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Abstract: Some of the most significant medical achievements in recent history are the development of
distinct and effective vaccines, and the improvement of the efficacy of previously existing ones, which
have contributed to the eradication of many dangerous and life-threatening diseases. Immunization
depends on the generation of a physiological memory response and protection against infection. It is
therefore crucial that antigens are delivered in an efficient manner, to elicit a robust immune response.
The recent approval of COVID-19 vaccines containing lipid nanoparticles encapsulating mRNA
demonstrates the broad potential of lipid-based delivery systems. In light of this, the present review
article summarizes currently synthesized lipid-based nanoparticles such as liposomes, lipid-nano
particles, or cell-derived exosomes.
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1. Introduction

The emergence of diseases such as severe acute respiratory syndrome (SARS), Middle
East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19), and the
subsistence of diseases known for a long time, such as Ebola, Zika, HIV, tuberculosis, and
all types of cancers, have driven the development of a massive vaccination industry over
the last four decades. The global vaccine market is projected to generate $125.49 billion by
2028 at a CAGR of 10.8% in the forecast period, 2021–2028 [1].

Immunization continues to be the most successful and cost-effective approach to
eradicate many diseases. By definition, the basic conditions of a potential vaccine should
be to induce a sufficient immunogenic response, yielding a protective umbrella for the host,
with minimal adverse effects.

The development of subunit vaccines (second generation) has brought great advances,
due to marked improvement in safety and physical tolerance in comparison to the tradi-
tional attenuated or killed whole-organism approaches (first generation). However, subunit
vaccines generate a weak immune response due to the use of only a specific part of the
pathogen structure. By contrast, RNA or DNA vaccines (third generation) induce in situ
expression of antigens after immunization, priming immune responses against specific
pathogens [2–5]. Examples of these technologies include mRNA-based vaccines which were
developed by BioNTech/Pfizer (BNT162b2) [6], and by Moderna (mRNA-1273 vaccine) [7],
to address the challenges created by the COVID-19 pandemic, followed by adenovirus-
based vaccines from Astra Zeneca [8], Johnson & Johnson (Ad26.COV2.S), and Gamaleya
(Sputnik V; 10).

The authorization of mRNA-based vaccines during the pandemic has delivered a
platform for the development of vaccine therapies in a relatively simple and affordable
manner. One critical factor for a successful pandemic-level vaccine, beyond its biological
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efficacy, is the manufacturing cost, because billions of vaccines are imperative in a very
short time.

Despite the great efforts to achieve more effective vaccine platforms, there remain
several unmet medical needs, particularly against challenging pathogens such as Mycobac-
terium tuberculosis and the human immunodeficiency virus (HIV), for which only vaccines
with limited efficacy have been produced thus far [9]. The third generation vaccines have
distinguishable potential in addressing these unmet conditions; however, the biggest chal-
lenge preventing the widespread clinical application is an efficient delivery system for
mRNA molecules [10].

Lipid nanoparticles (LNPs) were utilized successfully to deliver the nucleic acid cargos
in the COVID-19 vaccines. Herein, we review the up-to-date LNP-based technologies and
the exciting emerging platform for the extracellular vesicles.

2. Ex Vivo-Prepared Lipid-Based Nanoparticles
2.1. Liposomes

Liposomes are the earliest nanoparticle delivery platform. They consist of one (unil-
amellar) or more (multilamellar) phospholipid bilayers surrounding an aqueous core that
house the drug of interest and resemble biological membrane [11]. Liposome composition
and preparation can be tailored according to the desired features such as lipid composi-
tion, charge, size, entrapment, and location of antigens or adjuvants [12]. The intrinsic
adjuvanticities of liposomes have long been confirmed and, unlike other adjuvants, they
have shown minimal reactogenicity and few cases causing hypersensitivity-associated
reactions in immunized subjects [13]. This can be attributed to their size and shape, which
mimics pathogenic microbes and some subcellular structures, leading to the arousal of
strong eliminatory mechanisms via both humoral and cellular responses [14]. Indeed, the
size of many common viruses that are freely able to drain the lymph node is between
30–200 nm [15]. The liposome dimensions can impact their adjuvant efficacy, and several
studies have shown that either Th1 and Th2 responses can be evoked by variations in
particle size. Specifically, in cases of big vesicle vaccination (>225 nm) a significantly higher
Th1 response has been reported, whereas the same antigen encapsulated in small liposomes
(<155 nm) induced a prevalent Th2 response [16]. This size-dependent immune effect is
attributed primarily to their individual modes of entry into lymph nodes. Smaller parti-
cles freely penetrate the draining lymph node whereas larger vesicles are internalized by
tissue-dependent resident dendritic cells. Vania Manolova et al. demonstrated that, for
the association of large particles with monocyte-derived DC, there must be cell-associated
transport. In contrast, LN-resident CD8α+ DCs were mostly associated with a small parti-
cle (Figure 1). Larger vesicles delayed clearance, resulting in prolonged exposure time of
antigens at the injection site (depot effect) [17]. As mentioned above, liposomal charge must
also be considered. Cationic liposomes are preferably utilized as vaccine carriers, since the
positive charge provides reduced clearance rate, prolonged exposure time of antigen at the
mucosal surface (depot effect), and enhanced endocytosis of liposomes by APC [18]. In
addition, positively charged liposomes demonstrate enhanced adjuvanticity over neutral
and negatively charged liposomes [19]. Several liposome adjuvants have been licensed for
human use and others are being evaluated in clinical trials. In 1995, the FDA approved
the first nano-drug (Doxil), a doxorubicin-loaded liposome utilized in the treatment of
cancers [20]. Commercially available vaccines include Cervex®, Inflexal®, and Epaxal®,
against infection by human papilloma virus, influenza virus, and hepatitis A infection,
respectively [21]. Liposomes paved the way for the application of nanotechnology as drug
and vaccine carriers, and the subsequent development of improved derivatives such as
lipid nanoparticles.
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Figure 1. Nanoparticle trafficking from skin to draining lymph node in size-dependent manner.
Large particles shuttle from the interstitial space through DC take up, involving activation of cell
adhesion molecules, and inducing preferentially Th1 response (elevation of IgG2a in the plasma) and
elevation of IFNγ in the lymph node. Small nanoparticles drain freely to the lymphoid node and
induce Th2 response of increased IgG1 and IL5. Created with BioRender.com.

2.2. Lipid Nanoparticles

Both liposomes and LNPs are utilized as drug delivery vehicles in the body; however,
LNPs only have a single phospholipid outer layer encapsulating the interior. LNPs usually
have four components: 1—ionizable or cation lipid, which allows endosomal release
of mRNA to the cytoplasm; 2—lipid-linked polyethylene glycol (PEG) which increases
the half-time of formulations; 3—cholesterol as stabilizing agent; 4—naturally occurring
phospholipids which support bilayer structure. This provides improved stability of the
cargo, a rigid morphology, and more efficient cellular penetration [22,23]. Two mRNA-
based COVID-19 vaccines were developed using these lipid nanoparticles. The high
biological safety profile of mRNA-based vaccines or therapies is a prominent advantage,
since the biggest concern with nucleic acid therapeutics is the risk of permanent change
in the genome. mRNA is noninfectious, non-integrating, and its in vivo half-life can
be regulated using various modifications and delivery methods. mRNA is degraded
by normal cellular processes manifested by abundantly available enzymatic machinery,
and naked RNA is rapidly degraded by extracellular RNases [24]. However, its high
degradability is also the biggest challenge in utilizing mRNA molecules in therapeutics,
because its sufficient expression is dependent on stable and efficient distribution. With
this aim, lipid-based nanoparticles were adopted with improved formulation. The key to
success of the NLPs utilized in COVID-19 vaccines was the ionized lipid substance that
switches charges according to the environmental pH. The NLP is positively charged during
production to improve the mRNA complexation in acidic buffer, but it converts to neutral
charge under physiological conditions that reduce toxicity post-infection. Since biological
membranes and nucleic acids are negatively charged, it is difficult to deliver mRNA across
this barrier; the switch to the near-neutrally charged NLP at physiological pH facilitates
the mRNA cell penetration. Subsequently, the NLP switches again to positive as the pH
in the endosome drops, which is crucial for endosome escape for effective intracellular
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delivery (Figure 2) [24–28]. Upon intramuscular injection of mRNA loaded LNPs vaccines,
particles can be either internalized by interstitial cells or drained directly to the lymph
node. There are few optional cell types for mRNA translation, including somatic cells,
resident or recruited APCs (antigen-presenting cells) in the interstitial space, or in the
lymph node, by various immune cells reside, including naïve T and B cells. Subsequently,
the expressed spike antigen can either be degraded and presented on MHC-1, which then
binds the epitope to CD8+ T cells, or endocytosed by APCs. APCs present the epitope
by MHC II for CD4+ cells. In addition, secreted spike antigens can be internalized by
B-cell receptors [29]. Although the optimized formulations of the ionizable lipid replacing
the permanent cationic lipid were expected to be less toxic, there was still evidence of
side effects indicative of acute inflammation. Previously published research illustrated
that empty LNPs caused an innate immune response, despite the presumption that this
vaccine platform was primarily noninflammatory. The inflammation consisted of leucocyte
infiltration, activation of inflammatory pathways, and cytokine secretion. Thus, LNPs
can serve as particle-carriers with adjuvant activity [30]. However, the balance of positive
and negative inflammatory properties should be evaluated, since there is a possibility of
exacerbating potential side effects due to the robust inflammatory milieu induced by LNP
combined with presentation of vaccine-derived peptides outside of APC.
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Figure 2. Lipid nanoparticles’ ionizable lipid component facilitates the delivery of mRNA cargo.
The transition of LNPs between positive and neutral charges from the mRNA loading step to the
final release to the cell cytoplasm is shown. In acidic condition, ionizable lipids are positively
charged, which promotes mRNA loading. Then, in the systemic circulation, they became neutral
positive, which lowers their toxicity and prevents rapid sequestration by immune cells. The slightly
positive charge facilitates particles’ entrance to the cells by endocytosis. Upon acidification in the
endosome, the particles became positive again, which induces hexagonal phase structures, disrupting
the membrane of the endosome. Created with BioRender.com.

3. Cell-Derived Nanoparticles: Exosomes

Among the variety of delivery systems created with the aim of increasing antigen
presentation and enhancing immune response, cell-derived exosomes have emerged as
a novel platform for vaccine delivery [31,32]. Exosomes are naturally occurring vesicles.
Exosomes are nanoparticles that can range in size from 30–200 nm, and are produced by
almost all cell types. Exosome biogenesis begins with the cell membrane budding inward,
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followed by endosome invagination, which results in the formation of multi-vesicular
bodies that are then secreted into the extracellular space as exosomes [33,34]. Exosomes
can be designed to exhibit specific ligands on their surface to target particular cells, and can
be loaded with diverse drugs which are located either on the membrane surface or carried
within the exosome for protection from degradation. They exhibit low immunogenicity,
significantly less toxicity than lipid nanoparticles, improved drug encapsulation coupled
with a controlled release, and greater in vivo biodistribution [32,35]. Recent reports estab-
lished critical roles for exosomes in both physiological and pathophysiological processes,
including host–pathogen interaction [36], cell–cell communication [37], genetic exchange
between cells [38], and infectious agent transport [37,39].

An evolving field of “Exo-vaccination” relies on dendritic cell-derived exosomes
that consist of proteins involved in the immune response. The idea originated from
dendritic cell-based immunotherapy, which has manufacturing limitations on mass pro-
duction, definition of quality controls parameters, and long-term storage [40,41]. Dendritic
cell (DC)-derived exosomes are an attractive substitute for whole DC culture. In addi-
tion, GMP laboratory procedures for exosome harvesting and purification have been set
up for clinical implementations [42,43]. Exosomes secreted from professional antigen-
presenting cells (B lymphocytes and dendritic cells) are enriched with immunomodulatory
proteins such as: MHC Class I and II complexes, costimulatory molecules, HSP70–90, and
chaperons [40,44,45]. Two strategies are available for MHC peptide presentation on DC-
derived exosomes, naturally occurring following cell culture activation or direct loading of
peptide, with the latter method being deemed more efficient [46]. Preclinical studies have
been conducted in two phase I studies on cancer patients immunized with DC-derived
exosomes presenting tumor-derived peptides. Phase I clinical trials were conducted with
DC-based vaccination in melanoma patients. Exosomes, purified from DC cultures ob-
tained from patients’ leukapheresis, were loaded efficiently in an acidic environment with
MHC Class I or II peptides. The exosomes were safe, and did not cause any related side
effects. The observed immune response following exosome treatment manifested enhanced
NK cell effector functions [47]. Exosomes can be loaded with mRNA molecules to express
the immunogenic antigen of interest. In contrast to LNP, which elicited cellular toxicity,
exosomes have no adverse effect. Shang Jui et al. demonstrated production of 293Hek cell
line-derived exosomes loaded with mRNA-expressing immunogenic antigen. With in vitro
and in vivo models of mRNA exosome loading, the mRNA antigen was expressed and
induced both humoral and cellular responses [48,49].

Despite the progress in the field, the need to improve efficient exosome cargo uptake,
to optimize tropism and biodistribution, and to inhibit lysosomal destruction activity,
continues to be a challenge in exosome therapy.

There are currently no FDA-approved exosome products for human use in the USA.
According to the FDA, exosomes are classified as a product that requires studies regarding
safety and efficacy, the purity of the product, and its power in treating a specific medical
condition. Therapies using exosomes are under the Investigational New Drug (IND)
developmental phase, and require the approval of the regulatory agencies before initiating
the clinical trial [50]. The absence of standard regulatory guidelines for manufacturing
exosome-based drugs is a significant obstacle that must be overcome. In the cases of
protein-, cell-, molecules-, and nanomaterials-based therapies, the requirements for product
characterization are abundantly available. However, exosomes don’t belong to any of these
categories, halting the progress of such therapies to advanced stages in clinical trials.

Nevertheless, several exosome-based drug formulations are currently in clinical tri-
als [51]. Up until April 2022, we have found 258 clinical trials in which exosome-based
formulations are applied [52]. Out of the 258 trials, 111 involve cancer-related studies,
21 are associated with brain pathologies, and 120 include diabetic, cardiovascular, lung,
and kidney diseases. In addition, 16 trials are for COVID-19 clinical studies. Table 1
demonstrates the trends of exosome-based therapies in clinical trials.
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Table 1. Current submitted clinical trials.

Exosome Source Disease Loaded
Component Rout of Administration Phase End

Clinical Trial
Identification

Number

MSCs Coronavirus
pneumonia None Inhalation I 2020 NCT04276987

Human placenta MSCs Complex perianal
fistula None Fistula tact injection I/II Ongoing NCT05402748

Allogenic MSCs Acute ischemic
stroke miR-124 Stereotaxis/intraparenchymal I/II Ongoing NCT03384433

MSCs COVID-19 None I.V I/II Ongoing NCT04798716

MSCs COVID-19 None I.V II/III Ongoing NCT05216562

Mesenchymal
progenitor cell

Microbial
pulmonary

infection
None Inhalation I/II Ongoing NCT04544215

Mesenchymal stromal
cells Pancreas cancer KrasG12D siRNA I.V I Ongoing NCT03608631

MSCs Epidermolysis
bullosa None Dermal I/II Enrolled NCT04173650

Adipose MSCs Alzheimer None Nasal drip I/II Ongoing NCT04388982

MSCs COVID-19 None Inhalation I/II 2020 NCT04491240

Autologous
adipose-derived stem

cells
Periodontitis None Periodontal pockets injection I Ongoing NCT04270006

Umbilical cord
blood-derived MSCs

Type I diabetes
mellitus None I.V I/III Ongoing NCT02138331

MSCs Knee
osteoarthritis None Intra-articular injection I Ongoing NCT05060107

Autologous plasma Cutaneous ulcers None Dermal I Ongoing NCT02565264

Platelet-rich plasma
(PRP) enriched with

exosomes

Chronic low back
pain None Nucleus pulposus I Ongoing NCT04849429

Dendritic cells Non-small cell
lung cancer Tumour antigen n.d II 2018 NCT01159288

T cell COVID-19 None Inhalation I Ongoing NCT04389385

Hek293 cell line COVID-19 CD24 * Inhalation II Ongoing NCT04969172

Data retrieved from [53]. Abbreviations: MSCs, mesenchymal stem Cells. * Exosomes presenting CD24 protein on
their surface.

3.1. Exosome-Based Therapies for COVID-19 in Clinical Trials

At the present time, COVID-19 has been spreading across the world, and outbreaks
continue to occur. It is imperative to find a safe and effective therapeutic approach for
COVID-19 patients, and exosomes bring attractive possibilities as diagnostic biomarkers,
in addition to targeted drug delivery. COVID-19-related clinical trials based on the ex-
osome platform confirm its flexible application and capability. This section will discuss
several examples.

To explore the safety and efficiency of aerosol inhalation of exosomes derived from
allogenic adipose mesenchymal stem cells (MSCs-Exo), single-arm, open-label, combined
interventional clinical trials were designed for the treatment of patients hospitalized with
novel coronavirus severe pneumonia (NCP) [54]. Blazquez et al. [55] reported that human
adipose MSC-derived exosomes (exo-hASCs) induced an inhibitory effect on the differenti-
ation, activation, and proliferation of T cells. In addition, IFN-γ release downregulation on
in vitro stimulated cells with anti-CD2/anti-CD3/anti-CD28, showing that exo-hASCs can
be considered as therapeutic agents for the treatment of inflammation-related diseases [56].
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In a second trial, to test the safety and efficiency of T-cell-derived exosomes by metered-
dose inhaler, a single-arm, open-label, combined interventional (phase I/II) clinical trial
was designed for the treatment of patients at early stages of novel coronavirus pneumo-
nia [57]. COVID-19-specific T-cells (CSTC) are T cells activated and expanded in vitro by
exposing them to viral peptide fragments in the presence of cytokines. These fragmented
COVID-19 peptides activate specific T cells, and stimulate the secretion of potent mediators,
including IFN-γ in forms of exosomes [58]. It is proposed that the treatment of COVID-19
patients with CSTC-exosomes, at early stages of pulmonary disease, will control disease
progression [59,60].

In a third example, a phase I/II randomized, double-blinded, placebo-controlled trial
evaluated the safety and potential efficacy of an intravenous infusion of Zofin (Organicell
flow) for treatment of moderate to severe acute respiratory syndrome (ARDS) related
to COVID-19 infection [61]. Zofin is a cellular product derived from human amniotic
fluid. It consists of over 300 growth factors, cytokines, chemokines, and extracellular
vesicles/nanoparticles derived from amniotic and epithelial cells. The presence of exosome-
associated proteins CD63, CD81, CD9, and CD133 were revealed by surface marker analysis,
and the completed sequencing showed 102 commonly expressed miRNA sequences. Proin-
flammatory cytokines found to be targeted by miRNA include TNF, IL-6, IL-8, FGF2, IFNB1,
IGF1, IL36a, IL37, TGF-B2, VEGFA, CCL8, and CXCL12. It has been suggested that inhibi-
tion or suppression of this pro-inflammatory cytokine cascade (cytokine storm) may reduce
the severity of symptoms associated with elevated immune response [62,63].

In another trial, a nonrandomized open-label cohort study addresses the safety and
efficacy of exosomes derived from allogeneic bone marrow mesenchymal stem cells
(ExoFloTM; bmMSC-derived exosomes) as intravenous treatment for severe COVID-19
and for moderate-to-severe ARDS [64]. No adverse effects were observed within 72 h of
ExoFloTM administration. Due to its ability to restore oxygenation, to downregulate cy-
tokine storm, and to reconstitute immunity, ExoFloTM is considered a promising therapeutic
candidate for severe COVID-19.

The COVID-19 pandemic outbreak accelerated the development of clinical trials
that launched these new therapeutics platforms. This pharmaceutical blooming boosted
recognition of exosomal-based therapies, which led to their immense prominence in clinical
trials, and subsequently necessitated the creation of regulatory authorities to consolidate
guidelines for exosome-based drugs.

3.2. Exosome CD24 (EXO-CD24) Delivery System for COVID-19

CD24 is a small, heavily glycosylated mucin-like cell surface protein anchored to the
membrane via glycosyl phosphatidylinositol, known to be a natural endogenous negative
regulator of the immune system [65]. CD24 associates with DAMPs but not with PAMPs,
meaning that it does not interfere with viral clearance. The binding of CD24 to DAMPs
prevents them from binding to TLRs; therefore, CD24 inhibits DAMP-activation of the NFκB
pathway, a key signaling pathway driving production of cytokines and chemokines [56].
Another distinct class of pattern recognition receptors are Siglecs, which regulate immune
cell functions. CD24 binds Siglec-10, resulting in an activation of the Siglec-10 signaling
pathway [66,67]. This pathway negatively regulates the activity of NFκB, through the
immunoreceptor tyrosine-based inhibition motif (ITIM) domains associated with SHP-1
(SRC homology 2 domain-containing protein tyrosine phosphatase-1). This synergistic effect
yields tight inhibition of the NF-κB pathway, thus reducing the likelihood of developing a
potentially deadly cytokine storm and leading to a return to immune homeostasis.

We developed a therapeutic drug platform named EXO-CD24, carried by exosomes,
as a highly body-compatible delivery vehicle. Exosomes are engineered to overexpress
CD24 [68], an endogenous immunomodulator of the immune system, aiming to target the
cytokine storm in the lungs of COVID-19 patients.

Mortality in COVID-19 patients has been linked to the presence of the cytokine storm
induced by SARS-CoV-2. In about 5% of COVID-19 patients, after a window of 5–10 days, a
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rapid clinical deterioration may occur that can lead to acute respiratory distress syndrome
(ARDS), a life-threatening form of respiratory failure. ARDS is a critical medical condition
with an unmet need for therapy for approximately 1.5–79 patients per 100,000 each year
in Europe alone, resulting in nearly 25% mortality. In the USA, extrapolation of the data
suggests that there are approximately 190,000 cases of ARDS each year. Globally, ARDS
accounts for 10% of intensive care unit admissions, representing more than three million
patients with ARDS annually. Although the exact mechanism of SARS-CoV-2 in ARDS is
not yet fully understood, the induction of cytokine storm is considered to be one of the
leading factors. EXO-CD24 may potentially be used as a novel treatment to suppress the
hyper-inflammatory response in the lungs of severely affected COVID-19-associated ARDS
patients, as well as in other systemic diseases where cytokine storm is developed.

EXO-CD24 is delivered by inhalation, a clinically simple mode of administration that
can be administered by non-medical staff, reducing costs during treatment. Inhalation
enables a strong reduction of the required dose (as opposed to systemic administration)
and reduces the risk for adverse events. In this regard, patients with moderate- to high-
severity COVID-19 were recruited in a phase Ib/IIa open-label study conducted in Israel.
Participants were given increasing doses (from 1 × 108 to 1 × 1010 exosomes per dose) of
EXO-CD24 particles for five consecutive days [69]. A fast and significant reduction in the
inflammatory markers and in cytokine/chemokine levels confirmed the expected efficacy
of EXO-CD24 in downregulating the cytokine storm. No adverse effects related to the drug
were observed, indicating an excellent safety profile [70].

Other groups have applied soluble CD24 (CD24Fc) to evaluate hospitalized adult
patients with confirmed SARS-CoV-2 infection. They were randomly assigned to receive
a single intravenous infusion of CD24Fc 480 mg or placebo [71]. CD24Fc was generally
well tolerated, and promoted clinical improvement in hospitalized patients with COVID-19
who were receiving oxygen support. Results suggest that targeting inflammation provides
a therapeutic alternative for patients hospitalized with COVID-19 [72,73].

3.3. Exosome-Based Therapies—Translational Challenges

However, exosome biogenesis and complex functioning is not yet fully understood,
particularly the mechanisms involved in the uptake into the exosomes of the drugs to be
transported, and in their release into cells after exosome internalization. An important
consideration in applying exosome-based therapy to current clinical practice is the standard-
ization of isolation and storage techniques. At the present time, many exosome isolation
kits are on the market, in addition to laboratory-made cocktails and protocols. However,
there is no standardization for reagents and for storage conditions for exosome-based
preparations. This leads to broad variations in the reproducibility of the results, which
generates difficulties in drawing adequate conclusions, making the transition to the clinic
problematic [74]. In addition, keeping in mind the necessity for large-scale prospective
production, easier and faster methods for exosome separation and purification are needed,
along with the development of engineered exosomes to overcome drug-loading issues, and
to obtain uniform and stable results in drug delivery applications, both in preclinical and
clinical studies. In this regard, pharmacokinetic and pharmacodynamic properties through
large-scale prospective research studies will be also required [31].

Despite the significant progress in the field over the last decades, there are questions
that need to be addressed. Using scanning electron microscopy (SEM), exosomes can
be distinguished from other contaminating extracellular vesicles, based on the size dis-
tribution [75]. However, there are still no standard methods to follow and characterize
exosomes for in vitro and in vivo studies. In a first approach, Wu et al. developed a new
flow cytometry assay to characterize membrane protein expression on exosomes, by using a
lipophilic fluorescent tracer dye (DiI; dialkylcarbocyanine dye) to detect low copy-number
proteins through unbiased clustering of exosomes. Applying this approach, exosomes
derived from SKBR3 cells, a cell model for human HER2+ breast cancer, were shown to
contain both HER1 and HER2 proteins, but at very different levels of abundance. The
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relative densities of HER1 and HER2 on the new assay establishes a consistent framework
to characterize exosomes through the identification of specific low-expressing proteins in
exosome membrane [75].

Furthermore, there are no universal exosome markers to allow the identification
of these vesicles [31,51]. However, a new study reported that exosomes contain a core
proteome of approximately 1200 proteins common to exosomes from all cells. Among them,
syntenin-1 has been shown to be the most abundant protein across all exosomes, defining
it as a potential universal marker for exosomes [76].

4. Author Opinion

Exosomes play an innate role in the body by working as a vehicle for the transfer
of biological agents between cells, which have the potential to be developed as a shuttle
for delivering drugs of therapeutic need, by using their naturally engineered defense
mechanisms.

In addition to their utility in infectious diseases, the potential of exosome-based ther-
apy is vast and stretches across many fields of medicine. It has been described for many
other conditions, including neurodegenerative disorders [77], autoimmune diseases [78],
cardiovascular diseases [79], bone and orthopedic conditions [80], and for cancer diagno-
sis [81]. It is expected that exosomes will be pivotal in understanding treatment for the
unresolved aspects of multiple conditions for which adequate treatment or diagnosis is not
yet currently available.

5. Conclusions

The application of nanotechnology in immunization constitutes the basis of the health-
care system. The massive growth in this field has allowed the creation of new approaches
that are safer and more reliable. Nanotechnology is able to compete with the latest medical
treatments by creating new vaccines, adjuvants, and vaccine delivery platforms.

Undoubtedly, there is a necessity to further explore and reevaluate how to make
currently available vaccines more effective in creating a robust and long-term immune
response for patients, while maintaining a strong safety profile. For this reason, future
studies should take exosomes into consideration as one of the emerging platforms for
targeted vaccine delivery.

The wide range of biological compounds found and released from exosomes under
physiological conditions has useful applications in the context of healthcare and drug
delivery. These include the discovery of new biomarkers, to establish new imaging tools,
and the development of therapeutic carriers for a broad range of diseases.
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