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Transformation of a normal cell to a cancer cell is caused by
mutations in genes that regulate proliferation, apoptosis, and
invasion. Small GTPases such as Ras, Rho, Rac and Cdc42
orchestrate many of the signals that are required for malignant
transformation. The p21-activated kinases (PAKs) are effectors
of Rac and Cdc42. PAKs are a family of serine/threonine
protein kinases comprised of six isoforms (PAK1–6), and they
play important roles in cytoskeletal dynamics, cell survival and
proliferation. They act as key signal transducers in several
cancer signaling pathways, including Ras, Raf, NFkB, Akt, Bad
and p53. Although PAKs are not mutated in cancers, they are
overexpressed, hyperactivated or amplified in several human
tumors and their role in cell transformation make them
attractive therapeutic targets. This review discusses the
evidence that PAK is important for cell transformation and
some key signaling pathways it regulates. This review primarily
discusses Group I PAKs (PAK1, PAK2 and PAK3) as Group II
PAKs (PAK4, PAK5 and PAK6) are discussed elsewhere in this
issue (by Minden).

Introduction

Douglas Hanahan and Robert Weinberg developed a set of
“hallmarks of cancer,” which serve as defining principles for
understanding the complex series of changes in tissues that give
rise to malignant tumors. The hallmarks include sustaining
proliferative signaling, evading growth suppressors, resisting cell
death, enabling replicative immortality, inducing angiogenesis

and activating invasion and metastasis. Two emerging hallmarks
from the last decade of research are working their way into
general acceptance, reprogramming of energy metabolism and
evading immune destruction.1 Cancer cells acquire their hall-
marks through mutations in oncogenes, some 200 or so, which
have been identified. Despite this large number of genes, the
mutations cluster in only about a dozen processes and cell
signaling pathways in each tumor.2 The dissection of these
processes and signaling pathways has identified a wealth of
targets for therapeutic intervention and several drugs are already
on the market to treat tumors. Protein kinases are often mutated
themselves and even when not mutated, often regulate key steps
in hallmark processes. Biological studies suggest that PAKs play a
key role in some of these hallmarks, including proliferative
signaling, resisting cell death, activating invasion, metastasis and
inducing angiogenesis.

The small GTPases Ras, Rho, Rac and Cdc42 orchestrate
many of the hallmarks of cancer. These proteins act as
molecular switches existing in two conformational states,
GDP and GTP bound. The exchange of GDP for GTP is
accelerated by the association of guanine nucleotide exchange
factors (GEFs). Mutations in Ras that disrupt the subsequent
hydrolysis of GTP and cause Ras to remain its activated GTP-
bound state, are found in about 20% of tumors. Upon
activation, small GTPases interact with downstream effectors to
elicit their responses. The p21-activated kinases (PAKs) are
among the best characterized effectors of Rac and Cdc42. They
are a family of serine/threonine protein kinases comprised of six
isoforms (PAK1–6). PAKs are overexpressed and/or hyperacti-
vated in several human tumors such as breast cancer,
neurofibromatosis, colon cancer and lung cancer. They
maintain cell transformation by promoting a number of
hallmark processes including cell proliferation, survival, motility
and angiogenesis (Fig. 1).
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PAK Activation and Amplification in Cancer

There is little evidence for cancer cells having activating mutations
in PAK genes although a mutation was found in the kinase
domain of PAK4 (E329K) in a colorectal tumor sample. It is not
known if the mutation affects kinase activity.3 However, PAK
family members are amplified, overexpressed or hyperactivated in
a number of human tumors. PAK1 is the isoform most commonly
overexpressed but other family members, most often PAK4 is
overexpressed in specific cancers (Table 1). PAK4, for example, is
overexpressed in 75% of the NCI 60 cell line panel and a
dominant negative mutant will block cell transformation of a
colon cancer cell line.4

Several distinct molecular mechanisms cause aberrant PAK
signaling in cancer, including gene amplification and alteration of
upstream regulators. Both PAK1 and PAK4 are localized to
genomic regions, which are frequently amplified in cancer cells.
The PAK1 gene is localized within the 11q13 region, and
11q13.5-q14 amplifications involving the PAK1 locus are found
in bladder, ovary and breast cancer.5-8 PAK4 localizes to another
amplicon, 19q13.2, and PAK4 gene amplification has been found
in colorectal and pancreatic cancers.3,9

PAK gene amplifications are not frequent enough to be the
only molecular mechanism leading to PAK overexpression in
cancer. A 2008 report identified a novel mechanism for the
overexpression of PAK1 through microRNA downregulation.
Reddy et al. found that the levels of endogenous microRNA miR-
7 inversely correlated with PAK1 expression in a variety of cancer
cell lines.10 Moreover, transfection of miR-7 downregulated PAK1
expression in breast cancer cells, and suppressed motility and

Figure 1. PAKs and cancer hallmarks. PAKs are effectors of Rac/Cdc42
and play a key role in some of cancer hallmarks, including proliferative
signaling, resisting cell death, activating invasion and metastasis and
inducing angiogenesis. PAKs can regulate cell proliferation through the
Raf/Mek pathway. Cell motility can be affected by PAKs phosphorylation
of cytoskeletal targets, such as LIMK, which phosphorylates cofilin. PAK1
also phosphorylates Bad directly and indirectly via Raf-1, thus promoting
cell survival by anti-apoptosis. NFkB is regulated by PAK indirectly to
promote cell survival. Other cancer hallmarks are also affected indirectly
by PAKs.

Table 1. Cancers with amplified, overexpressed or activated PAK family members

Cancer type PAK isoform Type of alterations References

Brain PAK1 Increased phospho-PAK1 in cytoplasm 89

Esophagus PAK4 Protein overexpression 56

Breast PAK1, PAK4 Protein overexpression and increased nuclear localization;
Gene amplification (11q13Aq14 amplicon)

5, 7, 8, 23, 56 and 90

Liver PAK1 Protein and gene overexpression 91

Kidney PAK1 Protein overexpression and increased activity 92

Pancreas PAK4 Gene amplification (19q13 amplicon), protein overexpression 93

Colon PAK1, PAK4 Protein overexpression. PAK4 gene amplification (19q13
amplicon) and 2 somatic mutations

3, 9, 54 and 56

Bladder PAK1 Gene amplification (11q13Aq14 amplicon) 94

Lung PAK1 Protein overexpression 8

Ovarian PAK1 Protein overexpression and gene amplification (11q13Aq14
amplicon)

6, 95 and 96

Prostate PAK6 Protein overexpression 97

T-cell lymphoma PAK1 Gene amplification 98

NF1 PAK1 Deletion of NF1 42

NF2 PAK1 Deletion of NF2 47 and 48

Neuroendocrine PAK3 Protein overexpression 99

In some cases PAKs are amplified, while in other cases, the mechanism of overexpression is not known.100,101
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invasiveness of these cells.10 PAKs are also overexpressed in lung
cancer but the mechanism is not known, although gene
amplification is not likely.8

PAK Target Recognition

To date, over 40 proteins have been identified as substrates for
PAKs (see Table 2). As for most protein kinases, there is some
flexibility in the recognition sequences phosphorylated by PAK.
Shown in Figure 2 are the examples of phosphorylation sites for
several PAK substrates. One study used PAK2 and compared a
limited number of peptides derived from the substrate
KKRKSGL. This yielded a recognition sequence for PAK2 that
is characterized by two basic amino acids in the -2 and -3
positions. For example, the peptide (K/R)RXS, in which the -2
position is an arginine and the -3 position is an arginine or a
lysine, is efficiently phosphorylated at the serine residue (X can be
an acidic, basic or neutral amino acid).11 A more comprehensive
study used a wider array of peptides and found that PAK1 and
PAK2 preferred large hydrophobic residues in positions from +1
to +3, in addition to their preference for basic amino acids at the
-2 and -3 positions.12 PAK1 and PAK2 have nearly identical
substrate specificities, but the substrate specificity of PAK4 is
significantly different. PAK4 has strong preference and for alanine
at the +2 and serine at the +3 position. It should be noted that
although there are differences in the preferred consensus
sequences for Group I (PAK1, PAK2 and PAK3) and Group II
PAKs (PAK4, PAK5 and PAK6), most known substrates are
phosphorylated by both groups. Additionally, both groups
strongly prefer serine over threonine as a phospho-acceptor site
and do not phosphorylate tyrosine at all. Although the Rennefahrt
study was able to identify a new PAK substrate by scanning
databases, there are limitations to identifying substrates by
sequence searches. The study found that none of the known
PAK substrates fell into the top 2% of the predicted substrates,
suggesting that other factors such as protein-protein interactions
facilitate phosphorylation of what are otherwise less-ideal
substrates.12

PAK Regulation of Cancer Cell Hallmarks

The primary hallmark of cancer is the ability to form tumors.
There are several ways to measure tumor cell growth. The most
common way is to inject tumor cells into immune compromised
or nude mice, where they will grow into tumors. A simpler assay is
to grow cells suspended in soft agar. Tumor cells will grow into
colonies, a property called anchorage independence, while
untransformed cells will not grow. PAKs were first shown to be
important for transformation in experiments where a kinase dead
mutant of PAK was expressed in fibroblasts together with an
oncogenic Ras mutant. The mutant behaved as a dominant
negative mutant and prevented Ras from inducing anchorage
independent growth in soft agar assays.13 Kinase dead mutants of
PAK4 also inhibit cell transformation.4,14 The kinase dead
mutants do not act by sequestering Rac and Cdc42 because the
p21 binding sites can be deleted and the inactive kinase domain

by itself will inhibit transformation.13 Although the use of these
dominant negative mutants, and other technologies based on
expressing fragments of PAK have since been replaced with
siRNAs and small molecule drugs, they were invaluable in
establishing the function of PAK in cancer.

To establish if PAK activation could cause tumors, studies were
performed expressing activated mutants. Since PAK is not
mutated in tumors, activated mutants were constructed. In most
studies, activation of only PAK4 caused anchorage independent
growth, although some studies found that activated PAK1
induced tumors when expressed with a weakly activated Raf-1
mutant.14-17 Additionally, transgenic mice that overexpresses a
constitutively active PAK1 under a β-lactoglobulin promoter
develops malignant mammary gland tumors, although with a
relatively long latency period and low penetrance.18 These studies
established that activation primarily of PAK4 is sufficient for
tumorigenesis, although in many tumors, PAK1 and PAK4 are
necessary for transformation. The precise relationship between
PAK1 and PAK4, and indeed other PAK isoforms are not
understood. This may be important clinically if isoform specific
inhibitors are eventually used therapeutically.

The most prominent hallmarks of cancer for which a role of
PAK has been established are stimulation of cell proliferation
(including anchorage-independent growth), stimulation of cell
survival (e.g., inhibition of apoptosis), and stimulation of cell
motility. PAK activation will stimulate each of these hallmarks,
while PAK inhibition inhibits the hallmark. Each of these three
hallmarks has at least one known target in a well-established
signaling pathway, which is a direct PAK target (Fig. 1). For cell
proliferation, PAK contributes to the canonical MAP kinase
cascade of Ras/Raf/MeK/ERK. In anti-apoptotic signaling PAK
contributes to the BAD/Bcl-2 pathway. To regulate cell motility,
PAK targets LIM kinase, which phosphorylates cofilin. PAKs have
also been implicated in other cellular processes that are relevant in
tumorigenesis, including angiogenesis,19 epithelial-mesenchymal
transition20 and metabolism,21,22 although the signaling pathways
are not as well established as for other processes. The molecular
targets of PAK and the effects on their signaling pathways will be
discussed later, but first we will address PAK in several specific
tumors for which a role has been established including breast,
neurofibromatosis 1, neurofibromatosis 2, colon and lung.

Breast cancer. The cancer for which PAK is most extensively
documented is breast cancer. More than 50% of human breast
cancers display overexpression and/or hyperactivation of PAK1
and PAK1 is found on a chromosomal region amplified in 17% of
breast cancers.8,23 In addition, transgenic expression of an
activated PAK1 mutant in mouse mammary tissue causes
tumors.18 PAK1 also promotes mammary epithelial cell trans-
formation in 3-dimensional culture model systems. Furthermore,
PAK1 expression and its nuclear accumulation increased
progressively during the transition from ductal hyperplasia to
ductal carcinoma in situ to adenocarcinoma in widely used
multistep polyoma-middle T-antigen transgenic mice.18 PAK4
also promotes tumorigenesis in breast cancer cells.17 Together,
these studies make a strong case for an important role of PAK in
breast cancer, suggesting PAK expression in the transformation
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process progresses with increasing stages of tumors. Several
signaling pathways such as MAPK and MET, NFkB, BAD and
estrogen receptor a (ERa) are activated by PAK1 during the
progression of breast cancer and these pathways will discussed
below.18,23-28

Numerous studies have found that expression of PAK1
promotes mammary cell growth. For example, activated PAK1
causes human mammary epithelial (HMLE) cells to form

anchorage-independent colonies, and its kinase activity is
necessary for PAK1-induced transformation. These effects are
due to PAK1 simultaneously activating of MAPK and MET
signaling.24 PAK1 overexpression in mammary tissue also
increases the activation of MEK1/2 and p38-MAPK in mammary
tumor epithelial cells.18

PAK is activated through pathways that are important for
breast cancer growth. Growth factors such as prolactin and the

Table 2. Reported PAK substrates

Process Substrate Sites Isoform References

Cytoskeleton remodeling a-PIX S488 PAK1 12

b-PIX S340, S525 (transcript A), S497 and1 S682
(transcript B)

PAK1, PAK2 12 and 102

Caldesmon S657 and S687 PAK1, PAK3 103–105

CPI17 T38 PAK1 106

Desmin PAK1 107

Filamin A S2152 PAK1 37

GEF-H1 S885 PAK1 108

GIT1 S517 PAK1 109

LIM kinase T508 PAK1, PAK4 83 and 110

MBS T641 PAK1 106

MLCK S439 and S991 PAK1, PAK2 111 and 112

NET1 S152 and S153 PAK1 113

Op18/ stathmin S16 PAK1 114

p41-ARC T21 PAK1 115

Rho GDI S101 and S174 PAK1 116

R-MLC S19 PAK2 117 and 118

SRC-3D4 T56, S659 and S676 PAK1 39

TCoB S65 and S128 PAK1 119

Vimentin S25, S38, S50, S56, S65 and S72 PAK1 120–124

Cell growth Abl1 S637 and S638 PAK2 125 and 126

Aurora A T288 and S342 PAK1 109

B-Raf S446 PAK1 127

c-Myc T358, S373 and T400 PAK2 128

C-Raf1 S338 and S339 PAK1, PAK2 PAK3 67, 70, 71 and 129–131

ER a S305 PAK1 25 and 26

Erk 3 S189 PAK2 132

Histone H3 S10 PAK1 133

MEK1 S298 PAK1 67 and 134–137

MEKK1 S67 PAK1 138

Merlin S518 PAK1 44 and 45

MNK1 S39 PAK2 139

Plk1 S49 PAK1 140

Prolactin S179 PAK2 141

Cell survival BAD S111 (indirectly at S112 and S136) PAK1, PAK2 71, 74 and 142–144

DLC1 S88 PAK1 35

FKHR S256 PAK1 36

108 Cellular Logistics Volume 2 Issue 2



oncogene human epidermal growth factor receptor 2 (HER2 or
ErbB2) can activate MAPK signaling pathway through PAK1.
The prolactin receptor (PRL-R) can initiate and sustain Erk1/2
signaling via the PI3K-dependent Rac/PAK pathway rather than
the canonical ErbB2/Shc/Grb2/SOS/Ras route.29 PRL-R signal-
ing pathway also activates PAK1 through JAK/STAT5, leading to
the induction of cyclin D1.30 ErbB2 gene overexpression,
amplification, or mutation occurs in about 25% of human breast
cancer.31 ErbB2 signaling activates a Rac-PAK signaling pathway
that contributes to ErbB2 mediated transformation through the
MAPK/Erk and Akt pathways.32,33 ErbB2 expression correlates
with PAK levels and enzymatic activity in ER-positive human
breast cancer. ErbB2 activates Rac and PAK in a 3D breast
epithelial cell culture system, and loss of Rac or PAK activity
blocks the morphologic effects of ErbB2 in these cells,

accompanied by loss of Erk and Akt activation.32 Moreover,
PAK is required for ErbB2 transformation in a xenograft model of
breast cancer.32

PAK regulates survival signals in breast cancer. A study
examined PAK1 activity in a pre-malignant progression series of
MCF10A mammary epithelial cell variants. PAK1 expression
levels increased in correlation with the progression stages in this
series, indicating a role for PAK1 in the early stages of cell
transformation.34 Activation of the transcription factor NFkB
appears to be a prominent mechanism by which PAK1 regulates
survival of breast cancer cells. Friedland et al. showed a functional
link between the resistance of mammary epithelial cells to
apoptosis in 3-dimensional cultures and PAK1-mediated activa-
tion of NFkB.28 Notably, NFkB also promoted cell proliferation
via cyclin D1 transcription in breast cancer cells.23

Phosphorylation of the pro-apoptotic proteins BAD and FKHR,
and phosphorylation of DLC1 are other mechanisms by which
PAK1 may promote breast cancer cell survival.35,36

PAK promotes cell motility signals in breast cancer. PAK
substrates that control different aspects of cytoskeletal dynamics,
such as LIM kinase, p41-ARC, filamin A, Op18/stathmin and
TCoB, are likely to promote the invasiveness of breast cancer
cells.37 In addition, the multimodular protein Scrib positively
regulates activation of PAK1 and participates in lamellipodia
formation at the leading edge of migratory breast cancer cells.38

Moreover, PAK-phosphorylated alternate-spliced isoform of the
steroid receptor coactivator-3 (SRC-3Delta4) bridges EGFR and
focal adhesion kinase (FAK), enhancing breast carcinoma cell
migration and metastasis.39

PAK is also involved in estrogen receptor signals in breast
cancer. Approximately 70% of all breast cancers express the
estrogen receptor (ERa), and tamoxifen, a selective anti-estrogen,

Figure 2. PAK phosphorylation sites. Activated PAK proteins phosphor-
ylate a variety of substrates on serine/threonine residues, preferably in
the context of basic residues such as K/R, R/X, X and S/T, to bring about
cell survival and migration, cytoskeleton remodeling and gene
regulation. Shown here are the sequences of phosphorylation sites of
several PAK substrates. Consensus sequence is also shown. X can be
acidic, basic or neutral amino acid.

Table 2. Reported PAK substrates (continued)

Process Substrate Sites Isoform References

Miscellaneous CtBP1 S158 PAK1 145

ESE1 S207 PAK1 146

G a z S16 PAK1 147

p47 phox S303, S304, S320 and S328 PAK1 148 and 149

p67 phox Not mapped PAK1 150

PGAM-B S23 and S118 PAK1 21

PGM T466 PAK1 22

SHARP S3486 and T3568 PAK1 151

Snail S246 PAK1 20

STAT5a S779 PAK1 152

Syk Not mapped PAK2 153

Synapsin I S603 PAK1 154

Troponin I S149 PAK1 155

PAK auto-phosphorylation PAK1 S21, S57, S144, S149, S199 and S204 PAK1 156

PAK2 S19, S20, S55, S141, S165, S192 and S197 PAK2 156 and 157

PAK3 S50 and S139 PAK3 156

Modified from references 12 and 100.
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is widely used to treat this group of breast cancers. PAK1 is one of
many kinases that phosphorylate ERa.25,40 Deregulated activation
of PAK1 produces multiple or inappropriate phosphorylation of
ERa, creating a promiscuous receptor that is resistant to
tamoxifen and stimulates cell growth in the absence of
estrogen.25,40 The nuclear levels of active PAK1 increased in
breast cancer patients with tamoxifen resistance.25,41 Moreover,
ER activation by PAK1 induces upregulation of cyclin D1 in
breast cancer cells, as well as in the mammary epithelium.23

Patients who were negative for PAK1 obtained more benefit from
tamoxifen treatment.41 The link between PAK1 and ERa raises
the possibility that tamoxifen resistance might be prevented or
reversed by PAK1 inhibition.

Neurofibromatosis. Neurofibromatosis types 1 and 2 (NF1
and NF2) are dominantly inherited autosomal diseases caused by
loss-of-function mutations in the tumor suppressor genes NF1
and NF2, respectively. NF1 is a common disease, having a birth
incidence of about 1 in 3,000, while NF2 is a relatively rare
disorder with an incidence of about 1 in 25,000. Neuro-
fibromatosis patients are predisposed to the development of
multiple tumors of the central and peripheral nervous system.
Schwann cells, the cells that comprise the myelin sheath around
nerves, are predominantly affected in both tumors. Patients carry
heterozygous mutations in either the NF1 or NF2 gene but their
tumors typically display loss of the residual wild-type allele,
conforming to the classic two hit Knudsen paradigm seen with
most tumor suppressors. Although NF1 and NF2 are genetically
and clinically distinct diseases, loss of each gene product leads to
abnormal activation of PAK1, albeit through different mechan-
isms. Experimental results suggest that PAK1 is important for the
malignant growth in both types of neurofibromatosis.

The mechanism of PAK1 activation through NF1 proceeds
through the Ras pathway. The product of the NF1 gene is a
cytoplasmic protein called neurofibromin. Neurofibromin is
widely expressed across a range of tissues but with high
concentrations in the nervous system. Neurofibromin is a
GTPase activating protein (GAP) and acts by accelerating the
intrinsic GTPase activity of Ras. Consequently, loss of neurofi-
bromin is associated with increased levels of activated GTP-bound
Ras, which activates oncogenic pathways, including the MAPK
cascade and PI3K. Downstream signals of PI3K activate PAK via
Rac and Cdc42. Dominant negative PAK mutants are potent
inhibitors of Ras transformation in both rat Schwann cells and a
malignant peripheral nerve sheet tumor (MPNST or neurofi-
brosarcoma) cell line from an NF1 patient.42

While NF1 activates PAK through effector pathways, NF2
interacts directly with PAK1. The NF2 gene product is a
cytoskeleton-associated tumor suppressor named Merlin (also
called Schwannomin). Merlin is structurally related to the moesin/
ezrin/radixin proteins, which link the actin cytoskeleton to cell
surface glycoproteins that control growth and cellular remodeling.
Merlin is widely expressed in Schwann cells, meningeal cells,
peripheral nerves and the lens. In non-neoplastic cells, Merlin
mediates contact-dependent growth inhibition. The growth
suppressive function of Merlin depends on its phosphorylation
status at Ser518.43 Under growth restrictive conditions, Merlin is

unphosphorylated and inhibits cell proliferation, while under
growth permissive conditions, Merlin is phosphorylated. Both
cAMP-dependent protein kinase A (PKA) and PAK1 are able to
phosphorylate Merlin at Ser518 and thereby inhibit its growth
suppressive activity.44-46 Phosphorylation of Merlin at Ser518 was
also demonstrated by PAK2 and PAK6.45

While PAK phosphorylates and inhibits Merlin, there is also an
important inhibitory feedback mechanism from Merlin to PAK.
Group I PAKs are downstream targets of Merlin. Merlin
associates with inactive PAK and prevents its activation, perhaps
by competing with Rac.47,48 Phosphorylation at Ser518 induces a
conformation change in Merlin and consequently disrupts
interaction with PAK1, allowing PAK1 to be activated. Thus,
in NF2 patients, loss of Merlin is associated with abnormal PAK1
activity, which also leads to elevated levels of Rac as well as
pronounced cell ruffling.49,50 In cell culture experiments, the
PAK1 inhibitors CEP-1347 and WR-PAK18 were able to inhibit
the growth of Merlin-deficient tumor cells, but not Merlin-
positive cells.47 The loss of PAK activity restored normal cell
growth51 and movement to cells lacking Merlin function.52

Recently, PAK2 has been shown to be essential for the
activation of proliferation signals Wnt/β-catenin signaling in
schwannoma cells, and depletion of PAK2 suppressed active
β-catenin, c-myc and cyclin D1.53 In NF2 tumors, loss of PAK
activity, however, did not reduce Erk or Akt activity, two
signaling proteins that are thought to mediate PAK function in
NF1.52 Together, these studies suggest that PAK is a major player
underlying Schwann cell transformation and an attractive target
for therapeutics in both NF1 and NF2. There are multiple
signaling pathways that PAK regulates in Schwann cells and the
signals may differ between NF1 and NF2.

Colon cancer. PAK1, PAK4 and PAK5 have been implicated in
colon cancer cell transformation through expression studies as well
as functional studies where they regulate cell adhesion and
migration.54-56

Overexpression of PAK1 is observed in 70% of colon cancer
samples and is correlated with several signaling pathways
including, Wnt, Erk and Akt pathways. Reduction of PAK1
expression decreased cell proliferation, migration/invasion, and
survival. Rac1/PAK1 cascade controls β-catenin S675 phosphor-
ylation and its activation in colon cancer cells. Downregulation
of PAK1 in colon cancer cells reduces the β-catenin levels and
cell proliferation. PAK1 also directly phosphorylated β-catenin
at Ser675, leading to more stable and transcriptional active
β-catenin.57 Erk and Akt, downstream targets of PAK1 are involved
in colon cancer progression. PAK inhibition alone is equivalent to
the dual inhibition of Erk and Akt, whereas inactivation of either
the Erk or Akt pathway alone partially inhibited cell migration/
invasion and survival and had no effect on proliferation. Thus, in at
least this one case, instead of simultaneously inhibiting both Erk
and Akt, PAK1 may be a convergence point for therapy.58

Lung cancer. Lung cancer, although not as well established as
other cancers, is emerging as a tumor depends on PAK1 signaling.
A mouse model for Ras-induced lung cancers is highly sensitive to
Rac inhibition, suggesting that lung cancers may be dependent on
PAK.59 PAK1 is expressed strongly in the nucleus and cytoplasm
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of squamous nonsmall cell lung carcinomas (NSCLCs).8 Finally,
selective inhibition of PAK1 but not PAK2 delayed cell-cycle
progression in vitro and in vivo.8

Melanoma and other cancers. There are several cancers in
which a role for PAK is implied but has not been documented as
rigorously. In melanomas, two large scale melanoma sequencing
projects found a novel mutation in Rac1, P29S in about 10% of
the tumor samples. The mutation caused an increase in GTP-
bound Rac1 and furthermore, expression of the mutant in
melanocytes increased proliferation and phosphor-ERK levels (see
below for a discussion of PAK regulation of ERK).60,61 Though
neither study directly addressed PAK, it is likely that PAKs are
required for some melanomas to progress.

In some cases such as pancreatic tumors and ovarian cancers,
PAKs are amplified, but functional data are not available. In other
cases, the reagents used to test the involvement of PAK were not
that specific. For example, a new PAK inhibitor OSU-03012
inhibited migration in thyroid tumor cells, but since this
compound also inhibits PDK1, albeit at higher doses, it is
premature to conclude that PAK is required in thyroid tumors.62

PAK Regulation of Cell Signals

PAKs regulate several cell signaling pathways controlling tumor
cell growth and survival including MAPK/Erks,13 p53,63 NFkB,64

Smad65 and STAT3.66 In some cases the relationship between
PAK with these signaling pathways has been established, while in
other cases the direct connection with PAK has yet to be
determined. The Erk, NFkB and more recently p53 pathways are
the best documented examples of PAK regulation of cancer
signaling pathways, and they will be discussed in this section.

MAPK. The canonical MAPK cascade is widely associated with
cell proliferation and consists of Ras/Raf/MEK/(MAPK)Erk.
Historically, this was the first cancer relevant signal shown to be
regulated by PAK pathway. PAK phosphorylates two mediators of
the MAP kinase pathway, MEK1 and Raf1, at Ser298 and at
Ser338, respectively.13,67-70 While phosphorylation of these sites
by PAK is not sufficient to activate Raf1 or MEK1, it significantly
facilitates the activation of these kinases by their upstream
activators Ras and Raf1, respectively. The ability of PAK to
regulate the MAP kinase pathway is likely to contribute to cell
proliferation.

Akt and BAD. Apoptosis, or programmed cell death, is a
fundamental process in the development of multicellular organ-
isms. Apoptosis enables an organism to eliminate unwanted or
defective cells through an organized process of cellular disinteg-
ration. It is a prominent tumor-suppression mechanism and
cancer cells require inactivation of pro-apoptotic pathways for
tumor formation and progression. PAK activity has been shown to
downregulate several important pro-apoptotic pathways.

PAK1 protects cells from intrinsic apoptotic signals via a PAK-
Raf1-BAD pathway. PAK1 and PAK5 phosphorylate Raf1 at
Ser338 and stimulate translocation of a subpopulation of Raf1 to
the mitochondria.71-74 At the mitochondria, Raf-1 forms a
protective complex with Bcl-2 and phosphorylates the pro-
apoptotic protein BAD at Ser112. Bcl-2 is a proto-oncogene that

maintains the integrity of the mitochondrial barrier if bound in
protective complexes, whereas binding of Bcl-2 to the pro-
apoptotic protein BAD induces release of pro-apoptotic factors
from the mitochondria and leads to apoptosis. Phosphorylation of
BAD at specific sites, including Ser112, renders it unable to bind
Bcl-2. The phenotype of Raf-1 knock out cells supports a
protective role of Raf-1 in apoptosis, as these cells have high rates
of apoptosis while exhibiting normal proliferative rates and Erk
activation.75

NFkB. PAK activates nuclear factor-kB (NFkB) a transcription
factor, which is important for cell transformation through its
effects on cell survival and proliferation, and it is essential for
oncogenes such as Ras and Raf to transform cells. Inactive NFkB
is retained in the cytoplasm due to a heterodimeric interaction
with its inhibitory protein known as the inhibitor of kB (IkB).
Phosphorylation and degradation of IkB is required for the
activation and nuclear translocation of NFkB and the subsequent
transactivation of NFkB target genes. Phosphorylation of IkB on
serine 32 and serine 36 by the IkB kinases inhibitor of IkB kinase
IKKa and IKKβ is an important initiation signal for IkB
degradation and NFkB release.

Several studies showed that PAK1 can activate NFkB.64,76-81 It
has been shown that PAK1 activates NFkB through the
phosphorylation and degradation of IkB,64,76 however, there is
no evidence that PAK1 phosphorylates IkB. Moreover, PAK1
stimulation of the nuclear translocation of the p65 subunit of
NFkB is independent of the phosphorylation of IKKa/β.64,76 In a
report of Helicobacter pylori-induced NFkB activation, the PAK1
autoregulatory domain was shown to be required for interaction
with NFkB-interacting kinase (NIK), which controls the activities
of IKKa/β.82 Therefore, PAK1 may affect the association of NIK,
the IKKs, IkB, or NFkB with the scaffolding proteins IKK
complex-associated protein or IKKc. Indeed, it has been shown
that the expression of active PAK1 reduces the coprecipitation of
IKKβ with NIK from cells and dominant negative forms of IKKa/
β block the PAK1 activation of NFkB.64 However, despite
numerous studies showing that PAK regulates NFkB, the direct
target of PAK in this pathway has not been determined.

LIMK. There are several established PAK substrates that
control cytoskeletal dynamics. The most well established target is
LIM kinase. PAK1 and PAK4 both phosphorylate LIM-kinase at
threonine residue 508 within LIM-kinase’s activation loop, which
stimulates LIM-kinase activity. LIM-kinase phosphorylates and
inhibits the actin-regulatory protein cofilin. Cofilin depolymerizes
actin filaments, thus by phosphorylating cofilin, PAK1 stimulates
filaments accumulation by preventing their depolymerization.83

p53. The tumor suppressor p53 is mutated in over 50% of
human tumors, where it cooperates with Ras to transform cells
and acts as a DNA damage checkpoint in the cell cycle.84 p53 was
identified in screen of 113 cell based reporter assays with the pan
PAK inhibitor PF-3758309, an ATP-competitive inhibitor.63

Induction of p53 by a DNA-damaging agent is reduced in cells
treated with PF-3758309.63 Conversely, activating p53 with the
p53 degradation inhibitor, Nutlin-3, has no effect on PAK4
activation, consistent with PAK acting upstream of p53.63

Moreover, other reports also showed activated PAK4 induces
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p53 and p21,85 and PAK-family kinases and p53 expression have
been reported to be co-regulated.86,87 Together these studies
suggest that PAK is upstream of p53, although the mechanisms by
which PAK regulates p53 are not well understood. The
physiological significance of PAK regulation in cancer cells
remains to be worked out. In one study, there was no correlation
between p53 status and cancer cell sensitivity to PAK inhibition,63

while another study found that loss of p53 was a synthetic lethal
with PAK3. That is, loss of either p53 or PAK3 did not affect
cells, but loss of both p53 and PAK3 together prevented cell
growth.88

Therapeutic Prospects

Because of their central position in cancer hallmarks, protein
kinases currently constitute a major focus for drug discovery and
most major pharmaceutical companies have kinase programs to
develop inhibitors. Small molecular weight inhibitors typically
target the highly conserved ATP-binding pockets of the kinase
domain and compete with ATP binding. Because of similarities in
the active sites of many kinases, specificity issues are common for
inhibitors targeting the ATP-binding pocket, and cross-reactivity
may cause unwanted toxicities. However, this approach has been
successful and in recent years a number of protein kinase
inhibitors have successfully been taken through clinical trials to
enter clinical practice. Sorafenib (Nexavar1), imatinib mesylate
(Gleevec1), temsirolimus (Torisel1), erlotinib (Tarceva1), suni-
tinib (Sutent1) and gefitinib (Iressa1) are examples of such small
molecule kinase inhibitors. The targets for these drugs include
Raf-1, Abl, mTOR and the receptor tyrosine kinases EGFR and
VEGFR. PAKs have roles in several cellular processes, including
cell cycle, cell motility, angiogenesis and evasion from apoptosis.
PAK has been shown to be upregulated or hyperactive in several
cancers such as breast, glioma, colorectal, prostate, lung (NSCLC)

and MPNST. The importance of PAK in cell and animal models
of tumorigenesis and metastasis provides the rationale for
developing PAK inhibitors as anti-cancer therapeutics. The
current status of inhibitor development is discussed in this issue
by Coleman and Kissil.

One of the pressing issues with the use of drugs is identifying
the tumors and subpopulations of patients who will respond to a
given treatment. With most kinase inhibitors, the patients who
respond the best have mutations in the targeted kinase. Patients
with mutations in Ras fail to respond to any kinase inhibitor,
which is unfortunate because Ras is mutated in about 20% of
tumors, far more frequently than any of the kinases. Since many
of the signals that are regulated by PAK are intrinsic to the Ras
pathway, tumors with mutations in Ras may respond to PAK
inhibitors in addition to those in which PAK itself is amplified. A
survey with the PAK inhibitor PF-3758309 of 92 tumor cell lines
derived from colorectal, non-small-cell lung cancer, pancreatic,
and breast tumors, found that 46% exhibited IC50 values less than
10 nM.63 In another study, a strong synergy was found with
inhibiting PAK and drugs that act in cell signaling pathways that
have been discussed in this review. Among the tested compounds,
antagonists of inhibitor of apoptosis proteins (IAP; 12- and 57-
fold), epidermal growth factor receptor (EGFR; 2.9-, 7.4-, 12.8-
and 15-fold), MEK1/2 (8.5-fold), and Src family kinases (5.4-
fold) displayed dramatically enhanced efficacy when tested in cells
with PAK1 knocked down.8 It is encouraging that so many
tumors respond to PAK inhibitors. However, the mutations and
amplifications in tumors that respond to PAK inhibitors have yet
to be determined. Additionally, the synergies observed with PAK
inhibitors and other drugs suggest that PAK inhibitors are likely
to be most effective in combination with other treatments.
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