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This paper presents a neuromorphic tactile encoding methodology that utilizes a

temporally precise event-based representation of sensory signals. We introduce a novel

concept where touch signals are characterized as patterns of millisecond precise

binary events to denote pressure changes. This approach is amenable to a sparse

signal representation and enables the extraction of relevant features from thousands of

sensing elements with sub-millisecond temporal precision. We also proposed measures

adopted from computational neuroscience to study the information content within the

spiking representations of artificial tactile signals. Implemented on a state-of-the-art

4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate

the classification of transient impact events while utilizing 20 times less communication

bandwidth compared to frame based representations. Spiking sensor responses to a

large library of contact conditions were also synthesized using finite element simulations,

illustrating an 8-fold improvement in information content and a 4-fold reduction

in classification latency when millisecond-precise temporal structures are available.

Our research represents a significant advance, demonstrating that a neuromorphic

spatiotemporal representation of touch is well suited to rapid identification of critical

contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic

applications.

Keywords: dynamic tactile sensing, neuromorphic, spatiotemporal, biomimetic, spiking

1. INTRODUCTION

The increased expectation of robots to be able to interact in natural dynamic environments requires
the ability to quickly detect, recognize and respond to physical contact events. Such capabilities
are necessary for dexterous manipulation (Johansson, 2002) and to ensure the safety of the user
and robot (Lumelsky, 2005; Dahiya et al., 2013). Ideally, the entire exterior of the robot should be
sensitive and responsive to touch. These requirements highlight the need for a rapid acquisition and
processing mechanism to interface with thousands of tactile sensing elements distributed across the
surface of a robot.

In comparison to other sensing modalities such as vision and hearing, the difficulties in
acquiring and processing data from numerous tactile sensing elements, or taxels, have been cited
as a primary reason for the limited progress in tactile sensing (Lee, 2000). The challenges are a
result of taxels being spread over a large and non-uniform surface area. To minimize clutter and
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wiring complexity, the sampling and readout processes are
often heavily time-multiplexed, leading to reduced readout data
rates.

We used the human somatosensory system as our inspiration
since it is unmatched in terms of scale and responsiveness
compared to state-of-the-art artificial tactile sensors. With over
17,000 mechanoreceptors on the palmar side of each hand,
humans demonstrate exquisite reflex, responding within 65ms
of a contact event (Johansson et al., 1992). After accounting for
the multiple layers of neural processing and slow conduction
velocities of axons (Buchthal and Rosenfalck, 1966), the actual
window for data acquisition is estimated at ∼5ms (Johansson
and Birznieks, 2004). Neurophysiologists postulate that the
temporal structure of action potentials from a population of
mechanoreceptors may serve as a neural code that facilitates
rapid sensory processing in the brain (Johansson and Birznieks,
2004; Pruszynski and Johansson, 2014).

Among the four main classes of mechanoreceptors
innervating the glabrous skin, theMeissner corpuscles respond to
stimuli with the highest temporal precision at 0.8ms (Johansson
and Birznieks, 2004). Meissner corpuscles are also known as
fast-adapting type 1 (FA-1) receptors since they only respond to
changes in stimulus intensity and have a small receptive field.
Compared to other mechanoreceptors, FA-1 afferents have a
much higher innervation density of 140 afferents per cm2 at the
fingertips (Vallbo et al., 1984). Due to large overlaping receptive
fields, Meissner corpuscles are often activated as a population
and in a particular order as the skin deforms upon contact.
This enables the representation of contact parameters in the
timing and sequence of spikes, and have been shown to encode
edges, local curvature, force magnitude and direction (Johansson
and Flanagan, 2009; Pruszynski and Johansson, 2014). It has
been postulated that these spatiotemporal response patterns
are highly compressed representations that enable rapid signal
propagation and processing to occur (Johansson and Birznieks,
2004; VanRullen et al., 2005).

The utility of spatiotemporal pattern recognition is
increasingly apparent in artificial tactile sensing research. Lee
et al. (2013) demonstrated such an approach for discriminating
between two indentation conditions and for detecting three
different gait events (Lee et al., 2014). Spatiotemporal patterns
were generated by detecting the time each sensor element
crossed a pre-defined pressure threshold for a given stimulus.
However, the use of a fixed threshold is only practical for
properly calibrated arrays. Rongala et al. (2015) showed an
improved accuracy for texture recognition using spatiotemporal
spike patterns compared to using spike rates alone. Subsequent
experiments conducted by Oddo et al. (2016) demonstrated
that the temporal structure of signals used in peripheral
nerve stimulation enhanced the ability of human subjects
to discriminate textural features. While all the papers cited
above have commented on the importance of precise spike
timing, the temporal precision of the representations used
were not quantified in detail. A thorough study that establishes
the temporal resolution required to maximize the efficacy of
spatiotemporal representations will be highly relevant to the
field.

Firstly, we propose the use of spatiotemporal representations
of tactile pressure changes to resolve dynamic contact events that
are common during daily interactions with our environment.
Secondly, we demonstrate the feasibility of our approach and
investigate the optimal temporal precision necessary to capture
maximum information for classification of contact events.
Thirdly, we demonstrate how an event-based representation
allows tactile signals of high temporal fidelity to be preserved
while maintaining a reasonable communication bandwidth.

The paper is organized as follows. In Section 2 we give an
overview of the state-of-the-art tactile sensor arrays as well as
alternative approaches to improve sampling rates. Subsequently
in Section 3 we describe the methods used in our study, including
both the finite-element-model (FEM) and physical experiments
applied in the study. Our results are presented in Section 4.
In Section 5 we provide a discussion about our findings and
concluding remarks about this study.

2. BACKGROUND

The ability to rapidly sample large arrays of tactile elements
spaced across a non-uniform surface area remains a major
challenge. While multiplexing of wires is necessary to reduce the
mechanical complexity of the system, the total communication
bandwidth of the sensors is reduced as a consequence. Currently,
the fastest tactile sensor arrays can communicate at 1.9 kHz but
with only 256 sensing elements (Schürmann et al., 2012), which
is insufficient to cover the body of a reasonably sized robot (see
Table 1). Limited communication bandwidth has been cited as
a restriction on the number of sensing elements on an array.
Although future developments of high speed communication
protocols will increase the sampling rate of tactile sensors, it is
unclear whether such a large volume of information is necessary.
Increased data acquisition requiresmore complex algorithms and
hardware, which leads to higher implementation costs and power
consumption. A practical approach is to intelligently reduce the
data generated from the sensing front-end, prior to transmission.

Spatial resolution is often compromised to improve response
times. Shimojo et al. (2010) developed a sensor optimized to
only detect the centroid and magnitude of an applied load. This
enables rapid detection of contact (1ms) but leads to severely
compressed spatial resolution of a single point. Oballe et al.’s
implementation compressed the tactile image into an ellipse to
represent location, distribution and magnitude of a load (Oballe-
Peinado et al., 2012). This work is similar to Shimojo et. al. since
there is only enough resolution to represent a single point of
contact. The technique employed by Fukui et al. (2011) selectively
sampled the sensor array based on a genetic algorithm, increasing
the probability of detecting a contact event without increasing
the sampling rate. However, this approach is ideally suited for
localized contacts since scanning a large area is still slow due
to a limited acquisition speed of 0.2ms per taxel. Similarly, the
sensor array presented by Schmitz et al. (2011) can only achieve a
higher sampling rate of 500Hz by averaging all sensing points.
Although these techniques permit rapid detection of contact
events, reduced spatial resolution does not provide accurate
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TABLE 1 | Comparison of the human hand to tactile sensor arrays of comparable scale/speed.

Sensor Number of taxels Sampling rate (Hz) Output format References

Gifu Hand III 859 100 8 bit pressure Mouri et al., 2002

Slip detection array 256 1900 12 bit pressure Schürmann et al., 2012

FPGA data compression 640 200 Fitted ellipses of pressure distribution Oballe-Peinado et al., 2012

CellulARSkin network 780 250 Events with 12 bit pressure Bergner et al., 2015

TactArray system (Pressure Profile Systems) 1024 10 12 bit pressure Pressure Profile Systems, 2016

Industrial I-scan system (TekScan) 1936 100 8 bit pressure TekScan, 2016

Human hand ∼17,000 >1000 (equivalent) Action potentials Johansson and Flanagan, 2009

Our system 4096 5200 Events with 1 bit pressure change Lee et al., 2015

Note that mechanoreceptors are not frame-based but asynchronous. Due to their sub-millisecond temporal precision, they could achieve an equivalent sampling rate of >1000Hz.

estimates of key contact properties such as force magnitude,
direction and object curvature (Johansson et al., 1992; Johansson
and Birznieks, 2004). Precise estimates of these characteristics
are critical for sensory control during object-oriented actions
(Johansson and Flanagan, 2009).

An implementation by Bergner et al. (2015) used an
asynchronous communication network to propagate pressure
measurements. Packets containing pressure intensity and other
measurements were sent only when a significant change in
pressure was detected at individual sensing modules. Due to
the sparse nature of tactile signals, information from 780 taxels
sampled at 250Hz were reliably transmitted while consuming
less than half the communication bandwidth under a worse case
scenario. While the results were promising, the focus of the work
was to reconstruct 2D pressure maps with minimal error. We
believe this application and performance is complementary to the
spatiotemporal representation proposed in this paper.

3. METHODS

This section describes the two main methods used in the
investigation of our hypothesis—FEM modeling and physical
experiments. The section begins with a discussion on the origins
of spatiotemporal features in mechanoreceptor responses and
how the representations are reproduced using our FEM model.
This is followed by a description of the physical experimental
setup. Finally, we present the methodology used to compute the
information content within outputs of both the FEM simulation
and recordings from the physical sensor array.

3.1. Monte Carlo FEM Simulation
During mechanical contact, skin deformation results in
distributed patterns of pressure that trigger tactile afferents in
a precise sequence, creating spike patterns that are spatially
and temporally distinct (Figure 1). The number of unique
representations or dimensionality of a spatiotemporal code
is dependent on the (a) length of decoding time window,
(b) temporal precision of the spikes, and (c) number of
mechanoreceptors involved. Experimentally, it has been
observed that human fingertips are innervated with an
exceptional density of mechanoreceptors (Johansson and
Flanagan, 2009). The afferents exhibit highly overlapping

receptive fields, partly as a consequence of the soft and
conformable supportive tissues beneath (Johansson and
Flanagan, 2009). Combined with sub-millisecond temporal
precision, spatiotemporal spiking patterns have the potential
to encode a large range of stimuli within a short time window.
Using this biological mechanism as an inspiration, we designed
our simulations and experiments to target soft sensors with high
density.

We restricted this study to transient tactile events that can
occur on a generic 5 × 5mm patch of surface to ensure the
problem remains computationally tractable. Since the two-point
discrimination threshold of human fingertips is between 2 and
4mm (Johnson and Phillips, 1981), it is reasonable to assume
that we only have to resolve a single edge feature within this
region under most interaction scenarios. Moreover, the sensor
surface is assumed to be flat due to the small region of interest.
This reduces the problem to one of analyzing object indentations,
where an edge is depressed onto a flat surface. Taking advantage
of symmetry properties to reduce computational complexity, the
model was constructed in 2D. Figure 2 illustrates the simulation
framework.

To faithfully and accurately synthesize interaction scenarios,
we selected several contact parameters to vary (see Table 2). The
indentor was modeled to have linear elastic properties, while the
sensor was modeled using the parameters listed in Table 3. These
conditions accurately simulate Dragon Skin R© 10 (Smooth-on,
USA) silicone rubber commonly used as a cover for soft tactile
sensors (Elango and Faudzi, 2015).

For a given parameter set the result from a FEM simulation
is deterministic. To assess the robustness of our approach we
simulated stochastic variations using a sub-sampling technique.
A sub-sampling grid was constructed where the horizontal
and vertical spacing of sample points corresponded to the
temporal and spatial resolution of the simulated sensor array,
respectively (Figure 3). Each sub-sampled output was generated
by translating the sub-sampling grid within the FEM output,
thus ensuring that while individual sampling points are spaced
in accordance to the sampling period and spatial resolution of
the simulated sensor array, the absolute time and location of
the sampling points are different with each variation. The grid
translations in the temporal and spatial axes were uniformly
random in nature to create outputs that are stochastic, analogous
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Spatiotemporal spike patterns

Time

FIGURE 1 | Formation of spatiotemporal spike patterns. Skin deformation during mechanical contact produces distributed patterns of pressure that triggers

tactile afferents in a sequence to produce a spiking response pattern.

<indentation depth>

<indentor diameter>

<Young modulus>

final position

Sensing region

<slant angle>

4mm

10mm

5mm

(Avg: 75%)
S, Pressure (Pa)

−2.209e+03
−1.400e+03
−5.910e+02
+2.181e+02
+1.027e+03
+1.836e+03
+2.645e+03
+3.455e+03
+4.264e+03
+5.073e+03
+5.882e+03
+6.691e+03
+7.500e+03
+9.267e+03

A

B

FIGURE 2 | FEA simulation of indentation by an edge represented by a half-circle. (A) Variables in the simulation include indentor diameter, indentor hardness

(Young modulus), depth of indentation and angle of indentation. (B) Example output from an indentation at 10 deg slant. Colored contours represent pressure

distributions.
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TABLE 2 | Table of experimental variables.

Variable Values (increment) Unit

Indentor diameter 2–4 (0.5) mm

Young modulus of indentor 50–250 (100) kPa

Indentation depth 0.5–2 (0.5) mm

Indentation angle 0–20 (5) degrees

TABLE 3 | Sensor material constants (3 term Yeoh hyperelastic model).

Material type C10 (Pa) C20 (Pa) C30 (Pa) SSE

Dragon Skin 10® 3600 25.8 −0.056 0.12

to the uncertainty involved due to limited sensor resolutions.
Using this technique, a change in simulated sampling period
corresponds to a change in the density of the sub-sampling grid
along the time axis.

The FEA experiments were conducted on ABAQUS 6.13-1.
The contact event was the indentation of a half-circle onto
a rectangular substrate at a constant velocity (Figure 2).
Displacement control was used, with full displacement achieved
in 100ms. The friction coefficient between the indentor and
substrate was fixed at 0.7. All outputs were recorded at 0.2ms
time steps and 0.1mm spatial resolution, from a sensing region
of 5mm width. Data from the base sensing region was recorded
and sub-sampled to 25 elements to be compatible with the
density of mechanoreceptors (Johansson and Vallbo, 1979). The
spline interpolation technique in MATLAB (MathWorks, MA,
USA) was used to estimate values between discrete points of
an FEM output. Five-hundred variations were generated per
experimental condition, thus resulting in a dataset of 150,000
samples.

3.1.1. Simulation of Mechanoreceptor Transduction
Pressure was used as the input parameter to the computational
model since it well describes the transduction of tactile sensors
(Cabibihan et al., 2014). We extracted pressure estimates
from elements of the same depth within the sensing region
and mapped them to an exponential scale. The exponential
mapping approximates the response curves of mechanoreceptors
(Johansson et al., 1980) as well as piezoresistive transducers
commonly used in artificial tactile sensors (Paredes-Madrid et al.,
2011). The exponential conversion is described as:

ρn(t) =
(

un(t)
)α

(1)

where un(t) is the pressure experienced by sensor element
indexed n at time t, while α is a fixed power coefficient.

To analyze the information captured by spatiotemporal spike
representation, a conversion from analog pressure signals to
spikes is needed. This transformation was achieved using a
phenomenological FA-1 afferent model. In most transduction
models of FA-1 mechanoreceptors, the first derivative of pressure
is the primary input component to a leaky integrate-and-fire

FIGURE 3 | Illustration on the sub-sampling procedure. By randomly

jittering the sampling grid, multiple variations can be generated from the same

FEA data, simulating experimental error due to limited spatiotemporal

resolution of a physical sensor.

neuron model (Bensmaia, 2002; Kim et al., 2010). Therefore,
we defined the input current In(t) to the neuron model
corresponding to element n at each time instance t as the change
in pressure:

In(t) = κ

(

d(ρn(t))

dt

)

(2)

where ρn(t) is pressure at time t after accounting for the
exponential relation (Equation 1), and κ = 1 is a unit
constant symbolizing the transduction from pressure to neural
input current. Neuron dynamics are described by its membrane
potential Un(t), which is approximated by the integration the
input currents since the last spike tspk:

d(Un(t))

dt
=

1

C

t
∑

t= tspk

In(t). (3)

where C is the membrane capacitance of the neuron model.
A spike is discharged when the membrane potential exceeds a
threshold θn(t). In this work, we introduce polarity to the output
spikes, with:

sn(t) =











1 if Un(t) > θn(t)

−1 if Un(t) < −θn(t)

0 otherwise.

(4)

A negative spike representation is useful since a decrease of
pressure may be experienced at the periphery of the sensor,
especially when the indentation is performed at larger slant
angles. Upon spike emittance, Un(t) is reset to 0mV and the
threshold is incremented. This property increases the difficulty
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of a consecutive spike and simulates a refractory period of
the mechanoreceptor. The increased threshold slowly decays to
a baseline value θ0 when there are no spiking activities. The
dynamics of the threshold is described as:

θn(t) =











θn(t − 1)+ T Aθ0 after a spike

θn(t − 1)− Bθ0 if θn(t − 1) > θ0

θ0 otherwise

(5)

where A and B are constants that control the rate at which the
threshold potentiation and decay occur respectively and T is the
sampling period of the system in milliseconds. The dynamics of
the model are illustrated in Figure 4B while Figure 4A shows
how the corresponding spatiotemporal pattern is obtained from
a single sample.

3.1.2. Analysis for Simulated Data
Information theory is widely used in neural systems to
understand the statistical details embedded in spike trains. The
information encoded in neural recordings are measured by the
ability to discriminate various stimuli based on their spike train

response. We used linear discriminant analysis (LDA) to classify
the outputs, where inputs to the classifier are spike raster plots
of size m × n, representing outputs from m mechanoreceptors
lasting n time steps (where n = 100/sampling period (ms)).
Shannon’s information measure (Shannon, 2001) was applied to
compute the mutual information I(R; L) between the ground
truth label (L), and classifier response (R):

I(R; L) =
∑

R,L

p(R|L) · p(L) log2
p(R|L)

p(R)
(6)

where p(R|L) is the probability of the classifier emitting response
R for an input L, as derived from the confusion matrix. This
approach presents a more objective performance measure since it
provides information about the error distribution (non-diagonal
values in the confusion matrix), not just the number of hits
(diagonal values). Results were computed using the information
breakdown toolbox (Magri et al., 2009) implementing the
Panzeri-Treves method (Panzeri and Treves, 1996) for bias
correction.
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FIGURE 4 | Illustration of the spike conversion process. (A) A composite illustration of spikes obtained using simulated data. The background color gradient

represents pressure values (ρt ) after accounting for exponential relation. Solid black lines represent the spikes discharged by our model. (B) The dynamics of an

example conversion neuron. A spike is discharged when the membrane potential Un(t) exceeds the threshold θn(t). Immediately after a spike, Un(t) is reset to 0 while

θn(t) is increased, θn(t) decays toward baseline otherwise.
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For all experiments, the constants described in Table 4 were
used. The value of θ0 was estimated by dividing the range of
pressures by 1024, the smallest pressure change that can be
resolved by a 10 bit ADC. Values for the exponential constant
α of biological mechanoreceptors have been reported to range
between 0.2 and 1.4 with a mean of 0.7 (Vallbo et al., 1984).
For computational simplicity, themembrane capacitanceC of the
integrate and fire neuron model was fixed at 1. The values for A
and Bwere obtained heuristically to ensure that the model’s spike
rate is biologically plausible at around 100Hz.

3.2. Physical Experiment
While simulating results using FEM is useful for controlled
variation of contact parameters, it is also important to be
able to validate the findings observed in simulation through
physical experiments. In this section, we provide details for a

TABLE 4 | List of constants used for simulation.

Constant Symbol Value

Exponential constant α 0.7

Baseline threshold θ0 3

Threshold potentiation A 20

Threshold decay B 0.05

Membrane capacitance C 1

Trials per simulation K 500

set of physical experiments to assess the predictions from FEM
simulations.

3.2.1. The Kilotaxel-Kilohertz Tactile Sensor Array
We previously reported a high speed tactile sensing platform to
investigate the use of spatiotemporal coding in touch (Lee et al.,
2015). It has 4096 piezoresistive sensing elements arranged in a
64 × 64 grid. Using a row-parallel column readout technique
a very high sampling rate of 5.2 kHz was achieved. The sensor
elements were made by inkjet printing of conductive traces as
rows and columns on separate sheets of polyethylene (AgIC
Inc., Tokyo, Japan). The traces were then arranged orthogonally,
with a piezoresistive fabric (LR-SLPA, Eeonyx, CA) sandwiched
in between, where each intersection formed a sensing element
(Figure 5). The size of each element measured 2.29 × 2.29mm
and the entire active region covered an area of 17 × 17 cm.
The sensor array was covered by a 10mm layer of polyurethane
foam to provide the mechanical compliance needed to capture
spatiotemporal patterns.

Sampling was controlled by a field-programmable-gate-
array (FPGA) from Xilinx (XC6SLX45). A/D conversion was
performed using a single-slope comparator array and multiple
parallel timers (Figure 5). The FPGA was programmed to
produce a spike event whenever a significant change in
pressure (� 0.02N) was detected. Each output event indicates
the time, coordinates, and the magnitude of the pressure
change. Notice that while all elements of the sensor array are
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FIGURE 5 | Sensor architecture and readout circuitry. Blue region: circuitry for cross-talk cancellation. Red region: Circuitry for analog to digital conversion.
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sampled in each frame, the output from the FPGA is event-
based with the temporal fidelity matching that of biological
mechanoreceptors.

3.2.2. Experimental Setup
Similar to the FEM simulations, we performed a series of
indentation tests on the sensor array. Rigid 3D printed spheres
of size 5 and 7 cm in diameter were released from heights of
10, 15, and 20 cm vertically above the sensing surface. The
experiments were repeated with the sensor at a slant of 0, 15, and
30 degrees, resulting in a total of 18 different combinations of
contact parameters. Figure 6A provides a graphical illustration
of the various experimental scenarios. For each parameter
combination 100 trials were performed. The weight of all spheres
was calibrated to be similar (36 ± 1 g).

We extracted a region of interest consisting of 16 × 16
elements centered around the averaged spatial coordinates of
the elements that responded during the first sampling period
upon impact. The duration of each recording was standardized
to 50ms, which is long enough to capture the first impact but not
subsequent bounces. Figure 6B encapsulates data recorded from
a representative impact stimulus from a 5 cm sphere dropped
from a height of 10 cm with a 0◦ slant angle. Data corresponding
to increased sampling periods were generated by quantizing the
timestamps of the events into bins of lower temporal precision.

3.2.3. Analysis for Experimental Data
Sampling the sensors at a high rate yields a sparse output
signal with high dimensionality. Classifying the spike raster plots
using LDA is computationally intensive and, hence, impractical.
Therefore, we adopted a metric space approach commonly
applied in neuroscience to compute mutual information (Victor

and Purpura, 1997). Pairwise distances between trials were
first computed using a modified Van Rossum distance metric
(van Rossum, 2001). Based on the calculated distances, a K-
nearest neighbor clustering technique was implemented to
classify the data and mutual information was computed from the
classification results (see Equation 6).

The Van Rossum distance metric was originally developed to
measure the difference of two spike trains and can be summarized
as follows (van Rossum, 2001). Each spike is convolved with an
exponential kernel to obtain a continuous signal:

f (t) =
I

∑

i=1

H(t − ti) exp

(

−
t − ti

τ

)

(7)

where:

H(x) =

{

0 if x < 0

1 if x ≥ 0
(8)

and t ∈ R
+ is time, ti is the time of the ith spike, H(·) is the

Heaviside step function and τ is a free parameter that affects
temporal smoothing of the signal. The distance metric is defined
as the Euclidean norm on the function space:

‖f(a), f(b)‖2 =

√

√

√

√

T
∑

t=0

(f(a)(t)− f(b)(t))2. (9)

In this work we extended the computation to patterns involving
multiple spike trains by applying a spatial kernel to the
continuous signal f (t). The spatial smoothing procedure for spike
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FIGURE 6 | (A) Ball dropped on sensor substrate under various physical conditions. (B) Spatiotemporal events captured by sensor array.
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train indexed m for a spatiotemporal pattern with N spike trains
is expressed as:

gm(t) = fm(t)+
N

∑

n= 1

(

fn(t) · exp

(

−dm,n

σ

))

(10)

where dm,n is the physical distance between sensor elements
indexedm and n and σ is the spatial smoothing parameter.

The distance between two spatiotemporal patterns indexed a
and b with N spike trains is calculated as:

‖g(a), g(b)‖2 =

√

√

√

√

N
∑

n=1

(gn(a)(t)− gn(b)(t))2. (11)

In this work, we used τ = 0.4ms and σ = 2mm because
they yield the highest mutual information after a grid search
of τ ∈ [0.1, 2]ms at intervals of 0.1ms and σ ∈ [1, 5]mm at
intervals of 1mm.

4. RESULTS

This section presents our findings from the FEM simulations and
physical experiments, with an emphasis on how information may
be lost due to reduced temporal resolution.

4.1. Information Embedded in
Spatiotemporal Features
The synthetic data was classified based on the combination of
stimulus parameters (total of 300 classes). The results in Figure 7

illustrate that mutual information decreases significantly along
with the sampling rate. Although the duration of stimulus
presentation is significantly longer at 100ms, we observed a
large discrepancy in mutual information between sampling with
0.5 and 20ms periods. This difference in performance indicates
that while a sampling period of 20ms is within Nyquist limits
for detecting the indentation event, the spatiotemporal features
needed for fine discrimination is contained at time scales notably
shorter than the duration of a contact event.

Results from the classification of physical data showed that
maximum information was obtained when sampling at 1ms
periods (Figure 7). In agreement with the FEM simulations,
mutual information generally decreases with sampling rate.
However, a sampling period below 1ms also led to a decrease in
mutual information. Thismay be due to increased high frequency
noise when sampling at faster rates, resulting in a reduction of
spatiotemporal pattern consistency.

4.2. Discriminability of Individual Contact
Parameters
In a realistic setting, it is often necessary to distinguish stimuli
based on a single parameter, regardless of how other properties
may have changed. For instance, the hardness of objectsmay need
to be identified regardless of its shape. Here we examine how
the reduction in temporal precision affects the discrimination of
individual contact parameters.
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FIGURE 7 | In both (A) simulated and (B) experimental scenarios, mutual

information is observed to decrease when sampling periods are increased,

resulting in a reduction of stimulus discriminability. We also observed a

decrease in mutual information for sampling periods <1ms for physical

experiments. This might be caused by increased high frequency noise when

sampling at faster rates.

For simulated data, we partition all 150,000 samples into
4 classes when classifying based on slant angle/indentation
depth/indentor diameter or 3 classes when classifying for
hardness (Young modulus). For physical recordings, all 1800
trials were split into 3 classes for slant angle/drop height or
2 classes for ball radius. Results from both the simulations
and physical experiments were normalized to the maximum
mutual information (log2(# of classes)) for comparison. Figure 8
illustrates the results of this study. As observed earlier,
mutual information decreased with sampling period for most
parameters. However, the effects of a decreased sampling
period are most noticeable for discriminating stimuli of
different indentor radii (Figure 8). In contrast, differences in
indentation depth do not require a high sampling rate for robust
discrimination, possibly because good discriminability can
already be achieved based solely on the number of spikes elicited.

In concurrence with our FEM simulations, results from
physical experiments show that discriminability of the ball radius
is the most affected parameter as sampling period increases
(Figure 8). Since the extracted region of interest is less than the
full contact area, the size of the ball can only be distinguished
based on small differences in spike times, an effect of variations
in local curvature.

4.3. Classification Latency
Accurate classification is beneficial but has little advantage if
higher performance is achievable only after the entire stimulus
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FIGURE 8 | Normalized mutual information vs. sampling period for

each parameter varied. (A) Results from simulated contact. (B) Results from

physical experiments. In both cases, the radius of the indentor is most

significantly affected by a decrease in temporal precision, while indentation

depth/drop height is the least affected parameter. Note the logarithmic scale

on the x axis.

is recorded. Here we process samples truncated in time to
investigate information content with respect to the duration of
stimulus recorded.

From our analysis on simulated data depicted in Figure 9, it
is observed that additional information at fine temporal scales
exists at the early stages of indentation. For example, over 6 bits
of mutual information is available in a 10ms recording when
sampling with a period of 0.5ms, while similar performance can
only be achieved in an 80ms recording if a sampling period of
5ms was used. Similarly for physical trials, mutual information
almost plateaued within the first 10ms of the impact when a
sampling period less than or equal to 2ms was used (Figure 9).
Slower sampling rates took at least twice as long to achieve
comparable performance.

This feature is an important advantage when working
with event-driven sensory control algorithms, since it has the
potential to enable critical contact events to be identified quickly
(Johansson and Cole, 1992).

4.4. Effects of Increasing Pressure
Resolution
While decreasing the temporal precision has been shown to lower
mutual information, the additional communication bandwidth
afforded by a lower sampling rate would allow each sample to
encode pressure information in greater detail. It is thus necessary
to investigate the optimal trade off between sampling rate and
pressure information encoded, given a fixed readout data rate.

We modified the FA-1 model in Equation (4), allowing for
spikes that also indicate the magnitude of pressure change.
The dynamics of the updated model s̃(t) are described as a
quantization of U(t) scaled by θ0:

s̃(t) =

⌊

U(t)

θ0

⌋

. (12)

where ⌊·⌋ is the floor function. Modifying the output as given
in Equation (12) preserves information about magnitude of
pressure changes while maintaining the spiking nature of the
output. Depending on the number of output bits available, s̃(t)
may saturate at 2bits − 1. Note that only data from the FEM
simulations were used for this analysis, as the output from the
physical sensor has only a single bit per event.

The results exhibited in Figure 10 illustrate that increasing
pressure resolution leads to higher mutual information. This
effect is most discernible at lower sampling rates where changes
in pressure intensity between consecutive samples are more
abrupt. However, the improvement is less significant at higher
temporal fidelity. For example, sampling with a period of
20ms with 10 bits of pressure resolution achieves a much
lower performance compared to sampling at 2ms period with
1 bit pressure resolution, despite producing data at the same
rate. These results demonstrate that at least for dynamic edge
indentation stimuli, key features for discrimination are pre-
dominantly of much higher frequency than the contact duration
suggests, and it is thus prudent to allocate more resources to
encode temporal dynamics than pressure intensity.

4.5. Comparison of Bandwidth Utilization
Sampling rates of 1 kHz and above are not practical
when interfacing with thousands of sensor elements using
conventional frame-based representations. Here, we describe
how a bio-inspired event-based representation can reduce the
amount of data generated, allowing for rapid sampling rates
needed to capture spatiotemporal features. Therefore, we present
a comparison of three encoding strategies.

1. Event-based change coding (EC): Event packets are
generated only when a significant difference in pressure is
detected. Each event packet consists of 9 bits, with 8 bits to
encode the address of the element and 1 bit to indicate an
increase or decrease in pressure.

2. Frame-based intensity code (FI): Pressure at each element
is represented with n bits per sample. For this analysis, we
used n=10.

3. Frame-based change code (FC): Only 2 bits were used per
element to indicate whether an increase, decrease, or no
change in pressure was observed.

Note that the 8 bit address space for the EC method was selected
because it is the minimum number of bits required to encode a
16 × 16 element region of interest. Although a larger number of
sensor elements require more bits to address, it is also likely more
sparse because of a lower likelihood of activating all elements
at once. The duration of an impact was determined as the time
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between the first and last event recorded during contact. Data
rates for frame-based (FI and FC) approaches were computed
at 5.2 kHz frame rates to match the temporal resolution of the
event-based (EC) approach.

Figure 11 illustrates the distribution of data-rates for all
recorded impacts. An event-based (EC) code produces data at a
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FIGURE 11 | Comparison of output data-rate among the 3 coding

strategies based on all 1800 physical trials. Event-based change (EC)

code is activity dependent, hence its distributed nature. Both frame-based

change code and intensity code (FC and FI, respectively) produce data at a

constant rate for all trials. Note the broken y-axis and logarithmic scale on the
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rate that is dependent on activity level. With an EC approach,
only a maximum of 659 kilo-bits-per-second (kbps) was required
to fully capture the spatiotemporal events. In contrast, the frame-
based codes (FI and FC) required a constant 13.3 and 2.66Mbps
respectively.
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5. DISCUSSION

Neurophysiologists have emphasized the benefits of
spatiotemporal spike patterns in tactile processing (Johansson
and Birznieks, 2004; Harvey et al., 2013), although few sensor
and robotic system developers have taken this approach. The lack
of adoption by the robotics community is not due to an absence
of enthusiasm but because tactile sensors have traditionally been
designed for accurate pressure measurements at specific points
(Dahiya et al., 2013). A paradigm shift in the method of sensory
acquisition and processing may be needed to utilize temporal
structures efficiently.

Our work in this paper focused on precise detection of
spatial and temporal features of pressure changes across a
large population of taxels. Through FEM analysis and physical
experiments, spatiotemporal patterns of pressure changes were
used to discriminate contact scenarios involving multiple
combinations of stimulus parameters such as local curvature,
indentation magnitude, angle and indentor hardness. We
observed that signals with temporal resolution much higher than
the duration of contact were needed to resolve the various contact
parameters. Loss of information from reduced sampling rates
could not be recovered by increasing pressure resolution. It is
most probable that the key features for discrimination of dynamic
contact are pre-dominantly high frequency, and our physical
experiments suggests that a tactile sensing system with sampling
rates of 500Hz and above is needed to fully exploit these features.

Although event-based communication protocols have been
advocated in earlier work as a method for data reduction
(Bergner et al., 2015; Rongala et al., 2015), our composition
extends beyond prior literature by elucidating the increased
information capacity of a spatiotemporal representation, if the
events are temporally accurate. By applying the concept to our
high speed sensor array, we demonstrated the ability to rapidly
sample thousands of sensing elements while preserving the
structure of response patterns with sub-millisecond precision
needed for accurate classification. We also observed an
approximately 20 time reduction in data transmitted during
ball-drop experiments when compared to conventional frame-
based representations. The savings incurred for high density
sensors covering large surface areas would likely be much higher
using event-based coding since it is unlikely that changes will be
detected for all elements at every sampling period.

Realistic tactile stimuli are highly complex.We do not contend
that our simulations and experiments have comparable diversity.
We restricted our investigation to transient dynamic stimuli
since these are some of the most challenging problems in tactile
sensing. In addition, for robots to operate safely in natural
dynamic environments, the ability to react quickly to complex
transient events is crucial.

A comparison of the results obtained from physical
experiments to FEM simulations reveals less than predicted
improvement in performance when sampling with periods below
2ms (Figure 7). This might be a consequence of stochastic
error introduced by nature of the experimental trials. Sources of
inconsistencies include the varying response characteristics of

sensing elements and manual stimuli delivery. Both introduce
large intra-class variations in the spatiotemporal patterns in
comparison to the underlying deterministic FEM simulations.
These inconsistencies are more noticeable when sampling at
high rates and reduce discriminatory performance. In addition,
the mutual information captured at lower sampling rates are
likely to be positively biased because the start of the impacts were
aligned with 0.2ms precision provided by the native sampling
rate of the sensor. These issues may be resolved using advanced
learning algorithms that are adaptable to the characteristics of
sensors and robust to experimental noise.

One of the goals of this work was to highlight the advantages
of coding tactile stimuli through spatiotemporal representations,
which FA-1 afferents are well suited for. Although FA-1 like
representations have been demonstrated to work well under
dynamic conditions, we do not diminish the importance of
other mechanoreceptors; namely, the SA-1, FA-II, and SA-
II, and the value of accurate pressure measurements. Indeed,
an efficient processing strategy could be implemented where
the saliency of tactile signals are characterized rapidly based
on the temporal structure to prime higher order attentional
mechanisms. Processing resources can then be allocated to
analyze the stimulus in greater detail as spikes from SA type
mechanoreceptors are accumulated over time.

Beyond the tactile domain, neuromorphic event-based
sensory processing has been implemented in vision and audition
(Lichtsteiner et al., 2008; Posch et al., 2011; Brandli et al., 2014;
Liu et al., 2014). Research in spike based processing in these
fields are more established, partly due to the availability of silicon
retinae and cochleas (Chan et al., 2007; Delbrück et al., 2010).
Dedicated processing hardware and algorithms have also been
developed to interface with spatiotemporal features captured by
such sensors (Liu and Delbrück, 2010). Due to its distributed
nature and challenging requirements to be mechanically flexible
and stretchable, building an inherently event-based tactile sensor
array is significantly more challenging. Recent progress in
material science and manufacturing technology have opened
new opportunities such as using organic transistors to create
digital mechanoreceptors (Tee et al., 2015). Such innovative
components and applications will hopefully increase interests
and development in tactile sensing.
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