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Abstract: This short review is focused on enzymatic properties of human ATP-dependent RNA
helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases.
DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all
aspects of cellular processes, such as cell cycle progression, apoptosis, innate immune response, viral
replication, and tumorigenesis. DDX3 has a variety of functions in the life cycle of different viruses.
DDX3 helicase is required to facilitate both the Rev-mediated export of unspliced/partially spliced
human immunodeficiency virus (HIV) RNA from nucleus and Tat-dependent translation of viral
genes. DDX3 silencing blocks the replication of HIV, HCV, and some other viruses. On the other hand,
DDX displays antiviral effect against Dengue virus and hepatitis B virus through the stimulation of
interferon beta production. The role of DDX3 in different types of cancer is rather controversial. DDX3
acts as an oncogene in one type of cancer, but demonstrates tumor suppressor properties in other
types. The human DDX3 helicase is now considered as a new attractive target for the development of
novel pharmaceutical drugs. The most interesting inhibitors of DDX3 helicase and the mechanisms
of their actions as antiviral or anticancer drugs are discussed in this short review.

Keywords: DEAD-box family RNA helicases; physico-chemical properties; antiviral drug; anticancer
drug; inhibitors; virus life cycle

1. Introduction

Cellular proteins and cofactors have attracted much attention as new targets for the development
of antiviral/anticancer drugs. Viruses are intracellular parasites that use host metabolic machinery
for their replication and emission of infection [1]. More than 300 cellular proteins and co-factors
participate in virus replication [2,3], but the most drugs approved by the Food and Drug Administration
for the treatment of viral infections include drugs targeting viral enzymes. In the case of human
immunodeficiency virus (HIV), the main targets are the reverse transcriptase, protease, and integrase,
whereas only one drug (enfuvirtide, T-20, Fuseon) that blocks the cellular process of HIV fusion
was approved for the treatment of HIV-infected people. For the treatment of hepatitis C virus
(HCV)-infected patients, inhibitors of HCV NS3/4A protease, RNA-dependent RNA polymerase NS5B,
and the nonstructural protein NS5A are used in clinics. The main problem with such an approach is
the rapid development of viral resistance and escape of some genotypes/isolates from the action of the
drugs. The use of host cell factors as targets for drug development can help to overcome the problem of
viral resistance, since cellular proteins are much more conserved, and mutations in these proteins may
alter cell viability [4–6]. The human DDX3 helicase, first identified in 1997 [7], is now considered as an
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attractive target for the development of novel pharmaceutical drugs [8–11]. The DDX3 helicase belongs
to the large DEAD-box (Asp-Glu-Ala-Asp) family of ATP-dependent RNA helicases. The enzyme is a
multifunctional protein implicated in all aspects of RNA metabolism, cell cycle regulation, and viral
infection. The DDX3 helicase is involved in the replication of viruses belonging to different families:
HCV [12], Dengue virus [13,14], Japanese encephalitis virus [15], and West Nile virus of the Flaviviridae
family [16], HIV [17,18] of the Retroviridae, hepatitis B virus (HBV) [19] of Hepadnaviridae, Vaccinia virus
of Poxviridae [20], Norovirus of Caliciviridae [21], influenza A virus of Orthomyxoviridae families [22],
and several others. Knockdown of DDX3 blocks the replication of several types of viruses without
essential toxic effects (for example, see [2,23,24]). DEAD-box helicases also attract a lot of attention as
a target for the development of anticancer drugs, due to their role as oncogene in different types of
tumors [25–27]. These data stimulated the synthesis of DDX3 inhibitors as antiviral/anticancer drugs.
In order to design DDX3 selective inhibitors, a detailed knowledge of the substrate specificity of the
enzyme, crystal structure, biochemical, and enzymatic properties of DDX3 is very essential.

2. Structure of the DDX3 Helicase and Its Enzymatic Properties

The general architecture of the DEAD-box helicase family is quite conservative. The helicases
are composed of two RecA-like domains connected via a short flexible linker that allows changing
their orientation to each other, which is critical for the enzyme functions [28–30]. Variable C- and
N-terminals contain from a few to several hundred amino acids, which allow interaction with other
proteins or RNA. RecA-like domains are composed of nine conservative motifs involved in ATP and
RNA binding, ATP hydrolysis, and RNA strands unwinding.

The general domain structure of the DEAD-box family presented in Figure 1 is based on the
study of crystal structures of the human DDX3 core [31,32] and its ortholog Drosophila Vasa [33],
including their complexes with dsRNA, ADP, and a nonhydrolyzable ATP analogue. It was shown
that the structure of the cores was typical for other members of the DEAD-box family, whereas the
differences are mainly localized in the tail fragments [34]. It should be noted that the crystal structures
of full-length DEAD-box helicases have not been solved yet.

Figure 1. (a) Domain structure of the DDX3 helicase. (b) Motifs of RecA-like domains supporting
ATPase and helicase activities.

The DDX3 core consists of two RecA-like domains (Figure 1). Both of them are comprised of
several subdomains (motifs) [10,16,28,35]. Motifs Q, I, II, III, and VI are very important for both helicase
and ATPase activities. The Q motif recognizes the adenine moiety of NTP, while motifs I and II bind the
triphosphate moiety directly or through a Mg2+ ion, which was shown using a non-hydrolyzable ATP
analogue, namely AMPPNP. As a result, ATP hydrolysis is performed by motif II. Motif V interacts with
both the RNA and ATP. Motif III is associated with helicase activity. Motif V, together with Ia, Ib, and
IV, is involved in RNA-binding and probably in helicase activity. Motif VI is responsible for the protein
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interaction with RNA during unwinding and ATP hydrolysis [35–40]. It is noteworthy that according
to the crystal structure, interaction of the enzyme with single-stranded RNA leads to the formation of
a closed form of the protein, thus promoting the formation of functional sites. The crystal structure
of the DDX3 core model was extensively used to perform a virtual screening approach of different
chemical compounds as potential inhibitors of the ATPase or helicase activities of DDX3 [40–44].

Several laboratories have intensively studied the substrate specificity of DDX3 ATPase/helicase
for developing DDX3 inhibitors displaying antiviral/anticancer activities. In general, DDX3 helicase
reveals biochemical features that are typical for RNA helicases, but this class of helicases has some
specific functioning futures compared to processed helicases. In contrast to processed helicase, DDX3
helicase binds directly to oligonucleotide duplexes as an oligomer of two to three DDX3 molecules
without translocation, and can completely separate short RNA-RNA or RNA-DNA duplexes using a
single ATP molecule without its hydrolysis [36,45] (Figure 2).

Figure 2. Local strand separation by DDX3 helicase trimer.

This conclusion is strongly supported by the finding that the non-hydrolyzable ATP analog
ADP-beryllium fluoride (ADP-BeF) can promote unwinding the short oligonucleotide duplex, although
other non-hydrolyzable ATP analogs, ADP-aluminum fluoride (ADP-AlF4) and ADP-iminophosphate
(ADPNHP), with structures similar to ATP do not provide RNA-RNA complex separation [46] but
can form stable complexes with RNA [33,47]. Probably, minor differences in the structures of these
compounds do not allow strand separation. As supposed, ATP hydrolysis is required for dissociation
and recycling the DDX3 helicase, but not for the unwinding process (Figure 2). Such a mechanism
fundamentally differs from that of processed helicases [33,46,48]. Substitution of the N7 nitrogen with
carbon or the removal of the N6 amino group in the ATP molecule abrogates unwinding activity.
These observations indicate the significance of the positions in nuclear bases for DDX3 functioning.
There are some inconsistent data about substrate specificity of the DDX3 helicase. One series of
publications showed that human DDX3 ATPase has wide substrate specificity and besides ATP, binds
other rNTP, dNTP, as well as their L-stereomers [49]. It was also reported that ATPase activity is
equally stimulated by the addition of DNA or RNA oligonucleotides. However, later publication
presented the data that only ATP, but not dNTP or their analogs, are substrates of the DDX3 helicase.
Moreover, ATPase activity is stimulated by DNA to a markedly lower level than that by RNA, and no
significant ATPase activity in the absence of nucleic acid [45]. A virtual analysis of the interaction of
the nuclear base and ribose residue of NTP with DDX3 crystal structure did not show any possibility
of the relaxed substrate specificity [31]. The primer position in the double-strand RNA-RNA duplex is
also important for the DDX helicase activity in vitro [33,45]. The enzyme shows a greater preference
for the 3′-unpaired region of the duplex compared to those with 5’-unpaired regions and the inability
to separate DNA-DNA complete duplexes. Fully double-stranded complexes DNA-RNA but not
DNA-DNA can be separated, but much slower.

3. Hypothetical Mechanisms of the DDX3 Helicase Role in Viral Replication

DDX3 helicase is a multifunctional protein interacting with many human and viral proteins and
their complexes with RNA [17,48], but its role in the viral replication of different viruses has not been
studied precisely. It was shown that DDX3 plays a dual function in viral replication: first, as a cofactor
of viral replication, and second, as a mediator of the innate immunity system. The role of helicases in
viral infection was discussed in several reviews [9,50,51]. Viruses recruit cellular helicases at different
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replication stages to overcome some rate-limiting stages in their replication. In this section, we describe
the proposed mechanisms of action of the DDX helicases in the replication of HIV, HCV, HBV, herpes,
and influenza viruses. The most detailed virus replication scheme involving DDX3 helicase has been
described for HIV (Figure 3) [18,52–55]. DDX3 is a nucleo-cytoplasmic shuttling protein, which binds
to the Rev/RRE/CRM1 transport complex for enhancing the export of unspliced/partially spliced HIV
RNA from nucleus to cytoplasm. Knockdown of DDX3 using RNA interference or dominant-negative
mutants suppresses Rev/RRE/CRM1 function in the export of full-length HIV RNA [17]. In addition to
DDX3, other cellular RNA helicases, including DDX5, DDX17, DDX21, DHX36, DDX47, and DDX56,
are involved in Rev-dependent nuclear export of HIV RNA [56].

Figure 3. Hypothetical mechanism of involvement of the DDX3 helicase in the export of
unspliced/partially spliced HIV RNA from nucleus to cytoplasm. CRM1—cellular export shuttle protein;
Rev—shuttle protein with nuclear localization signal and a nuclear export signal. RANGTP—GTPase,
Tat—HIV translation factor.

Enhanced transport of RNA from the nucleus to the cytoplasm by the DDX3 helicase can be partly
explained by unfolding of the HIV RNA secondary structure by the DDX3 helicase or shaking off

associated with RNA proteins. DDX3 is also involved in HIV replication at the level of translation [57],
and export from nucleus precedes the activation of translation through the loading of 43S preinitiation
complex on 5′-UTR [53] and probably by overall promotion of 80S ribosome assembly [58]. Moreover,
this hypothesis is based on the specific association of DDX3 with HIV translation factor Tat, which
facilitates Tat-dependent translation of viral genes [55,59].

In contrast to DDX3 functions facilitating viral mRNA transport and translation, DDX3 participates
in the anti-viral innate immune signaling pathway, leading to type I IFN induction after phosphorylation
by TBK1/IKKε and translocation into the nucleus, leading to the activation of the IFNβ promoter [60–62].
The viruses, in turn, try to overcome the host immune system, targeting DDX3.

Much more data exist for HCV infection, but DDX3’s role in its replication is less clear. Indeed,
the DDX3 helicase is also an essential component in HCV replication [63]. It was reported that
siRNA-mediated knockdown of DDX3 causes a reduction in HCV RNA and HCV core expression
levels in cells. The first data about the interaction of DDX helicase with C-terminal domain of HCV
core were published in 1999 [64–66]. The authors hypothesized that the interaction of DDX3 with
HCV genotype 1 core somehow increased HCV replication level. However, later, the statement was
overcome; namely, mutations in DDX3 genotype 2a, which prevented the binding of DDX3 to the
HCV core, had no effect on HCV replication, although core-derived peptides of HCV genotype 1b
inhibited HCV replication [67]. These contradicted results can be explained by the different type of
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HCV genotypes used by the authors [68]. Later, Oshiumi et al. explained that HCV core inactivates the
IPS-1 adaptor, triggering RIG-mediated IFN-beta induction caused by DDX3 and, as a result, virus
replication is propagated [69,70]. So, the authors concluded that DDX3 is a RigI adaptor protein.
However, this mechanism is not quite clear, as many cell lines used in HCV research are not competent
for IFNβ induction. For example, the most common cell line, Huh7.5, is characterized by inactivation
of Rig-I (DDX58) [71]. In addition, HCV NS3 protease triggers proteolysis of MAVS, a classical
Rig-I adaptor critical for interferon induction [72]. However, recently, Horner’s group described a
novel TRF3-dependent but Rig-I/MAVS-independent interferon response controlled by HCV [73]. So,
the input of interferon signaling in the control of HCV infection and the precise role of DDX3 in its
modulation still have to be investigated.

An alternative mechanism by which DDX3 facilitates HCV replication could be an alteration of
lipid droplet (LD) biogenesis and homeostasis [67,74]. Lipid droplets are the ER-derived organelles
on which several viral proteins, including HCV core, are localized. Moreover, the initial step of
virion assembly, namely HCV encapsulation into nucleocapsids, occurs at the LD-ER interphase, and
HCV core and NS5A control this process [75,76]. LD biogenesis is induced by the interaction of
DDX3 with 5′-UTR of the HCV RNA, which leads to relocalization of IKKα and concomitant SREBP
activation [74]. HCV core also triggers relocalization of DDX3 to LDs, although direct core-DDX3
interaction is not required for virus replication or virion production [67]. It is tempting to speculate
that DDX3 could also affect the initiation of replication or nucleocapsid formation via affecting NS5A,
whose phosphorylation affects the interaction of viral RNA with RNA-dependent RNA polymerase [77]
or HCV core [78]. DDX3 is also a regulator of casein kinase 1ε [79], one of the kinases that drives
NS5A hyperphosphorylation [80]. Hyperphosphorylation of the NS5A protein is considered one of the
factors that promotes transition from replication to virion assembly [81]. However, DDX3 silencing
does not affect the ratio between the hyperphosphorylated (p58) and basally-phosphorylated (p56)
forms of the protein [82], so this interaction probably does not affect replication of the virus.

Finally, DDX proviral action could be due to its role in the regulation of stress granules (SG) and
processing bodies (P-bodies). SG are membraneless organelles that consist of proteins with distorted
structure and various RNAs. Specifically, most mRNAs sequestered to SGs are under stalled translation,
so the formation of these organelles suppresses global and gene-specific translation, and in particular,
may result in changes in interferon response [83]. In P-bodies mRNAs are stored for decapping and
degradation or until initiation of translation. However, the biology of stress granules and P-bodies
is not well understood, so the role of DDX3 in their functioning merits further studies. DDX3 is a
regulator of SG assembly [84] and maturation [85]. The assembly of stress granules is enhanced in
HCV-infected cells [86]. The binding of DDX3 to 5′-UTR of HCV RNA promotes interaction of the
latter with SGs as well as with lipid droplets [87]. Noteworthy, SG assembly is inhibited in tumor cells
harboring DDX3 with tumor-associated mutations [88], i.e., the inactivated protein [89]. So, DDX3
inhibitors could be regarded as tools to prevent virus-induced formation of SGs. The formation
of stress granules may affect HCV replication by a global change in host gene translation. Indeed,
DDX3 binds to a vast majority of mRNAs, as well as to 18S rRNA, thus blocking their translation [90].
However, as shown for yeast DDX3 orthologue Ded1, the helicase is also critical for reinitiation for
translation [91]. Specifically, DDX3-mediated SG assembly may significantly affect the translation
of mRNAs bearing upstream open reading frames (uORFs) [92,93] and probably cap-independent
translation. Indeed, for enterovirus serotype 71, which is also a small enveloped RNA virus, DDX3
does stimulate IRES-mediated translation of its genome [94]. Another recent paper suggested that
DDX3 is also a regulator of non-AUG initiated translation [95]. So, the role of DDX3 in virus replication
can also be explained by a switch from cap-dependent (i.e., cellular) to cap-independent (i.e., viral)
RNA translation. However, it is evident that investigation of stress granule biology may unveil their
role in the replication of viruses and in controlling innate immune response.

Similar events occur for other members of the Flaviviridae family and for Picornaviruses. DDX3
interacts with UTRs of the Japanese Encephalitis virus and with its NS3 and NS5A proteins also to
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promote late stages of the viral life cycle [15]. The West Nile virus sequesters DDX3 from P-bodies
to sites of viral replication, thus affecting the functioning of these organelles but promoting its own
replication [96]. So, the mechanisms by which DDX3 promotes the replication of HCV could probably
be expanded to these viruses as well.

In contrast to the proviral effect of DDX towards HIV and HCV, DDX3 restricts HBV replication [97].
There is very little information on the mechanism for suppressing HBV genome replication by the DDX3
helicase. The first suggestion assumed that DDX3 inhibits virus replication by interacting with HBV
DNA polymerase after DDX3 encapsulation, thus preventing the transcription stage [19]. However,
later, it was shown that the level of virus was independent of the interaction of HBV polymerase with
DDX3 [97]. The second hypothesis assumed that DDX3 helicase competes with HBV DNA polymerase
for the interaction with transcription factor TBK1/IKK(epsilon) blocking the interferon induction [98].
DDX3 overexpression could prevent the inhibitory effect of HBV replication. This assumption is
consistent with the stimulation of the immune system by the over expression of DDX3 helicase [99].

Interestingly, HBV is not the only virus whose virions contain DDX3. Another example is herpes
simplex virus type 1 (HSV-1) [100]. However, in this case, DDX3 acts not as an antiviral but a proviral
factor [101], presumably by affecting the expression of viral genes and regulating virion assembly [102].
This could be a feature of various herpes viruses, as similar data point to DDX3 as a proviral gene for the
replication of human cytomegalovirus, which also belongs to the Herpesviridae family [103]. However,
the mechanisms of their participation do not involve the regulation of interferon production and
concomitant signaling, whereas in HCMV-infected cells it does enhance the production of IFNβ [104].

In the case of the influenza A virus (IAV), DDX3 acts as an antiviral factor [22]. It interacts with
NS1 and NP proteins [22]. DDX3 is also recruited to viral replicase [105], presumably by interaction
with PB1-F2 (a subunit of viral replicase) [106]. In the case of the latter, such interaction is significantly
enhanced in the case of a highly pathogenic 1918 strain, and results in a co-degradation of both
DDX3 and viral protein [106]. So, it could be one of the factors of an extremely high pathogenicity of
this viral strain. Another factor is an NS1- and NP-induced DDX3-mediated formation of SGs [22].
The third one could be a DDX3-mediated induction of IFNβ through stimulator of interferon genes
(STING) [107]—another cytoplasmic sensor of viral nucleic acids. However, contrary data also exist.
Diot et al. considered DDX3 as a proviral factor [108]. In this study, DEAD-box helicases were
regarded as factors that promoted export from the nucleus to the cytoplasm of influenza A virus
mRNA. Replication of IAV was significantly impaired upon the silencing of 14 of 35 studied DEAD-box
proteins, with DDX19 helicase being the most effective in reducing infectious IAV [108].

Finally, DDX3 may be a cellular factor that also promotes the development of virus-associated
pathologies. As discussed above, the HCV core via DDX3 promotes the formation of lipid droplets [74],
thus contributing to the development of liver steatosis, one of the common liver diseases in chronic
hepatitis C patients. An additional link between HCV-induced changes in lipid homeostasis and DDX3
is provided by the downregulation of microsomal triglyceride transfer protein (MTP), achieved via
HCV-induced suppression of DDX3 expression [109]. The DDX3 helicase also regulates the production
of proinflammatory cytokines and chemokines by several mechanisms. The expression of cytokines is
controlled by the NFkB factor, whereas their subsequent maturation by the NLRP3 inflammasomes.
DDX3 interacts with NFkB and suppresses its activity [110]. Activation of inflammasomes is suppressed
during sequestration of DDX3 to stress granules [111]. So, DDX3 could affect the development of
inflammation during various infections, including HCV, HIV, and respiratory viruses [112–114]. Indeed,
in the case of HIV, DDX3 also promotes Tat-associated neurotoxicity, and since it is one of the best
studied inhibitors, the compound RK-33 suppresses the production of proinflammatory cytokines
induced by Tat [115].

4. Inhibitors of the DDX3 Helicase

During the last 15 years hundreds of chemical compounds of different classes have been elaborated
as potential inhibitors of ATPase/helicase of DDX3 helicase [41–44,116,117]. Herein, we focus our
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attention only on the most active and nontoxic compounds inhibiting DDX3 helicase as well as blocking
virus replication or suppressing tumor progression.

The first potential DDX3 inhibitors were synthesized after a high-throughput docking prediction of
the interaction of commercially available compounds from the Asinex Co. (Asinex Ltd., Winston-Salem,
NC, USA, http://www.asinex.com) and ChemBridge Co. (ChemBridge Corporation USA, San Diego,
CA, USA (http://www.chembridge.com)) with the crystal structure of the DDX3–AMP complex
in closed conformation [31,118]. Later on, their structures were optimized and the compounds
were tested as inhibitors of DDX3 in vitro and some of them as suppressors of virus replication in
cell cultures and tumor aggression. Among the active compounds were derivatives of rhodanine,
pyrazolo-, or diarylurea [2] as well as triazine-, naphthyl-, pyrazolo-, ring-expanded nucleoside, and
others [42,43,116–119].

Several compounds among rodanine and triazine derivatives were discovered as inhibitors of
ATPase activity of DDX3 at low micromolar concentration in vitro, but their anti-HIV activities in
cell cultures were one order of magnitude higher compared with the cell-free system. Moreover, the
compounds displayed rather high cytotoxicity [2,117]. Further investigations of these derivatives were
not undertaken. The interesting compounds were discovered among a series of diarylurea derivatives
(Table 1) [8].

Table 1. Selected diarylurea derivatives as DDX3 inhibitors in vitro.

General Structure

A. IC50 1 µM; B. IC50 6 µM 1. IC50 0.3 µM; 2. IC50 0.98 µM; 3. IC50 3.36 µM

The compounds A and B inhibited DDX3 helicase activity with IC50 1 µM and 6 µM, respectively,
being a competitive inhibitor with respect to RNA substrate [41]. Taking A and B as leading compounds,
the compounds were modified after docking analysis of the crystal structure of the complex DDX3
+ compound, using the 3D structure of DDX3 in its closed conformation [31]. The most interesting
among the predicted inhibitors was the compound 1, bearing a triazole ring instead of the nitro group.
The compound inhibited DDX helicase activity with IC50 0.3 µM and displayed inhibiting potential
against HIV, HCV, Dengue virus, and West Nile virus replication in cell cultures, with ED50 1.1 µM for
HIV, 0.97 µM for HCV, 2.55 µM for Dengue virus, and suppressed West Nile virus replication by 98%
at a concentration of 20 µM. The cytotoxicities of the compounds were rather low (>200, 50, 200 µM,
respectively) [8,16]. Importantly, the compounds also suppressed HIV1 strains resistant to anti-HIV
drugs. One of the essential disadvantages of the compounds was low aqueous solubility, which makes
it difficult to study the inhibitors in animal models.

After further virtual screening and modeling of the interaction of DDX helicase with the Sinex
library of compounds, several potential DDX inhibitors were synthesized and tested as inhibitors of
DDX helicase activity. The experimental results confirmed that 4 and 5 (Table 2) among the 27 selected
compounds inhibited the DDX3 helicase activity with high potency (IC50 0.2–0.3 µM) [118].

http://www.asinex.com
http://www.chembridge.com
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Table 2. Inhibitors of DDX3 helicase activity.

4. IC50 0.2 µM 5. IC50 0.3 µM 6. IC50 0.3 µM

Based on compound 5 and previously published compound 2 (Table 1), a new series of DDX3X
inhibitors was synthesized, validated as inhibitors of both DDX3 helicase in vitro and the WNV
replication [16]. The most interesting compound proved to be compound 6, which showed high activity
against WNV and a good safety profile. The docking studies showed that the compound acts as a
competitive inhibitor towards a template in the helicase binding site. Compound 6 displayed the
highest antiviral activity among the series, inhibiting WNV replication by 98% at 20 µM.

Another interesting class of DEAD-box cellular helicase inhibitors is presented by ring-expanded
nucleosides containing imidazo [4,5-e][1,3]diazepine ring or imidazo [4,5-e]]1,2,4 triazepine ring
systems (RENs). The compounds strongly inhibit human DDX3 helicase, HCV viral helicases (NS3
helicase), helicases of West Nile virus, and Japanese encephalitis virus in a cell-free system, and, as a
result, virus replication is blocked in the concentration range 5–15 µM [43,44,119–122]. The most
effective inhibitors of human DDX3 among the REN class of the compounds are presented in Figure 4.

Figure 4. DDX3 inhibitors with anticancer activity.

The observation of the simultaneous inhibition of HIV and HCV by REN1 and REN2 is very
important, since HCV is a frequent co-infection in AIDS patients, leading to liver cirrhosis and death.
As supposed, the compounds mimic nucleoside, occupy the ATP binding site of human or viral
helicases and delay or interrupt virus replication. The toxicity of the compounds was observed neither
in cell cultures nor in a mice model [119].

Later on, it was shown that RENs display not only antiviral but also anticancer activities. The role
of DDX3 in cancer development is rather controversial. DDX3 helicase can act as an oncogene or
tumor suppressor in different cancer types [26,27,116,121–125]. Moreover, DDX3 may play different
roles in the same type of cancer. For example, a decreased level of DDX3 was found in hepatocellular
carcinoma (HCC) caused by HBV, although not by HCV [126]. DDX3 also plays dual roles in breast
cancer [127] and colorectal cancer patients [128,129]. Up to now, there is no exact explanation of the
dual role of DDX in a variety of cancers, but some data should be taken into consideration. DDX3
is involved in the cell signaling pathway Wnt/β-catenin and can affect the Wnt regulation cascade,
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which is crucial to DDX3 functions in cancer development [130]. DDX3 also modulates cell adhesion,
represses the E-cadherin expression, which results in increased cell migration, and thus promotes
tumor progression [131]. As supposed, different roles of DDX helicases might be associated with
mutations in the DDX helicase (as can be exemplified by [132]) or virus infections, particularly HCV
or HBV. DDX3 knockdown with short interfering RNA (shRNA) or small molecules suppressed cell
motility and reduced metastatic potential in cancer cells and a mouse model [43,131]. The localization
of DDX3 within the cell might also determine different DDX3 functions. Usually, DDX3 accumulates in
the cytoplasm of the cell, but there are also reports of DDX3 export from nucleus to cytoplasm during
tumor progression. DDX3 helicase is a nucleo-cytoplasmic shuttling protein predominantly localized
in the cytoplasm of non-malignant cells. It has been suggested that its localization is altered during cell
transformation and could even contribute to malignancy [133,134].

Among synthesized REN analogs (Figure 4), NZ51 suppresses ATPase/helicase of DDX3 at low
micromole concentration in vitro and displays antiproliferative activity, blocking cell replication at
the G1 phase of aggressive breast cancer in different cell cultures [43], causing a global delay in cell
cycle progression [135]. The observed effects were similar to those upon the silencing of the DDX3
gene. Unfortunately, NZ51 treatment had no effect on primary tumor growth rates in a mouse model
system, although DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis
progression [43]. Among ring-expanded derivatives, the compound RK33 proved to be the most
interesting and prospective for medicine (Figure 4). RK-33 was found to display antiproliferative
activity against Ewing sarcoma [136], breast cancer [137], medulloblastoma [25], colorectal [129],
prostate [138], and lung [116] cancer, due to a stage G1 arrest [43]. Moreover RK-33 proved to be a
radiosensitizer that allows a reduction in the dose of radiation for cancer treatment [45]. The precise
mechanism of RK-33 action in different types of cancer remains to be elucidated. There is evidence that
the inhibition of DDX3 functions by RK-33 could disrupt the DDX3-β-catenin complex and cause a
disturbance in the Wnt signaling pathway involved in cell differentiation, cell proliferation, malignant
tumors, and transition of the G1/S cell cycle [131].

5. Conclusions

DDX3 is considered a potential new chemotherapeutic target for the treatment of viral infections
and different types of cancer. There are about 50 human DEAD-box helicases involved in a variety
of cellular and viral metabolic processes. In spite of the fact that interfering in cellular integrity
poses a risk of toxic effects, some effective chemical inhibitors of DDX3 enzymatic activity have
been developed, which suppress viral replication in cell cultures and display anticancer activity
against a number of cancer types without significant toxicity. One of the inhibitors of DDX3, ATPase
RK-33, was recommended for the preclinical stage against lung cancer. Moreover, RK33 increases
radiosensitivity, which allows a reduction in the dose of radiation for cancer treatment. Little is
currently known about the mechanisms for suppressing viral infections and regression of tumors
with DDX helicase inhibitors. Sometimes published data are contradictory, which is probably due to
different testing systems. To design new effective DDX inhibitors much work remains to be done to
unveil the mechanism of suppression of virus replication and tumor repression. However, the results
obtained allow us to hope that the chosen direction is correct and in the future will give new effective
therapeutic drugs.

Author Contributions: Conceptualization, M.K.K. writing—original draft preparation, M.K.K., I.L.K., and A.V.I.;
writing—review and editing, M.K.K., I.L.K., and A.V.I.; project administration, M.K.K.; funding acquisition, M.K.K.
and A.V.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Russian Foundation for Basic Research (grant 18-04-000735) and by the
Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2019-1660).

Conflicts of Interest: The authors declare no conflict of interest.



Molecules 2020, 25, 1015 10 of 16

References

1. Xi, X.G. Helicases as antiviral and anticancer drug targets. Curr. Med. Chem. 2007, 14, 883–915. [PubMed]
2. Maga, G.; Falchi, F.; Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Irannejad, H.; Manetti, F.; Garbelli, A.;

Samuele, A.; et al. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the
cellular ATPase DDX3 with improved anti-HIV activity: Synthesis, structure-activity relationship analysis,
cytotoxicity studies, and target validation. ChemMedChem 2011, 6, 1371–1389. [CrossRef] [PubMed]

3. Konig, R.; Zhou, Y.; Elleder, D.; Diamond, T.L.; Bonamy, G.M.; Irelan, J.T.; Chiang, C.Y.; Tu, B.P.; De Jesus, P.D.;
Lilley, C.E.; et al. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
Cell 2008, 135, 49–60. [CrossRef] [PubMed]

4. Drake, J.W.; Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 1999, 96,
13910–13913. [CrossRef]

5. Duffy, S.; Shackelton, L.A.; Holmes, E.C. Rates of evolutionary change in viruses: Patterns and determinants.
Nat. Rev. Genet. 2008, 9, 267–276. [CrossRef] [PubMed]

6. Tintori, C.; Brai, A.; Fallacara, A.L.; Fazi, R.; Schenone, S.; Botta, M. Protein-protein interactions and human
cellular cofactors as new targets for HIV therapy. Curr. Opin. Pharmacol. 2014, 18, 1–8. [CrossRef]

7. Park, S.H.; Lee, S.G.; Kim, Y.; Song, K. Assignment of a human putative RNA helicase gene, DDX3, to human
X chromosome bands p11.3–>p11.23. Cytogenet. Cell Genet. 1998, 81, 178–179. [CrossRef]

8. Brai, A.; Fazi, R.; Tintori, C.; Zamperini, C.; Bugli, F.; Sanguinetti, M.; Stigliano, E.; Este, J.; Badia, R.; Franco, S.;
et al. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc. Natl. Acad.
Sci. USA 2016, 113, 5388–5393. [CrossRef]

9. Ariumi, Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection.
Front Genet. 2014, 5, 423. [CrossRef]

10. Bol, G.M.; Xie, M.; Raman, V. DDX3, a potential target for cancer treatment. Mol. Cancer 2015, 14, 188. [CrossRef]
11. Schroder, M. Viruses and the human DEAD-box helicase DDX3: Inhibition or exploitation? Biochem. Soc.

Trans. 2011, 39, 679–683. [CrossRef] [PubMed]
12. Upadya, M.H.; Aweya, J.J.; Tan, Y.J. Understanding the interaction of hepatitis C virus with host DEAD-box

RNA helicases. World J. Gastroenterol. 2014, 20, 2913–2926. [CrossRef] [PubMed]
13. Kumar, R.; Singh, N.; Abdin, M.Z.; Patel, A.H.; Medigeshi, G.R. Dengue Virus Capsid Interacts with DDX3X-A

Potential Mechanism for Suppression of Antiviral Functions in Dengue Infection. Front Cell Infect. Microbiol.
2017, 7, 542. [CrossRef] [PubMed]

14. Li, G.; Feng, T.; Pan, W.; Shi, X.; Dai, J. DEAD-box RNA helicase DDX3X inhibits DENV replication via
regulating type one interferon pathway. Biochem. Biophys. Res. Commun. 2015, 456, 327–332. [CrossRef]

15. Li, C.; Ge, L.L.; Li, P.P.; Wang, Y.; Dai, J.J.; Sun, M.X.; Huang, L.; Shen, Z.Q.; Hu, X.C.; Ishag, H.; et al.
Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated
regions. Virology 2014, 449, 70–81. [CrossRef]

16. Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.;
Maccari, L.; et al. DDX3X Helicase Inhibitors as a New Strategy to Fight the West Nile Virus Infection. J. Med.
Chem. 2019, 62, 2333–2347. [CrossRef]

17. Yedavalli, V.S.; Neuveut, C.; Chi, Y.H.; Kleiman, L.; Jeang, K.T. Requirement of DDX3 DEAD box RNA
helicase for HIV-1 Rev-RRE export function. Cell 2004, 119, 381–392. [CrossRef]

18. Lorgeoux, R.P.; Guo, F.; Liang, C. From promoting to inhibiting: Diverse roles of helicases in HIV-1 Replication.
Retrovirology 2012, 9, 79. [CrossRef]

19. Wang, H.; Kim, S.; Ryu, W.S. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription
by incorporation into nucleocapsids. J. Virol. 2009, 83, 5815–5824. [CrossRef]

20. Kalverda, A.P.; Thompson, G.S.; Vogel, A.; Schroder, M.; Bowie, A.G.; Khan, A.R.; Homans, S.W. Poxvirus K7
protein adopts a Bcl-2 fold: Biochemical mapping of its interactions with human DEAD box RNA helicase
DDX3. J. Mol. Biol. 2009, 385, 843–853. [CrossRef]

21. Vashist, S.; Urena, L.; Chaudhry, Y.; Goodfellow, I. Identification of RNA-protein interaction networks
involved in the norovirus life cycle. J. Virol. 2012, 86, 11977–11990. [CrossRef] [PubMed]

22. Thulasi Raman, S.N.; Liu, G.; Pyo, H.M.; Cui, Y.C.; Xu, F.; Ayalew, L.E.; Tikoo, S.K.; Zhou, Y. DDX3 Interacts
with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress
Granule Formation. J. Virol. 2016, 90, 3661–3675. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/17430143
http://dx.doi.org/10.1002/cmdc.201100166
http://www.ncbi.nlm.nih.gov/pubmed/21698775
http://dx.doi.org/10.1016/j.cell.2008.07.032
http://www.ncbi.nlm.nih.gov/pubmed/18854154
http://dx.doi.org/10.1073/pnas.96.24.13910
http://dx.doi.org/10.1038/nrg2323
http://www.ncbi.nlm.nih.gov/pubmed/18319742
http://dx.doi.org/10.1016/j.coph.2014.06.005
http://dx.doi.org/10.1159/000015022
http://dx.doi.org/10.1073/pnas.1522987113
http://dx.doi.org/10.3389/fgene.2014.00423
http://dx.doi.org/10.1186/s12943-015-0461-7
http://dx.doi.org/10.1042/BST0390679
http://www.ncbi.nlm.nih.gov/pubmed/21428961
http://dx.doi.org/10.3748/wjg.v20.i11.2913
http://www.ncbi.nlm.nih.gov/pubmed/24659882
http://dx.doi.org/10.3389/fcimb.2017.00542
http://www.ncbi.nlm.nih.gov/pubmed/29387631
http://dx.doi.org/10.1016/j.bbrc.2014.11.080
http://dx.doi.org/10.1016/j.virol.2013.11.008
http://dx.doi.org/10.1021/acs.jmedchem.8b01403
http://dx.doi.org/10.1016/j.cell.2004.09.029
http://dx.doi.org/10.1186/1742-4690-9-79
http://dx.doi.org/10.1128/JVI.00011-09
http://dx.doi.org/10.1016/j.jmb.2008.09.048
http://dx.doi.org/10.1128/JVI.00432-12
http://www.ncbi.nlm.nih.gov/pubmed/22933270
http://dx.doi.org/10.1128/JVI.03010-15
http://www.ncbi.nlm.nih.gov/pubmed/26792746


Molecules 2020, 25, 1015 11 of 16

23. Ishaq, M.; Hu, J.; Wu, X.; Fu, Q.; Yang, Y.; Liu, Q.; Guo, D. Knockdown of cellular RNA helicase DDX3 by
short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol. Biotechnol. 2008, 39,
231–238. [CrossRef] [PubMed]

24. Lai, M.C.; Lee, Y.H.; Tarn, W.Y. The DEAD-box RNA helicase DDX3 associates with export messenger
ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell
2008, 19, 3847–3858. [CrossRef]

25. Tantravedi, S.; Vesuna, F.; Winnard, P.T., Jr.; Martin, A.; Lim, M.; Eberhart, C.G.; Berlinicke, C.; Raabe, E.; van
Diest, P.J.; Raman, V. Targeting DDX3 in Medulloblastoma Using the Small Molecule Inhibitor RK-33. Transl.
Oncol. 2019, 12, 96–105. [CrossRef]

26. Zhao, L.; Mao, Y.; Zhou, J.; Zhao, Y.; Cao, Y.; Chen, X. Multifunctional DDX3: Dual roles in various cancer
development and its related signaling pathways. Am. J. Cancer Res. 2016, 6, 387–402.

27. Botlagunta, M.; Vesuna, F.; Mironchik, Y.; Raman, A.; Lisok, A.; Winnard, P., Jr.; Mukadam, S.; Van Diest, P.;
Chen, J.H.; Farabaugh, P.; et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 2008, 27,
3912–3922. [CrossRef]

28. Andreou, A.Z.; Klostermeier, D. Conformational changes of DEAD-box helicases monitored by single
molecule fluorescence resonance energy transfer. Methods Enzymol. 2012, 511, 75–109.

29. Linder, P.; Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol.
Cell Biol. 2011, 12, 505–516. [CrossRef]

30. Hilbert, M.; Karow, A.R.; Klostermeier, D. The mechanism of ATP-dependent RNA unwinding by DEAD
box proteins. Biol. Chem. 2009, 390, 1237–1250. [CrossRef]

31. Hogbom, M.; Collins, R.; van den Berg, S.; Jenvert, R.M.; Karlberg, T.; Kotenyova, T.; Flores, A.; Karlsson
Hedestam, G.B.; Schiavone, L.H. Crystal structure of conserved domains 1 and 2 of the human DEAD-box
helicase DDX3X in complex with the mononucleotide AMP. J. Mol. Biol. 2007, 372, 150–159. [CrossRef]
[PubMed]

32. Song, H.; Ji, X. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X.
Nat. Commun. 2019, 10, 3085. [CrossRef] [PubMed]

33. Sengoku, T.; Nureki, O.; Nakamura, A.; Kobayashi, S.; Yokoyama, S. Structural basis for RNA unwinding by
the DEAD-box protein Drosophila Vasa. Cell 2006, 125, 287–300. [CrossRef] [PubMed]

34. Schutz, P.; Karlberg, T.; van den Berg, S.; Collins, R.; Lehtio, L.; Hogbom, M.; Holmberg-Schiavone, L.;
Tempel, W.; Park, H.W.; Hammarstrom, M.; et al. Comparative structural analysis of human DEAD-box
RNA helicases. PLoS ONE 2010, 5. [CrossRef] [PubMed]

35. Cordin, O.; Banroques, J.; Tanner, N.K.; Linder, P. The DEAD-box protein family of RNA helicases. Gene
2006, 367, 17–37. [CrossRef] [PubMed]

36. Chen, Y.; Potratz, J.P.; Tijerina, P.; Del Campo, M.; Lambowitz, A.M.; Russell, R. DEAD-box proteins can
completely separate an RNA duplex using a single ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 20203–20208.
[CrossRef] [PubMed]

37. Putnam, A.; Jankowsky, E. Analysis of duplex unwinding by RNA helicases using stopped-flow fluorescence
spectroscopy. Methods Enzymol. 2012, 511, 1–27.

38. Pause, A.; Methot, N.; Sonenberg, N. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic
translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 1993, 13,
6789–6798. [CrossRef]

39. Rogers, G.W., Jr.; Komar, A.A.; Merrick, W.C. eIF4A: The godfather of the DEAD box helicases. Prog Nucleic
Acid Res. Mol. Biol. 2002, 72, 307–331.

40. Putnam, A.A.; Jankowsky, E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding.
Biochim. Biophys. Acta 2013, 1829, 884–893. [CrossRef]

41. Radi, M.; Falchi, F.; Garbelli, A.; Samuele, A.; Bernardo, V.; Paolucci, S.; Baldanti, F.; Schenone, S.; Manetti, F.;
Maga, G.; et al. Discovery of the first small molecule inhibitor of human DDX3 specifically designed to
target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorg. Med. Chem. Lett. 2012, 22,
2094–2098. [CrossRef] [PubMed]

42. Shadrick, W.R.; Ndjomou, J.; Kolli, R.; Mukherjee, S.; Hanson, A.M.; Frick, D.N. Discovering new medicines
targeting helicases: Challenges and recent progress. J. Biomol. Screen 2013, 18, 761–781. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12033-008-9040-0
http://www.ncbi.nlm.nih.gov/pubmed/18259889
http://dx.doi.org/10.1091/mbc.e07-12-1264
http://dx.doi.org/10.1016/j.tranon.2018.09.002
http://dx.doi.org/10.1038/onc.2008.33
http://dx.doi.org/10.1038/nrm3154
http://dx.doi.org/10.1515/BC.2009.135
http://dx.doi.org/10.1016/j.jmb.2007.06.050
http://www.ncbi.nlm.nih.gov/pubmed/17631897
http://dx.doi.org/10.1038/s41467-019-11083-2
http://www.ncbi.nlm.nih.gov/pubmed/31300642
http://dx.doi.org/10.1016/j.cell.2006.01.054
http://www.ncbi.nlm.nih.gov/pubmed/16630817
http://dx.doi.org/10.1371/journal.pone.0012791
http://www.ncbi.nlm.nih.gov/pubmed/20941364
http://dx.doi.org/10.1016/j.gene.2005.10.019
http://www.ncbi.nlm.nih.gov/pubmed/16337753
http://dx.doi.org/10.1073/pnas.0811075106
http://www.ncbi.nlm.nih.gov/pubmed/19088196
http://dx.doi.org/10.1128/MCB.13.11.6789
http://dx.doi.org/10.1016/j.bbagrm.2013.02.002
http://dx.doi.org/10.1016/j.bmcl.2011.12.135
http://www.ncbi.nlm.nih.gov/pubmed/22300661
http://dx.doi.org/10.1177/1087057113482586
http://www.ncbi.nlm.nih.gov/pubmed/23536547


Molecules 2020, 25, 1015 12 of 16

43. Xie, M.; Vesuna, F.; Botlagunta, M.; Bol, G.M.; Irving, A.; Bergman, Y.; Hosmane, R.S.; Kato, Y.; Winnard, P.T., Jr.;
Raman, V. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by
targeting the RNA helicase DDX3. Oncotarget 2015, 6, 29901–29913. [CrossRef] [PubMed]

44. Zhang, N.; Zhang, P.; Baier, A.; Cova, L.; Hosmane, R.S. Dual inhibition of HCV and HIV by ring-expanded
nucleosides containing the 5:7-fused imidazo [4,5-e][1,3]diazepine ring system. In vitro results and
implications. Bioorg. Med. Chem. Lett. 2014, 24, 1154–1157. [CrossRef] [PubMed]

45. Sharma, D.; Putnam, A.A.; Jankowsky, E. Biochemical Differences and Similarities between the DEAD-Box
Helicase Orthologs DDX3X and Ded1p. J. Mol. Biol. 2017, 429, 3730–3742. [CrossRef] [PubMed]

46. Liu, F.; Putnam, A.; Jankowsky, E. ATP hydrolysis is required for DEAD-box protein recycling but not for
duplex unwinding. Proc. Natl. Acad. Sci. USA 2008, 105, 20209–20214. [CrossRef]

47. Liu, F.; Putnam, A.A.; Jankowsky, E. DEAD-box helicases form nucleotide-dependent, long-lived complexes
with RNA. Biochemistry 2014, 53, 423–433. [CrossRef]

48. Garbelli, A.; Beermann, S.; Di Cicco, G.; Dietrich, U.; Maga, G. A motif unique to the human DEAD-box
protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1
replication. PLoS ONE 2011, 6, e19810. [CrossRef]

49. Franca, R.; Belfiore, A.; Spadari, S.; Maga, G. Human DEAD-box ATPase DDX3 shows a relaxed nucleoside
substrate specificity. Proteins 2007, 67, 1128–1137. [CrossRef]

50. Fullam, A.; Schroder, M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential
host factors for viral replication. Biochim. Biophys. Acta 2013, 1829, 854–865. [CrossRef]

51. Ranji, A.; Boris-Lawrie, K. RNA helicases: Emerging roles in viral replication and the host innate response.
RNA Biol. 2010, 7, 775–787. [CrossRef] [PubMed]

52. Fang, J.; Kubota, S.; Yang, B.; Zhou, N.; Zhang, H.; Godbout, R.; Pomerantz, R.J. A DEAD box protein
facilitates HIV-1 replication as a cellular co-factor of Rev. Virology 2004, 330, 471–480. [CrossRef] [PubMed]

53. Frohlich, A.; Rojas-Araya, B.; Pereira-Montecinos, C.; Dellarossa, A.; Toro-Ascuy, D.; Prades-Perez, Y.;
Garcia-de-Gracia, F.; Garces-Alday, A.; Rubilar, P.S.; Valiente-Echeverria, F.; et al. DEAD-box RNA helicase
DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its
N-terminal domain. Biochim. Biophys. Acta 2016, 1859, 719–730. [CrossRef] [PubMed]

54. Jeang, K.T.; Yedavalli, V. Role of RNA helicases in HIV-1 replication. Nucleic Acids Res. 2006, 34, 4198–4205.
[CrossRef] [PubMed]

55. Lai, M.C.; Wang, S.W.; Cheng, L.; Tarn, W.Y.; Tsai, S.J.; Sun, H.S. Human DDX3 interacts with the HIV-1 Tat
protein to facilitate viral mRNA translation. PLoS ONE 2013, 8, e68665. [CrossRef]

56. Naji, S.; Ambrus, G.; Cimermancic, P.; Reyes, J.R.; Johnson, J.R.; Filbrandt, R.; Huber, M.D.; Vesely, P.;
Krogan, N.J.; Yates, J.R.; et al. Host cell interactome of HIV-1 Rev includes RNA helicases involved in
multiple facets of virus production. Mol. Cell Proteomics 2012, 11, M111.015313. [CrossRef]

57. Liu, J.; Henao-Mejia, J.; Liu, H.; Zhao, Y.; He, J.J. Translational regulation of HIV-1 replication by HIV-1 Rev
cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J. Neuroimmune Pharmacol. 2011, 6, 308–321. [CrossRef]

58. Geissler, R.; Golbik, R.P.; Behrens, S.E. The DEAD-box helicase DDX3 supports the assembly of functional
80S ribosomes. Nucleic Acids Res. 2012, 40, 4998–5011. [CrossRef]

59. Yasuda-Inoue, M.; Kuroki, M.; Ariumi, Y. DDX3 RNA helicase is required for HIV-1 Tat function. Biochem.
Biophys. Re.s Commun. 2013, 441, 607–611. [CrossRef]

60. Schroder, M.; Baran, M.; Bowie, A.G. Viral targeting of DEAD box protein 3 reveals its role in
TBK1/IKKepsilon-mediated IRF activation. EMBO J. 2008, 27, 2147–2157. [CrossRef]

61. Soulat, D.; Burckstummer, T.; Westermayer, S.; Goncalves, A.; Bauch, A.; Stefanovic, A.; Hantschel, O.;
Bennett, K.L.; Decker, T.; Superti-Furga, G. The DEAD-box helicase DDX3X is a critical component of the
TANK-binding kinase 1-dependent innate immune response. EMBO J. 2008, 27, 2135–2146. [CrossRef]
[PubMed]

62. Gu, L.; Fullam, A.; Brennan, R.; Schroder, M. Human DEAD box helicase 3 couples IkappaB kinase epsilon to
interferon regulatory factor 3 activation. Mol. Cell Biol. 2013, 33, 2004–2015. [CrossRef] [PubMed]

63. Ariumi, Y.; Kuroki, M.; Abe, K.; Dansako, H.; Ikeda, M.; Wakita, T.; Kato, N. DDX3 DEAD-box RNA helicase
is required for hepatitis C virus RNA replication. J. Virol. 2007, 81, 13922–13926. [CrossRef] [PubMed]

64. Owsianka, A.M.; Patel, A.H. Hepatitis C virus core protein interacts with a human DEAD box protein DDX3.
Virology 1999, 257, 330–340. [CrossRef]

http://dx.doi.org/10.18632/oncotarget.4898
http://www.ncbi.nlm.nih.gov/pubmed/26337079
http://dx.doi.org/10.1016/j.bmcl.2013.12.121
http://www.ncbi.nlm.nih.gov/pubmed/24461293
http://dx.doi.org/10.1016/j.jmb.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29037760
http://dx.doi.org/10.1073/pnas.0811115106
http://dx.doi.org/10.1021/bi401540q
http://dx.doi.org/10.1371/journal.pone.0019810
http://dx.doi.org/10.1002/prot.21433
http://dx.doi.org/10.1016/j.bbagrm.2013.03.012
http://dx.doi.org/10.4161/rna.7.6.14249
http://www.ncbi.nlm.nih.gov/pubmed/21173576
http://dx.doi.org/10.1016/j.virol.2004.09.039
http://www.ncbi.nlm.nih.gov/pubmed/15567440
http://dx.doi.org/10.1016/j.bbagrm.2016.03.009
http://www.ncbi.nlm.nih.gov/pubmed/27012366
http://dx.doi.org/10.1093/nar/gkl398
http://www.ncbi.nlm.nih.gov/pubmed/16935887
http://dx.doi.org/10.1371/journal.pone.0068665
http://dx.doi.org/10.1074/mcp.M111.015313
http://dx.doi.org/10.1007/s11481-011-9265-8
http://dx.doi.org/10.1093/nar/gks070
http://dx.doi.org/10.1016/j.bbrc.2013.10.107
http://dx.doi.org/10.1038/emboj.2008.143
http://dx.doi.org/10.1038/emboj.2008.126
http://www.ncbi.nlm.nih.gov/pubmed/18583960
http://dx.doi.org/10.1128/MCB.01603-12
http://www.ncbi.nlm.nih.gov/pubmed/23478265
http://dx.doi.org/10.1128/JVI.01517-07
http://www.ncbi.nlm.nih.gov/pubmed/17855521
http://dx.doi.org/10.1006/viro.1999.9659


Molecules 2020, 25, 1015 13 of 16

65. Mamiya, N.; Worman, H.J. Hepatitis C virus core protein binds to a DEAD box RNA helicase. J. Biol. Chem.
1999, 274, 15751–15756. [CrossRef]

66. You, L.R.; Chen, C.M.; Yeh, T.S.; Tsai, T.Y.; Mai, R.T.; Lin, C.H.; Lee, Y.H. Hepatitis C virus core protein
interacts with cellular putative RNA helicase. J. Virol. 1999, 73, 2841–2853. [CrossRef]

67. Angus, A.G.; Dalrymple, D.; Boulant, S.; McGivern, D.R.; Clayton, R.F.; Scott, M.J.; Adair, R.; Graham, S.;
Owsianka, A.M.; Targett-Adams, P.; et al. Requirement of cellular DDX3 for hepatitis C virus replication is
unrelated to its interaction with the viral core protein. J. Gen. Virol. 2010, 91, 122–132. [CrossRef]

68. Sun, C.; Pager, C.T.; Luo, G.; Sarnow, P.; Cate, J.H. Hepatitis C virus core-derived peptides inhibit genotype
1b viral genome replication via interaction with DDX3X. PLoS ONE 2010, 5. [CrossRef]

69. Oshiumi, H.; Ikeda, M.; Matsumoto, M.; Watanabe, A.; Takeuchi, O.; Akira, S.; Kato, N.; Shimotohno, K.;
Seya, T. Hepatitis C virus core protein abrogates the DDX3 function that enhances IPS-1-mediated IFN-beta
induction. PLoS ONE 2010, 5, e14258. [CrossRef]

70. Kang, J.I.; Kwon, Y.C.; Ahn, B.Y. Modulation of the type I interferon pathways by culture-adaptive hepatitis
C virus core mutants. FEBS Lett. 2012, 586, 1272–1278. [CrossRef]

71. Sumpter, R., Jr.; Loo, Y.M.; Foy, E.; Li, K.; Yoneyama, M.; Fujita, T.; Lemon, S.M.; Gale, M., Jr. Regulating
intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular
RNA helicase, RIG-I. J. Virol. 2005, 79, 2689–2699. [CrossRef] [PubMed]

72. Anggakusuma; Frentzen, A.; Gurlevik, E.; Yuan, Q.; Steinmann, E.; Ott, M.; Staeheli, P.; Schmid-Burgk, J.;
Schmidt, T.; Hornung, V.; et al. Control of hepatitis C virus replication in mouse liver-derived cells by
MAVS-dependent production of type I and type III interferons. J. Virol. 2015, 89, 3833–3845. [CrossRef] [PubMed]

73. Vazquez, C.; Tan, C.Y.; Horner, S.M. Hepatitis C Virus Infection Is Inhibited by a Noncanonical Antiviral
Signaling Pathway Targeted by NS3-NS4A. J. Virol. 2019, 93. [CrossRef] [PubMed]

74. Li, Q.; Pene, V.; Krishnamurthy, S.; Cha, H.; Liang, T.J. Hepatitis C virus infection activates an innate pathway
involving IKK-alpha in lipogenesis and viral assembly. Nat. Med. 2013, 19, 722–729. [CrossRef] [PubMed]

75. Vieyres, G.; Pietschmann, T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat
before Exit. Cells 2019, 8, 233. [CrossRef]

76. Lee, J.Y.; Cortese, M.; Haselmann, U.; Tabata, K.; Romero-Brey, I.; Funaya, C.; Schieber, N.L.; Qiang, Y.;
Bartenschlager, M.; Kallis, S.; et al. Spatiotemporal Coupling of the Hepatitis C Virus Replication Cycle
by Creating a Lipid Droplet- Proximal Membranous Replication Compartment. Cell Rep. 2019, 27,
3602–3617.e3605. [CrossRef]

77. Ivanov, A.V.; Tunitskaya, V.L.; Ivanova, O.N.; Mitkevich, V.A.; Prassolov, V.S.; Makarov, A.A.;
Kukhanova, M.K.; Kochetkov, S.N. Hepatitis C virus NS5A protein modulates template selection by
the RNA polymerase in in vitro system. FEBS Lett. 2009, 583, 277–280. [CrossRef]

78. Masaki, T.; Suzuki, R.; Murakami, K.; Aizaki, H.; Ishii, K.; Murayama, A.; Date, T.; Matsuura, Y.; Miyamura, T.;
Wakita, T.; et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the
production of infectious virus particles. J. Virol. 2008, 82, 7964–7976. [CrossRef]

79. Dolde, C.; Bischof, J.; Gruter, S.; Montada, A.; Halekotte, J.; Peifer, C.; Kalbacher, H.; Baumann, U.;
Knippschild, U.; Suter, B. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1epsilon.
J. Cell Sci. 2018, 131. [CrossRef]

80. Quintavalle, M.; Sambucini, S.; Di Pietro, C.; De Francesco, R.; Neddermann, P. The alpha isoform of protein
kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. J. Virol. 2006, 80, 11305–11312.
[CrossRef]

81. Masaki, T.; Matsunaga, S.; Takahashi, H.; Nakashima, K.; Kimura, Y.; Ito, M.; Matsuda, M.; Murayama, A.;
Kato, T.; Hirano, H.; et al. Involvement of hepatitis C virus NS5A hyperphosphorylation mediated by casein
kinase I-alpha in infectious virus production. J. Virol. 2014, 88, 7541–7555. [CrossRef] [PubMed]

82. Wang, W.T.; Tsai, T.Y.; Chao, C.H.; Lai, B.Y.; Wu Lee, Y.H. Y-Box Binding Protein 1 Stabilizes Hepatitis C
Virus NS5A via Phosphorylation-Mediated Interaction with NS5A To Regulate Viral Propagation. J. Virol.
2015, 89, 11584–11602. [CrossRef] [PubMed]

83. Stoecklin, G.; Kedersha, N. Relationship of GW/P-bodies with stress granules. Adv. Exp. Med. Biol. 2013, 768,
197–211. [PubMed]

84. Shih, J.W.; Wang, W.T.; Tsai, T.Y.; Kuo, C.Y.; Li, H.K.; Wu Lee, Y.H. Critical roles of RNA helicase DDX3
and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem. J. 2012, 441,
119–129. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.274.22.15751
http://dx.doi.org/10.1128/JVI.73.4.2841-2853.1999
http://dx.doi.org/10.1099/vir.0.015909-0
http://dx.doi.org/10.1371/journal.pone.0012826
http://dx.doi.org/10.1371/journal.pone.0014258
http://dx.doi.org/10.1016/j.febslet.2012.03.062
http://dx.doi.org/10.1128/JVI.79.5.2689-2699.2005
http://www.ncbi.nlm.nih.gov/pubmed/15708988
http://dx.doi.org/10.1128/JVI.03129-14
http://www.ncbi.nlm.nih.gov/pubmed/25609814
http://dx.doi.org/10.1128/JVI.00725-19
http://www.ncbi.nlm.nih.gov/pubmed/31534039
http://dx.doi.org/10.1038/nm.3190
http://www.ncbi.nlm.nih.gov/pubmed/23708292
http://dx.doi.org/10.3390/cells8030233
http://dx.doi.org/10.1016/j.celrep.2019.05.063
http://dx.doi.org/10.1016/j.febslet.2008.12.016
http://dx.doi.org/10.1128/JVI.00826-08
http://dx.doi.org/10.1242/jcs.207316
http://dx.doi.org/10.1128/JVI.01465-06
http://dx.doi.org/10.1128/JVI.03170-13
http://www.ncbi.nlm.nih.gov/pubmed/24760886
http://dx.doi.org/10.1128/JVI.01513-15
http://www.ncbi.nlm.nih.gov/pubmed/26355086
http://www.ncbi.nlm.nih.gov/pubmed/23224972
http://dx.doi.org/10.1042/BJ20110739
http://www.ncbi.nlm.nih.gov/pubmed/21883093


Molecules 2020, 25, 1015 14 of 16

85. Saito, M.; Hess, D.; Eglinger, J.; Fritsch, A.W.; Kreysing, M.; Weinert, B.T.; Choudhary, C.; Matthias, P.
Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 2019, 15, 51–61.
[CrossRef] [PubMed]

86. Garaigorta, U.; Heim, M.H.; Boyd, B.; Wieland, S.; Chisari, F.V. Hepatitis C virus (HCV) induces formation of
stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J. Virol. 2012,
86, 11043–11056. [CrossRef] [PubMed]

87. Pene, V.; Li, Q.; Sodroski, C.; Hsu, C.S.; Liang, T.J. Dynamic Interaction of Stress Granules, DDX3X, and
IKK-alpha Mediates Multiple Functions in Hepatitis C Virus Infection. J. Virol. 2015, 89, 5462–5477. [CrossRef]

88. Valentin-Vega, Y.A.; Wang, Y.D.; Parker, M.; Patmore, D.M.; Kanagaraj, A.; Moore, J.; Rusch, M.; Finkelstein, D.;
Ellison, D.W.; Gilbertson, R.J.; et al. Cancer-associated DDX3X mutations drive stress granule assembly and
impair global translation. Sci. Rep. 2016, 6, 25996. [CrossRef]

89. Epling, L.B.; Grace, C.R.; Lowe, B.R.; Partridge, J.F.; Enemark, E.J. Cancer-associated mutants of RNA helicase
DDX3X are defective in RNA-stimulated ATP hydrolysis. J. Mol. Biol. 2015, 427, 1779–1796. [CrossRef]

90. Oh, S.; Flynn, R.A.; Floor, S.N.; Purzner, J.; Martin, L.; Do, B.T.; Schubert, S.; Vaka, D.; Morrissy, S.; Li, Y.; et al.
Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget
2016, 7, 28169–28182. [CrossRef]

91. Hilliker, A.; Gao, Z.; Jankowsky, E.; Parker, R. The DEAD-box protein Ded1 modulates translation by the
formation and resolution of an eIF4F-mRNA complex. Mol. Cell 2011, 43, 962–972. [CrossRef] [PubMed]

92. Chen, H.H.; Yu, H.I.; Yang, M.H.; Tarn, W.Y. DDX3 Activates CBC-eIF3-Mediated Translation of
uORF-Containing Oncogenic mRNAs to Promote Metastasis in HNSCC. Cancer Res. 2018, 78, 4512–4523.
[CrossRef] [PubMed]

93. Adjibade, P.; Grenier St-Sauveur, V.; Bergeman, J.; Huot, M.E.; Khandjian, E.W.; Mazroui, R. DDX3 regulates
endoplasmic reticulum stress-induced ATF4 expression. Sci. Rep. 2017, 7, 13832. [CrossRef] [PubMed]

94. Su, Y.S.; Tsai, A.H.; Ho, Y.F.; Huang, S.Y.; Liu, Y.C.; Hwang, L.H. Stimulation of the Internal Ribosome Entry
Site (IRES)-Dependent Translation of Enterovirus 71 by DDX3X RNA Helicase and Viral 2A and 3C Proteases.
Front Microbiol. 2018, 9, 1324. [CrossRef] [PubMed]

95. Linsalata, A.E.; He, F.; Malik, A.M.; Glineburg, M.R.; Green, K.M.; Natla, S.; Flores, B.N.; Krans, A.;
Archbold, H.C.; Fedak, S.J.; et al. DDX3X and specific initiation factors modulate FMR1 repeat-associated
non-AUG-initiated translation. EMBO Rep. 2019, 20, e47498. [CrossRef] [PubMed]

96. Chahar, H.S.; Chen, S.; Manjunath, N. P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are
recruited to WNV replication sites and positively regulate viral replication. Virology 2013, 436, 1–7. [CrossRef]
[PubMed]

97. Ko, C.; Lee, S.; Windisch, M.P.; Ryu, W.S. DDX3 DEAD-box RNA helicase is a host factor that restricts
hepatitis B virus replication at the transcriptional level. J. Virol. 2014, 88, 13689–13698. [CrossRef]

98. Wang, H.; Ryu, W.S. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction
with DDX3: Implications for immune evasion. PLoS Pathog. 2010, 6, e1000986. [CrossRef]

99. Yu, S.; Chen, J.; Wu, M.; Chen, H.; Kato, N.; Yuan, Z. Hepatitis B virus polymerase inhibits RIG-I- and Toll-like
receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon
regulatory factor 3 activation and dampening of the interaction between TBK1/IKKepsilon and DDX3. J. Gen.
Virol. 2010, 91, 2080–2090.

100. Loret, S.; Guay, G.; Lippe, R. Comprehensive characterization of extracellular herpes simplex virus type 1
virions. J. Virol. 2008, 82, 8605–8618. [CrossRef]

101. Stegen, C.; Yakova, Y.; Henaff, D.; Nadjar, J.; Duron, J.; Lippe, R. Analysis of virion-incorporated host proteins
required for herpes simplex virus type 1 infection through a RNA interference screen. PLoS ONE 2013, 8,
e53276. [CrossRef] [PubMed]

102. Khadivjam, B.; Stegen, C.; Hogue-Racine, M.A.; El Bilali, N.; Dohner, K.; Sodeik, B.; Lippe, R. The
ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression. J. Virol. 2017,
91. [CrossRef] [PubMed]

103. Cavignac, Y.; Lieber, D.; Laib Sampaio, K.; Madlung, J.; Lamkemeyer, T.; Jahn, G.; Nordheim, A.; Sinzger, C.
The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a
Proviral Fashion. PLoS ONE 2015, 10, e0131614. [CrossRef] [PubMed]

104. DeFilippis, V.R.; Alvarado, D.; Sali, T.; Rothenburg, S.; Fruh, K. Human cytomegalovirus induces the
interferon response via the DNA sensor ZBP1. J. Virol. 2010, 84, 585–598. [CrossRef]

http://dx.doi.org/10.1038/s41589-018-0180-7
http://www.ncbi.nlm.nih.gov/pubmed/30531905
http://dx.doi.org/10.1128/JVI.07101-11
http://www.ncbi.nlm.nih.gov/pubmed/22855484
http://dx.doi.org/10.1128/JVI.03197-14
http://dx.doi.org/10.1038/srep25996
http://dx.doi.org/10.1016/j.jmb.2015.02.015
http://dx.doi.org/10.18632/oncotarget.8612
http://dx.doi.org/10.1016/j.molcel.2011.08.008
http://www.ncbi.nlm.nih.gov/pubmed/21925384
http://dx.doi.org/10.1158/0008-5472.CAN-18-0282
http://www.ncbi.nlm.nih.gov/pubmed/29921696
http://dx.doi.org/10.1038/s41598-017-14262-7
http://www.ncbi.nlm.nih.gov/pubmed/29062139
http://dx.doi.org/10.3389/fmicb.2018.01324
http://www.ncbi.nlm.nih.gov/pubmed/29971060
http://dx.doi.org/10.15252/embr.201847498
http://www.ncbi.nlm.nih.gov/pubmed/31347257
http://dx.doi.org/10.1016/j.virol.2012.09.041
http://www.ncbi.nlm.nih.gov/pubmed/23102969
http://dx.doi.org/10.1128/JVI.02035-14
http://dx.doi.org/10.1371/journal.ppat.1000986
http://dx.doi.org/10.1128/JVI.00904-08
http://dx.doi.org/10.1371/journal.pone.0053276
http://www.ncbi.nlm.nih.gov/pubmed/23301054
http://dx.doi.org/10.1128/JVI.02411-16
http://www.ncbi.nlm.nih.gov/pubmed/28148788
http://dx.doi.org/10.1371/journal.pone.0131614
http://www.ncbi.nlm.nih.gov/pubmed/26121620
http://dx.doi.org/10.1128/JVI.01748-09


Molecules 2020, 25, 1015 15 of 16

105. Jorba, N.; Juarez, S.; Torreira, E.; Gastaminza, P.; Zamarreno, N.; Albar, J.P.; Ortin, J. Analysis of the interaction
of influenza virus polymerase complex with human cell factors. Proteomics 2008, 8, 2077–2088. [CrossRef]

106. Park, E.S.; Byun, Y.H.; Park, S.; Jang, Y.H.; Han, W.R.; Won, J.; Cho, K.C.; Kim, D.H.; Lee, A.R.; Shin, G.C.;
et al. Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918
pandemic influenza. EMBO J. 2019, 38. [CrossRef]

107. Niu, Q.; Cheng, Y.; Wang, H.; Yan, Y.; Sun, J. Chicken DDX3X Activates IFN-beta via the
chSTING-chIRF7-IFN-beta Signaling Axis. Front Immunol. 2019, 10, 822. [CrossRef]

108. Diot, C.; Fournier, G.; Dos Santos, M.; Magnus, J.; Komarova, A.; van der Werf, S.; Munier, S.; Naffakh, N.
Influenza A Virus Polymerase Recruits the RNA Helicase DDX19 to Promote the Nuclear Export of Viral
mRNAs. Sci. Rep. 2016, 6, 33763. [CrossRef]

109. Tsai, T.Y.; Wang, W.T.; Li, H.K.; Chen, W.J.; Tsai, Y.H.; Chao, C.H.; Wu Lee, Y.H. RNA helicase DDX3 maintains
lipid homeostasis through upregulation of the microsomal triglyceride transfer protein by interacting with
HNF4 and SHP. Sci. Rep. 2017, 7, 41452. [CrossRef]

110. Xiang, N.; He, M.; Ishaq, M.; Gao, Y.; Song, F.; Guo, L.; Ma, L.; Sun, G.; Liu, D.; Guo, D.; et al. The DEAD-Box
RNA Helicase DDX3 Interacts with NF-kappaB Subunit p65 and Suppresses p65-Mediated Transcription.
PLoS ONE 2016, 11, e0164471. [CrossRef]

111. Samir, P.; Kesavardhana, S.; Patmore, D.M.; Gingras, S.; Malireddi, R.K.S.; Karki, R.; Guy, C.S.; Briard, B.;
Place, D.E.; Bhattacharya, A.; et al. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating
NLRP3 inflammasome. Nature 2019, 573, 590–594. [CrossRef] [PubMed]

112. Ivanov, A.V.; Valuev-Elliston, V.T.; Ivanova, O.N.; Kochetkov, S.N.; Starodubova, E.S.; Bartosch, B.;
Isaguliants, M.G. Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxid. Med.
Cell Longev. 2016, 2016, 8910396. [CrossRef] [PubMed]

113. Ivanov, A.V.; Valuev-Elliston, V.T.; Tyurina, D.A.; Ivanova, O.N.; Kochetkov, S.N.; Bartosch, B.;
Isaguliants, M.G. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis.
Oncotarget 2017, 8, 3895–3932. [CrossRef] [PubMed]

114. Khomich, O.A.; Kochetkov, S.N.; Bartosch, B.; Ivanov, A.V. Redox Biology of Respiratory Viral Infections.
Viruses 2018, 10, 392. [CrossRef] [PubMed]

115. Aksenova, M.; Sybrandt, J.; Cui, B.; Sikirzhytski, V.; Ji, H.; Odhiambo, D.; Lucius, M.D.; Turner, J.R.; Broude, E.;
Pena, E.; et al. Inhibition of the Dead Box RNA Helicase 3 Prevents HIV-1 Tat and Cocaine-Induced
Neurotoxicity by Targeting Microglia Activation. J. Neuroimmune Pharmacol. 2019. [CrossRef] [PubMed]

116. Bol, G.M.; Vesuna, F.; Xie, M.; Zeng, J.; Aziz, K.; Gandhi, N.; Levine, A.; Irving, A.; Korz, D.; Tantravedi, S.;
et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol. Med. 2015, 7,
648–669. [CrossRef] [PubMed]

117. Maga, G.; Falchi, F.; Garbelli, A.; Belfiore, A.; Witvrouw, M.; Manetti, F.; Botta, M. Pharmacophore modeling
and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication
targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3. J. Med.
Chem. 2008, 51, 6635–6638. [CrossRef]

118. Fazi, R.; Tintori, C.; Brai, A.; Botta, L.; Selvaraj, M.; Garbelli, A.; Maga, G.; Botta, M. Homology Model-Based
Virtual Screening for the Identification of Human Helicase DDX3 Inhibitors. J. Chem. Inf. Model 2015, 55,
2443–2454. [CrossRef]

119. Yedavalli, V.S.; Zhang, N.; Cai, H.; Zhang, P.; Starost, M.F.; Hosmane, R.S.; Jeang, K.T. Ring expanded
nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication.
J. Med. Chem. 2008, 51, 5043–5051. [CrossRef]

120. Heerma van Voss, M.R.; van Diest, P.J.; Raman, V. Targeting RNA helicases in cancer: The translation trap.
Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 510–520. [CrossRef]

121. Zhang, N.; Chen, H.M.; Koch, V.; Schmitz, H.; Liao, C.L.; Bretner, M.; Bhadti, V.S.; Fattom, A.I.; Naso, R.B.;
Hosmane, R.S.; et al. Ring-expanded (“fat”) nucleoside and nucleotide analogues exhibit potent in vitro
activity against flaviviridae NTPases/helicases, including those of the West Nile virus, hepatitis C virus, and
Japanese encephalitis virus. J. Med. Chem. 2003, 46, 4149–4164. [CrossRef] [PubMed]

122. Hosmane, R.S. Ring-expanded (“Fat”) nucleosides as broad-spectrum anticancer and antiviral agents. Curr.
Top Med. Chem. 2002, 2, 1093–1109. [CrossRef] [PubMed]

123. Riva, V.; Maga, G. From the magic bullet to the magic target: Exploiting the diverse roles of DDX3X in viral
infections and tumorigenesis. Future Med. Chem. 2019, 11, 1357–1381. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/pmic.200700508
http://dx.doi.org/10.15252/embj.201899475
http://dx.doi.org/10.3389/fimmu.2019.00822
http://dx.doi.org/10.1038/srep33763
http://dx.doi.org/10.1038/srep41452
http://dx.doi.org/10.1371/journal.pone.0164471
http://dx.doi.org/10.1038/s41586-019-1551-2
http://www.ncbi.nlm.nih.gov/pubmed/31511697
http://dx.doi.org/10.1155/2016/8910396
http://www.ncbi.nlm.nih.gov/pubmed/27829986
http://dx.doi.org/10.18632/oncotarget.13904
http://www.ncbi.nlm.nih.gov/pubmed/27965466
http://dx.doi.org/10.3390/v10080392
http://www.ncbi.nlm.nih.gov/pubmed/30049972
http://dx.doi.org/10.1007/s11481-019-09885-8
http://www.ncbi.nlm.nih.gov/pubmed/31802418
http://dx.doi.org/10.15252/emmm.201404368
http://www.ncbi.nlm.nih.gov/pubmed/25820276
http://dx.doi.org/10.1021/jm8008844
http://dx.doi.org/10.1021/acs.jcim.5b00419
http://dx.doi.org/10.1021/jm800332m
http://dx.doi.org/10.1016/j.bbcan.2017.09.006
http://dx.doi.org/10.1021/jm030842j
http://www.ncbi.nlm.nih.gov/pubmed/12954067
http://dx.doi.org/10.2174/1568026023393147
http://www.ncbi.nlm.nih.gov/pubmed/12173969
http://dx.doi.org/10.4155/fmc-2018-0451
http://www.ncbi.nlm.nih.gov/pubmed/30816053


Molecules 2020, 25, 1015 16 of 16

124. Heerma van Voss, M.R.; Schrijver, W.A.; Ter Hoeve, N.D.; Hoefnagel, L.D.; Manson, Q.F.; van der Wall, E.;
Raman, V.; van Diest, P.J. The prognostic effect of DDX3 upregulation in distant breast cancer metastases.
Clin. Exp. Metastasis 2017, 34, 85–92. [CrossRef] [PubMed]

125. He, Y.; Zhang, D.; Yang, Y.; Wang, X.; Zhao, X.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. A double-edged function
of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncology Rep. 2018, 39,
883–892. [CrossRef] [PubMed]

126. Chang, P.C.; Chi, C.W.; Chau, G.Y.; Li, F.Y.; Tsai, Y.H.; Wu, J.C.; Wu Lee, Y.H. DDX3, a DEAD box RNA
helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth
control. Oncogene 2006, 25, 1991–2003. [CrossRef]

127. Bol, G.M.; Raman, V.; van der Groep, P.; Vermeulen, J.F.; Patel, A.H.; van der Wall, E.; van Diest, P.J. Expression
of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS ONE 2013, 8, e63548. [CrossRef]

128. He, T.Y.; Wu, D.W.; Lin, P.L.; Wang, L.; Huang, C.C.; Chou, M.C.; Lee, H. DDX3 promotes tumor invasion in
colorectal cancer via the CK1epsilon/Dvl2 axis. Sci. Rep. 2016, 6, 21483. [CrossRef]

129. Heerma van Voss, M.R.; Vesuna, F.; Trumpi, K.; Brilliant, J.; Berlinicke, C.; de Leng, W.; Kranenburg, O.;
Offerhaus, G.J.; Burger, H.; van der Wall, E.; et al. Identification of the DEAD box RNA helicase DDX3 as a
therapeutic target in colorectal cancer. Oncotarget 2015, 6, 28312–28326.

130. Cruciat, C.M.; Dolde, C.; de Groot, R.E.; Ohkawara, B.; Reinhard, C.; Korswagen, H.C.; Niehrs, C. RNA
helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling. Science 2013, 339,
1436–1441. [CrossRef]

131. Chen, H.H.; Yu, H.I.; Cho, W.C.; Tarn, W.Y. DDX3 modulates cell adhesion and motility and cancer cell
metastasis via Rac1-mediated signaling pathway. Oncogene 2015, 34, 2790–2800. [CrossRef] [PubMed]

132. Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.;
Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell
carcinoma. Science 2011, 333, 1157–1160. [CrossRef] [PubMed]

133. Chao, C.H.; Chen, C.M.; Cheng, P.L.; Shih, J.W.; Tsou, A.P.; Lee, Y.H. DDX3, a DEAD box RNA helicase with
tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is
a candidate tumor suppressor. Cancer Res. 2006, 66, 6579–6588. [CrossRef] [PubMed]

134. Heerma van Voss, M.R.; Vesuna, F.; Bol, G.M.; Meeldijk, J.; Raman, A.; Offerhaus, G.J.; Buerger, H.; Patel, A.H.;
van der Wall, E.; van Diest, P.J.; et al. Nuclear DDX3 expression predicts poor outcome in colorectal and
breast cancer. Onco. Targets Ther. 2017, 10, 3501–3513. [CrossRef] [PubMed]

135. Heerma van Voss, M.R.; Kammers, K.; Vesuna, F.; Brilliant, J.; Bergman, Y.; Tantravedi, S.; Wu, X.; Cole, R.N.;
Holland, A.; van Diest, P.J.; et al. Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified
by a Combined Phosphoproteomics and Single Cell Tracking Approach. Transl. Oncol. 2018, 11, 755–763.
[CrossRef] [PubMed]

136. Wilky, B.A.; Kim, C.; McCarty, G.; Montgomery, E.A.; Kammers, K.; DeVine, L.R.; Cole, R.N.; Raman, V.;
Loeb, D.M. RNA helicase DDX3: A novel therapeutic target in Ewing sarcoma. Oncogene 2016, 35, 2574–2583.
[CrossRef] [PubMed]

137. Heerma van Voss, M.R.; Vesuna, F.; Bol, G.M.; Afzal, J.; Tantravedi, S.; Bergman, Y.; Kammers, K.;
Lehar, M.; Malek, R.; Ballew, M.; et al. Targeting mitochondrial translation by inhibiting DDX3: A novel
radiosensitization strategy for cancer treatment. Oncogene 2018, 37, 63–74. [CrossRef]

138. Xie, M.; Vesuna, F.; Tantravedi, S.; Bol, G.M.; Heerma van Voss, M.R.; Nugent, K.; Malek, R.; Gabrielson, K.;
van Diest, P.J.; Tran, P.T.; et al. RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase
DDX3. Cancer Res. 2016, 76, 6340–6350. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10585-016-9832-8
http://www.ncbi.nlm.nih.gov/pubmed/27999982
http://dx.doi.org/10.3892/or.2018.6203
http://www.ncbi.nlm.nih.gov/pubmed/29328432
http://dx.doi.org/10.1038/sj.onc.1209239
http://dx.doi.org/10.1371/journal.pone.0063548
http://dx.doi.org/10.1038/srep21483
http://dx.doi.org/10.1126/science.1231499
http://dx.doi.org/10.1038/onc.2014.190
http://www.ncbi.nlm.nih.gov/pubmed/25043297
http://dx.doi.org/10.1126/science.1208130
http://www.ncbi.nlm.nih.gov/pubmed/21798893
http://dx.doi.org/10.1158/0008-5472.CAN-05-2415
http://www.ncbi.nlm.nih.gov/pubmed/16818630
http://dx.doi.org/10.2147/OTT.S140639
http://www.ncbi.nlm.nih.gov/pubmed/28761359
http://dx.doi.org/10.1016/j.tranon.2018.04.001
http://www.ncbi.nlm.nih.gov/pubmed/29684792
http://dx.doi.org/10.1038/onc.2015.336
http://www.ncbi.nlm.nih.gov/pubmed/26364611
http://dx.doi.org/10.1038/onc.2017.308
http://dx.doi.org/10.1158/0008-5472.CAN-16-0440
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure of the DDX3 Helicase and Its Enzymatic Properties 
	Hypothetical Mechanisms of the DDX3 Helicase Role in Viral Replication 
	Inhibitors of the DDX3 Helicase 
	Conclusions 
	References

