructions indicated by the pointers and 
the result is stored in the instruction’s memory slot. Cel-
lularity genes are also interspersed throughout the genome. 
A cellularity gene has a pointer referring to the preceding 
instruction so that NAND genes pointing to a cellularity 
gene receive a value.

To test metabolic proficiency, the organism is required to 
solve 1000 randomly generated food puzzles at inception, 
and after any genome mutation; the average accuracy of the 
solution determines the organism’s metabolic proficiency 
value. An optimal metabolic strategy will have a value of 
eight; a random genome will likely have a value between 
two and four.

Cellularity

An organism’s overall level of cellular impermeability is 
represented by a value between 0 and 1. Except when other-
wise noted, the cellular impermeability value is calculated 
from the number of cellularity genes as 1–0.5n, where n is 
the number of cellularity genes. Organisms with a low cel-
lular impermeability have a higher likelihood of losing/gain-
ing genes and processing energy. A value of 0% indicates 
a complete openness to gene and energy exchange with the 
environment while a value of 100% indicates that an organ-
ism is completely closed to these transfers. In the case of the 
cellularity-dependent food puzzle transfer simulations, food 
transfer was tied to cellularity in the same way as gene and 
energy transfer. These random transfers occur at intervals 
of 100 time steps.

Processing Energy and Replication

Organisms begin each simulation with an initial stock of 
processing energy equivalent to twice the length of their 
genome. Organisms can gain processing energy in two ways, 
by solving food puzzles or by receiving energy parcels from 
the environment when cellular impermeability is low (see 
above). However, when cellular impermeability is low, the 
organism is equally likely to lose processing energy to the 
environment. All organisms use one unit of processing 
energy at every time step of a simulation.

An organism replicates once it accumulates a store of pro-
cessing energy equivalent to four times its genome length. 
Thus, after the start of the simulation, every new organism 
begins with half of the processing energy stock of its parent 
at the time of replication. We tested the effects of a genome-
dependent replication cost by imposing an additional energy 

cost for replication that was equivalent to two times the 
genome length and not passed down to offspring, but found 
that this additional replication cost did not alter the results 
of our simulations (Figure S11).

Mutations

Organisms can undergo four different kinds of mutations, 
insertion mutations, deletion mutations, pointer reassign-
ments, and random gene transfers. Mutations occur at inter-
vals of 100 time steps and each kind of mutation can be 
assigned a different probability before running the simula-
tion. After an initial exploration of the parameter space, we 
determined that 0.005 per site was a reasonable mutation 
probability for insertions, deletions, and pointer reassign-
ments for the purposes of this study.

Random gene transfers occur when the cellular imper-
meability value is less than 100%. An organism can lose a 
segment of its genome as small as one instruction or as large 
as its entire genome. Genes that are lost are added to the 
free gene pool in the environment. When a gene loss event 
occurs, the genome is split up into random sections, one 
of which is selected at random to be lost and added to the 
free gene pool. The remaining fragments are concatenated 
back together maintaining their order. When a gene insertion 
occurs, the genome is broken up in an identical fashion and a 
new gene from the common gene pool is randomly inserted 
at one of the break points before the genome is concatenated 
back together. The likelihood that the sequence will break at 
any given position is dictated by a break weight probability 
of 0.1. The probability that a gene transfer happens in a par-
ticular organism at a particular time is inversely proportional 
to the organism’s cellular impermeability value.

Structure of a Simulation

At the beginning of every simulation, organisms are given 
a starting genome and an allocation of energy equivalent to 
two times the length of their genome. The starting genome 
consists of eight input instructions, followed by sixteen 
NAND instructions, and eight output instructions, as well 
as either zero or three cellularity genes depending on the 
simulation. This is a hybrid randomized/designed genome: 
the designed component is in the input and output instruc-
tions, which represent an optimal configuration with no 
redundancy. However, each organism’s starting genome 
represents a random Boolean logic gate network because 
the pointers associated with the NAND instructions are ran-
domly assigned.

During the course of a simulation, if an organism does not 
have a food puzzle, it attempts to acquire one. In all simula-
tions except those presented in Fig. 8, the environmental 



615Journal of Molecular Evolution (2020) 88:598–617	

1 3

pool was treated as effectively infinite, so that organisms 
always received a new food puzzle if needed. If an organism 
has reached the end of its genome, it calculates the appro-
priate processing energy reward based on its output solu-
tion and gains that amount of processing energy. When an 
organism’s processing energy stock is four times its genome 
length, it can divide into two offspring organisms. These 
offspring organisms’ genomes are identical to that of the 
parent and they each receive half of the parent’s stored pro-
cessing energy.

If organisms divide and thereby cause the population size 
to exceed the predetermined maximum population capacity, 
organisms are selected at random to be removed from the 
population until the population size is equal to the maximum 
population capacity. Unless otherwise specified, the simula-
tion will terminate if it reaches 100,000 time steps, the actual 
run time reaches 100 h, or the population has decreased to 
zero organisms.

Simulation Details

In all of the simulations described above the following 
parameters were set as follows: all mutation rates = 0.005, 
food puzzle availability = infinite (except in the cellularity-
dependent food puzzle transfer simulation), and the coef-
ficient of random gene transfer = 0.5, which is multiplied by 
one minus the organism’s cellular impermeability value to 
obtain the actual probability of random gene transfer. Two 
different types of simulation were performed with these 
default settings to acquire the results presented above.

In one set of simulations (e.g., Figs. 2 and 4), otherwise 
identical simulations were run under four different scenar-
ios: (A) organisms began each simulation with 0 cellularity 
genes and there was limitless processing energy in the envi-
ronment, (B) organisms began each simulation with 0 cel-
lularity genes and the environmental processing energy was 
limited to a number of energy parcels equivalent to 25% the 
maximum population capacity (and seeded with energy par-
cels containing 500 processing energy units), (C) organisms 
began each simulation with 3 cellularity genes and there was 
limitless processing energy in the environment, (D) organ-
isms began each simulation with 3 cellularity genes and the 
environmental energy was limited to a number of processing 
energy parcels equivalent to 25% the maximum population 
capacity (and seeded with energy parcels containing 500 
processing energy units). Each scenario was simulated at 
maximum population capacities of 500, 1000, and 10,000, 
and run three different times per population capacity value.

To acquire the data for Figs. 6 and 7, the same simulations 
were run, but with two alternate cellularity functions. These 
are cellular impermeability = 0.25n and cellular imperme-
ability = 0.5n, where in both cases n = the number of cellu-
larity genes. To acquire the data for Figs. 9, 10, and 12, the 

same simulations were run, but with the random gene trans-
fer or energy transfer probabilities set to a constant value of 
either 0% or 100%, rather than being a consequence of cel-
lularity. All of these simulations were run for 100,000 time 
steps, but in most figures, only the first 20,000 time steps 
are shown because values of population-averaged cellular 
impermeability and metabolic proficiency had stabilized at 
that point in the simulation. Each of these simulations was 
performed with a maximum population capacity of 1000.

To acquire the data for Fig. 8, the same simulations were 
run, but the acquisition of food puzzles was dependent 
on cellular impermeability in the same way that gene and 
energy transfers were in previous simulations. Specifically, 
In the cellularity-dependent food puzzle transfer simulation, 
the environmental food pool was replenished with a constant 
but limited supply. Organisms maintained an internal food 
stockpile from which to draw. This stockpile was replen-
ished only through random transfers of food puzzles with the 
environmental pool according to the organism’s cellularity. 
If an organism’s food stockpile contained at least one food 
puzzle, the organism used it. If its food stockpile was empty, 
the organism tried again in the next step. Once an organism 
had a food puzzle to work on, either from the environment in 
our main study or from its food stockpile in the cellularity-
dependent food puzzle transfer simulation, it executed the 
next instruction in its genome, as indicated by the position 
of its read head.

In a second type of simulation (Fig. 3), organisms began 
each simulation with 3 cellularity genes and the environ-
ment was seeded with a large but exhaustible amount of 
processing energy equivalent to 10,000 energy parcels con-
taining 500 energy units each. As with the previous set of 
simulations, all of these simulations were run for 100,000 
time steps, but only the first 20,000 time steps were shown 
because values of population-averaged cellularity and meta-
bolic proficiency had stabilized by that point in the simula-
tion. These simulations were repeated 100 times and only at 
the maximum population capacity of 1000.

Quantification and Statistical Analysis

Correlation between population-averaged metabolic profi-
ciency and population-averaged cellular impermeability was 
demonstrated using Pearson’s r. The r value and its associ-
ated p value were calculated using R.

Directional Drift Simulations

An entirely different and significantly more simple simula-
tion was performed to demonstrate the directional drift effect 
observed in Fig. 9a and c (black line), the results of which 
are shown in Fig. 11. In these simulations, individuals have 
a single value associated with them called a fidelity value. 
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At each step in the simulation, the fidelity value determines 
whether the individual will mutate. The statistical mutation 
rate properties of this simulation are similar to those of the 
original model simulations. Specifically, the probability of 
mutating at each step in the simulation is 0.5x, where x is 
the current fidelity value of the individual. This is meant to 
mimic the probability of a random gene transfer to or from 
an organism’s genome. If an individual does mutate at a 
given step, then their current fidelity value is increased or 
decreased by 1 with equal probability. A second mutation 
opportunity occurs at each step with a constant probability 
of 0.1, which is meant to mimic the insertion or deletion 
mutations in the original model. Two control simulations 
were run at the same time as the test simulation, one in 
which the probability of the first mutation step was 100% 
(mimicking a constant value of 0% cellular impermeability) 
and a second in which the probability of the first mutation 
step was 0% (mimicking a constant value of 100% cellular 
impermeability). Fidelity values for each individual cannot 
be less than 0. To obtain the results shown in Fig. 11, one 
million simulations were run for the test case, and both con-
trols, and the fidelity value was recorded at either step 1000 
or 10,000.
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