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ABSTRACT

Formalin-inactivated respiratory syncytial virus (RSV) vaccination causes vaccine-enhanced 
disease (VED) after RSV infection. It is considered that vaccine platforms enabling 
endogenous synthesis of RSV immunogens would induce favorable immune responses than 
non-replicating subunit vaccines in avoiding VED. Here, we investigated the immunogenicity, 
protection, and disease in mice after vaccination with RSV fusion protein (F) encoding 
plasmid DNA (F-DNA) or virus-like particles presenting RSV F (F-VLP). F-DNA vaccination 
induced CD8 T cells and RSV neutralizing Abs, whereas F-VLP elicited higher levels of IgG2a 
isotype and neutralizing Abs, and germinal center B cells, contributing to protection by 
controlling lung viral loads after RSV challenge. However, mice that were immunized with 
F-DNA displayed weight loss and pulmonary histopathology, and induced F specific CD8 T 
cell responses and recruitment of monocytes and plasmacytoid dendritic cells into the lungs. 
These innate immune parameters, RSV disease, and pulmonary histopathology were lower in 
mice that were immunized with F-VLP after challenge. This study provides important insight 
into developing effective and safe RSV vaccines.
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INTRODUCTION

Human respiratory syncytial virus (RSV) causes bronchiolitis in infants and young children as 
well as severe respiratory illness in the elderly and immunocompromised adults (1,2). Human 
trials of formalin-inactivated RSV (FI-RSV) vaccines resulted in disastrous consequences of 
causing vaccine-enhanced disease (VED) during winter season (3). Mice immunized with 
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FI-RSV in the alum formulation represented a model of recapitulating VED, suggesting that 
non-replicating vaccine-induced Th2 biased immune responses are associated with enhanced 
RSV disease (4-6).

DNA vaccines direct the production of mRNA and endogenously synthesize the vaccine 
proteins in vivo, subjecting to host post-translational modifications and making an authentic 
immunogen. This in vivo synthesis of RSV F proteins by DNA vaccines attributes the 
induction of Th1 profile immune responses of IgG2a isotype anti-F IgG and neutralizing 
Abs as well as cytotoxic CD8 T cells (7). RSV F-DNA boost vaccination was shown to switch 
preexisting Th2 anti-F responses toward Th1 type immune responses (7). Mice immunized 
with recombinant vaccinia virus expressing RSV attachment glycoprotein G (r-vaccinia G) 
were shown to develop eosinophilia similar to FI-RSV vaccination, whereas r-vaccinia F 
immunization of mice did not induce pulmonary eosinophils upon RSV challenge (8,9). 
Despite the difference in pulmonary eosinophil infiltration, r-vaccinia G or F immunization 
of mice displayed enhanced RSV disease such as weight loss after challenge (10-13). Strong 
induction of IFN-γ responses representing a Th1 profile was observed in mice with r-vaccinia 
G or F immunization (12-15). Thus, both endogenous and exogenous expression of RSV 
immunogens may have the potential to cause VED after RSV challenge. However, it is less 
well known whether RSV F-DNA vaccination would induce VED upon RSV challenge.

Virus-like particle vaccines presenting RSV F alone (F-VLP) were demonstrated to confer 
protection against RSV without displaying VED in mice (16,17). Since gene-based in vivo 
immunogen synthesizing approaches are considered as an RSV vaccine platform, it is 
important to better understand protection and disease after RSV F-DNA vaccination. In this 
study, we investigated the immunogenicity, protection, VED, and histopathology in a mouse 
model after vaccination with F-DNA, F-VLP, or FI-RSV followed by RSV challenge. This study 
suggests that F-DNA vaccine is less immunogenic and protective, causing overt weight loss 
and pulmonary histopathology compared to F-VLP upon RSV challenge in mice. Potential 
immune parameters possibly correlated with RSV disease were investigated and discussed.

MATERIALS AND METHODS

Cells, virus, and RSV vaccines
The RSV A2 strain was originally gifted from Dr. Barney Graham. Hep-2 cells were obtained 
from American Type Culture Collection and maintained in DMEM media. The expression 
plasmid encoding a full-length human codon -optimized RSV A2 F within the pcDNA3 
plasmid was described in previous studies (18,19). F-VLP vaccine was produced in insect cells 
by co- expressing RSV F and influenza virus matrix 1 (M1) core protein and characterized 
as previously described (20). Briefly, Sf9 insect cells were co-transfected with recombinant 
baculoviruses expressing M1 and RSV F protein in serum-free SF900-II medium. The 
culture supernatants were collected by centrifugation (6,000 rpm, 20 min) to remove insect 
cells. The cleared supernatants containing F-VLPs were purified by ultracentrifugation. 
The purified F-VLPs were resuspended in PBS. F-DNA vaccine was purified using Qiagen 
Plasmid Mega Kit (Qiagen, Hilden, Germany). RSV was grown in HEp-2 cells, inactivated 
with formalin (1:4,000 vol/vol) for 3 days at 37°C, purified using ultracentrifugation to 
remove cell culture supernatants and cellular proteins, and finally confirmed by a modified 
immuno-plaque assay as previously described (20). Briefly, the infected Hep-2 cell plates 
were incubated at 37°C, 5% CO2 for 16 h and then viral supernatants were removed. After 
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overlay with a mixture of 1% agarose and DMEM media, the infected Hep-2 cell plates were 
further incubated for 3 days, the infected Hep-2 cell plates were fixed with 10% formalin and 
then overlay agarose was removed. Viral plaques by RSV A2 were immune-stained with 131-2a 
monoclonal Ab and DAB substrate (Invitrogen, Carlsbad, CA, USA).

Vaccination, sample collection, and virus challenge
For F-VLP and F-DNA vaccine groups, BALB/c mice (6 to 8 wk old, n=5, duplicate) were 
intramuscularly primed and boosted with 20 μg F-VLP or 100 μg plasmid F-DNA at 0, 3 
wk. Second boost vaccination was followed with a half dose of F-VLP (10 μg) or F-DNA (50 
μg) respectively at wk 6. The FI-RSV control group was intramuscularly primed (wk 0) and 
boosted (wk 3) with FI-RSV (2 μg) in alum (50 µg) adjuvant. Each group of immunization and 
challenge experiments was duplicated. Naïve or vaccinated mice were challenged intranasally 
with RSV A2 strain (3.3×105 PFU, plaque-forming units) 20 wk after 2nd boost. The individual 
lungs and bronchoalveolar lavage fluid (BALF) samples were collected day 5 post-challenge to 
determine inflammatory cellular responses (17,18). All animal experiments were approved by 
the Georgia State University Institutional Animal Care and Use Committees (IACUC A18001) 
and performed in accordance with relevant guidelines and regulations.

Assays for Ab responses, RSV neutralizing activity, and lung viral titers
RSV specific Abs (IgG, IgG1, and IgG2a) were determined by ELISA using RSV F protein 
antigen (BEI) and presented in concentrations based on standard IgG and isotypes as 
described (17). Neutralizing Ab titers in mouse sera were measured using the red fluorescent 
RSV A2-K-line19F (200 PFU per well) and lung viral titers by an immunoplaque assay as 
described (21,22).

Pulmonary histology of RSV-infected mice
Individual lungs were immersed in 10% neutral buffered formalin for 24 h, embedded in 
paraffin, sectioned, and stained with H&E, periodic acid-Schiff stain (PAS) or hematoxylin 
and congo red (H&CR) as described (22-24). For numerical assessment of histopathology 
and pneumonia in lung tissues, the bronchioles, vessels and interstitial space were initially 
scored on a scale of 0–3 by blinded observers with the severity scoring system as previously 
described (23,25). A score 1 was assigned when the epithelial lines, vessels, and interstitial 
surrounding spaces have few infiltrating cells, a score 2 when the epithelial lines and 
surrounding spaces contain focal aggregates of infiltrating cells or the structure is cuffed by 
one definite layer of infiltrating cells, and a score 3 when structure is obviously cuffed by two 
or more definite layers of infiltrating cells with focal aggregates.

Cell preparations and flow cytometry
BALFs were harvested from the lung airways by infusion with PBS via trachea using a 
25-gauge catheter (26). Lung tissues were homogenized, passed through a cell strainer, and 
spun on 44/67% Percoll gradients to collect lung cells. Cellular phenotypes were determined 
by flow cytometric analysis using cell surface marker Abs specific for CD3, CD4, CD8, 
CD11b, CD11c, CD45, F4/80, Siglec F, DX5, and Ly6c (eBioscience, San Diego, CA, USA or 
BD Pharmingen, San Jose, CA, USA) as previously described (17,27,28). Cells from BALF and 
lungs were stimulated with the synthetic F85-93 (KYKNAVTEL) peptide (29) for CD8 T cell 
activation. Intracellular cytokine-producing cells stained with monoclonal IFN-γ and TNF-α 
and cell phenotypic marker Abs were acquired by the Becton-Dickinson LSR-II/Fortessa flow 
cytometer and data analyzed by Flowjo software (Tree Star Inc., Ashland, OR, USA). In the 
determination of cellular phenotypes, the fraction (%) of each cell phenotypes obtained by 
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flow cytometry was multiplied by the total cell numbers counted in the cell preparations from 
the lung tissues and BALF.

Statistical analysis
Results are expressed as mean±SEM; statistical significance was calculated by one-way 
ANOVA, followed by Tukey's Multiple Comparison test using GraphPad Prism software 
(GraphPad Inc., La Jolla, CA, USA). A p-value less than 0.05 was considered significant.

RESULTS

F-VLP or F-DNA immunization induces IgG2a isotype dominant Ab responses
To compare the immunogenicity of exogenous F-VLP and endogenous F-DNA vaccine 
platforms, RSV F protein antigen-specific Abs were determined in immune sera from 
immunized mice (Fig. 1). Prime dose of F-DNA vaccine induced low levels of RSV F specific IgG 
Abs, requiring multiple immunizations. Whereas, the F-VLP group of mice induced substantial 
levels of IgG and IgG2a isotype Abs specific for RSV F protein after prime immunization. 
Significant levels of RSV F protein specific IgG and IgG2a Abs were induced after second boost 
with F-DNA vaccine although they were lower than those induced by F-VLP boost (Fig. 1A-C). 
Both F-VLP and F-DNA vaccines preferentially raised IgG2a isotype dominant Ab responses 
(Fig. 1B) as evidenced by high IgG2a/IgG1 ratios of Ab responses (Fig. 1D). In contrast, FI-
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Figure 1. F-DNA and F-VLP vaccines induce RSV F specific IgG2a dominant and neutralizing Ab responses. (A) IgG, (B) IgG2a isotype, and (C) IgG1 isotype Abs in 
sera. Each value represents the mean±SEM in duplicate. (D) RSV neutralizing activity of immune sera. Serially diluted mouse sera at wk 3 after 2nd boost were 
inactivated and used to determine RSV neutralizing activity. Statistical significances (GraphPad InStat software) are indicated in the comparison groups marked. 
Naïve, unimmunized mice; FI-RSV (p), FI-RSV prime; FI-RSV (b), FI-RSV prime-boost; F-VLP (p), F-VLP prime; F-VLP (b), F-VLP prime, 1st and 2nd boost 
immunized mice; F-DNA (p), F-DNA prime; F-DNA (b), F-DNA prime, 1st and 2nd boost immunized mice. 
**p<0.01; ***p<0.001.
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RSV vaccination induced highest levels of IgG1 isotype Abs (Fig. 1C), suggesting Th2 immune 
responses. RSV neutralizing activity as measured by reduction percentages of fluorescent RSV 
virus infection and plaque assays was observed at higher levels in both immune sera from the 
F-VLP and F-DNA groups compared to naïve sera (Fig. 1E). Immune sera of alum adjuvanted FI-
RSV vaccinated mice exhibited highest levels of RSV neutralizing activity (Fig. 1E).

F-DNA immunization causes RSV disease of weight loss after challenge
To assess the protective efficacy of F-VLP and F-DNA vaccines, immunized mice were 
challenged with RSV A2 at 20 wk after second boost. F-VLP immunized mice did not show 
body weight loss, but approximately 10% body weight loss was observed in the naïve mice 
infected with RSV (Naïve inf, Fig. 2A). In contrast, F-DNA immunized mice displayed 
significant weight loss up to 15% (Fig. 2A). The highest RSV titers in lungs were detected 
in unvaccinated naïve mice on day 5 post infection (Fig. 2B). Approximately 10-fold lower 
lung RSV titers were observed in F-DNA immune mice compared to naïve infection mice, 
significantly clearing lung viral loads. The F-VLP group lowered lung viral titers by over 200 
folds near to the detection limit (Fig. 2B). The alum adjuvanted FI-RSV group effectively 
cleared lung viral loads below the detection limit (Fig. 2B).

F-DNA vaccination induces infiltrating histopathology upon RSV challenge
The lung tissue sections were examined by staining with H&E, PAS, or H&CR at 5 days after 
RSV challenge (Figs. 3 and 4). As expected, mice that were immunized with FI-RSV showed 
the highest degree of pulmonary histopathology. After RSV challenge, F-DNA vaccination 
was found to induce significant infiltrates in the interstitial spaces of the lungs, which were 
similar to or slightly lower than FI-RSV (Fig. 3A and B). Moderate levels of infiltrates were 
observed in the blood vessels and airways from F-DNA immune mice (Fig. 3D). Meanwhile 
unvaccinated naïve mice exhibited moderately higher levels of infiltrating histopathology in 
the interstitial spaces after RSV infection (Fig. 3A and B). F-VLP immune mice did not show 
overt histopathology infiltrates upon RSV infection.

Mucus production and eosinophilia are also considered RSV disease parameters. FI-RSV 
immunization showed the highest levels of PAS positive mucus production and H&CR 
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positive eosinophils upon RSV challenge (Fig. 4). F-DNA immunization caused low levels of 
eosinophils (Fig. 4B and D). The naïve and F-VLP groups did not display PAS positive spots 
and eosinophils in the lung sections (Fig. 4A and C)

Inflammatory innate immune cells are recruited into the lungs in F-DNA 
immune mice upon RSV challenge
Cellular phenotypes in lung (Fig. 5) and BALF (Fig. 6) were analyzed by flow cytometry 
using cell type-specific marker Abs at 5 days after RSV challenge. Alum-adjuvanted FI-RSV 
immune mice showed the highest levels of eosinophils (CD11b+CD11c−SiglecF+) in lung 
and BALF samples as well as plasmacytoid dendritic cells (pDC, B220+CD11c+F4/80−) in 
BALF. F-DNA immunized mice displayed higher levels of NK cells (CD3−DX5+), monocytes 
(CD11b+F4/80+Ly6Chigh), eosinophils, and pDC in the lungs compared to F-VLP or naïve 
infection mice. Particularly, eosinophil and monocyte populations were increased by 
approximately 3-fold in F-DNA mice than those in F-VLP mice. We also observed increased 
levels in monocytes and pDCs in airway BALF samples from F-DNA immunized mice, 
compared to those in F VLP (Fig. 6).

F-DNA is effective in inducing Th1 CD8 T cells whereas F-VLP in activating B 
cells upon RSV challenge
We determined the levels of CD8 T cells producing IFN-γ and/or TNF-α cytokines in the lungs 
at 5 days after RSV challenge by a flow cytometry assay of intracellular cytokine staining. Lung 
cells from F-DNA immune mice showed significantly higher levels of RSV F85-93 specific IFN-γ or 
TNF-α positive CD8 T cells than F-VLP, FI-RSV immune or naïve infection mice (Fig. 5E and F).

Germinal center (GC) phenotypic B cells (IgD−B220+GL7+) in the mediastinal draining lymph 
node (MLN) were also analyzed by flow cytometry day 5 post challenge. F-VLP immunized 
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mice showed significantly higher levels of GC phenotypic B cells in line with increased levels 
of serum IgG Abs compared to F-DNA immunization. The F VLP group showed certain levels 
of IgA Abs in BALF but not the F-DNA group, but overall the IgA Ab levels were very low and 
no significant levels of IgM Ab levels were detected (data not shown).

DISCUSSION

Since the failure of alum-adjuvanted FI-RSV vaccine, non-replicating RSV subunit vaccine 
platforms would have potential safety concerns of causing VED in young naïve children. Here, 
we compared the immunogenicity, protection, and immunopathology of a full-length F-DNA 
vaccine for in vivo endogenous expression or F-VLP as an exogenous RSV F protein. Both RSV 
F-VLP and DNA vaccines were capable of inducing IgG2a isotype and RSV neutralizing Abs 
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and controlling lung viral loads upon RSV challenge better than unvaccinated naïve mice with 
RSV infection. F-VLP was more effective in controlling RSV loads than F-DNA. Unexpectedly, 
the mice with F-DNA vaccination showed substantial weight loss and pulmonary 
histopathology compared to F-VLP immune or naïve mice after RSV infection. The results in 
this study suggest that RSV immunity in mice induced by endogenous expression of RSV F 
does not necessarily avoid VED after RSV infection.

The nature of endogenous synthesis of the vaccine immunogen by DNA vaccines engenders 
the induction of relatively weak humoral and strong cellular immune responses. RSV F 
specific Abs were not detected after prime with F-DNA probably due to low transgene 
transduction and thus multiple F-DNA immunizations required to induce substantial 
levels of antigen specific IgG Abs. Despite relatively low levels of IgG Abs, significant 
reductions of lung RSV titers were reported with soluble secreted F protein-encoding DNA 
vaccination being 10-fold more effective than transmembrane F protein-encoding plasmid 
(7). Low efficacy of lung RSV clearance in the F-DNA group might be due to the expression 
of membrane-anchored form. However, pulmonary inflammation was observed in animal 
models with F-DNA (7,30), FI-RSV (7), and soluble F protein (31) vaccines despite significant 
clearance of lung RSV loads or below the detection limit.

Different platforms of RSV vaccines influence the cellular phenotypes infiltrating into the 
lungs upon RSV challenge. FI-RSV or r-vaccinia G-immunized mice were shown to exhibit 
severe eosinophilia upon RSV challenge (29,32). Substantial RSV histopathology was 
previously reported in mice with RSV F DNA vaccination despite the induction of neutralizing 
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Figure 5. F-DNA immunization induces inflammatory innate and CD8 T cells in lungs after challenge. Flow cytometry of immune cells was applied to numerate 
cellular phenotypes in lungs and MLN at 5 days after RSV challenge (n=5). (A) NK (CD3−DX5+) cells, (B) monocytes (CD11b+F4/80+Ly6Chigh), (C) eosinophils 
(CD11b+CD11c−SiglecF+), (D) pDC (B220+CD11c+F4/80−). (E, F) CD8 T cells of intracellular cytokine staining after stimulation of lung cells with RSV F85-93 peptide. (E) 
Lung IFN-γ CD8 T cells, (D) Lung TNF-α CD8 T cells. (G) GC phenotypic B cells (IgD−B220+GL7+) in MLN. Lines indicate differences between groups. 
*p<0.05; ***p<0.001.

https://immunenetwork.org


Abs, Th1 CD8 T cell responses, and reduction of RSV lung viral loads (7,30), consistent 
with this current study. Particularly in a recent study by Ma et al. (30), the groups of mice 
were immunized 4 times with 30 µg of F DNA vaccines containing 5 or 20 copies of built-
in CpG immune stimulating motifs. Ma et al. (30) demonstrated that the pVAX1-F (5CpG 
motifs) group displayed a similar pattern of weight loss (>10%) as the PBS control after RSV 
challenge, whereas the pVAX1-F (20CpG motifs) group showed a moderate level of weight 
loss (<9%). In this study, we found that the F-DNA (no CpG motif ) group and FI-RSV control 
group exhibited a substantial weight loss (>10%), which is similar to the PBS and pVAX1-F 
(5CpG motifs) group in the Ma et al.'s study (30). It is speculated that the overall outcomes 
in body weight changes after RSV challenge are similar but subtle differences might be due to 
the nature of F DNA vectors, doses, and immunization regimen between the two studies.

RSV F or G DNA vaccination was previously reported to infiltrate pulmonary eosinophils, NK 
cells, and neutrophils but histopathology was not investigated (33). F-DNA vaccine exhibited 
slightly higher levels of eosinophils than F-VLP vaccine after RSV challenge. However, the levels of 
eosinophils in the F-DNA group were significantly lower than those in FI-RSV immune mice after 
RSV challenge. F-DNA immune mice showed a Th1 pattern of immune responses (high IFN-γ, low 
IL-4, Supplementary Fig. 1), consistent with a pattern reported by Ma et al. (30). High eosinophils 
in the FI-RSV group were consistent with Th2 cytokine levels. Monocytes from the bone marrow 
traffic to peripheral tissues via the bloodstream in response to a signal of inflammation and play 
an important role in clearing pathogens (34). Additionally, extensive monocytes can contribute 
to immunopathology and degenerative disease (34). The pDCs are known to be important for 
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Figure 6. F-DNA immunization induces inflammatory innate cells and CD8 T cells in BALF after challenge. Flow cytometry of immune cells was applied to 
numerate cellular phenotypes in BALF at 5 days after RSV challenge (n=5). (A) NK (CD3−DX5+) cells, (B) monocytes (CD11b+F4/80+Ly6Chigh), (C) eosinophils 
(CD11b+CD11c−SiglecF+), (D) pDC (B220+CD11c+F4/80−). (E, F) CD8 T cells of intracellular cytokine staining after stimulation of BALF cells with RSV F85-93 peptide. (E) 
BALF IFN-γ+ CD8 T cells, (F) BALF TNF-α+ CD T cells. Lines indicate differences between groups. 
*p<0.05; **p<0.01; ***p<0.001.
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producing type 1 IFNs and enhancing CD8 T cell responses (35,36). Other studies reported that 
high levels of pDCs are involved in severe RSV disease and elevated mortality during influenza 
virus infection (37,38). Levels of pDCs infiltrating into the lungs were shown to be correlated with 
FI-RSV VED (39). NK cells enhance CD8 T cells expressing IFN-γ and NK cell depletion was shown 
to attenuate weight loss during RSV infection (40,41). Consistent with previous studies, this study 
suggests that recruiting NK cells, monocytes, pDCs, and eosinophils at high levels in F-DNA 
immune mice contribute to pulmonary histopathology during RSV infection.

There was no significant difference in the levels of IL-4 cytokines in lung cells in response 
to stimulation with CD4 T and CD8 T cell epitopes between the F-DNA and F-VLP groups 
(Supplementary Fig. 1). Unbalanced high levels of CD8 T cell responses could induce significant 
immunopathology. Vaccination of mice with r-vaccinia G and M2, or M282-90 peptide in adjuvants 
inducing strong CD8 T cell responses was shown to cause severe weight loss after RSV challenge 
(29,42,43). Excess induction of IFN-γ+ T cell responses was shown to cause immune-mediated 
pathology in response to RSV infection (13,43-45). Also, high levels of TNF-α+ CD8 T cells were 
indicated to be an indicator for severity of pulmonary disease such as weight loss (46,47). In line 
with previous findings, F-DNA immune mice induced high levels of RSV F specific IFN-γ+ and 
TNF-α+ CD8 T cells in the lungs, compared to F-VLP, FI-RSV immune or naïve mice upon RSV 
challenge, suggesting a potential correlation with RSV disease. Interestingly, our previous studies 
reported that inclusion of F-DNA in the RSV F+G VLP vaccination was effective in controlling 
lung viral titers and preventing pulmonary histopathology (18,22,24). An appropriate balance 
of inducing CD8 T cells together with RSV neutralizing Abs would be important for conferring 
desirable protection avoiding VED during RSV infection.
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SUPPLEMENTARY MATERIAL

Supplementary Figure 1
IFN-γ and IL-4 cytokines in BALF and cytokine-secreting lung cells after RSV challenge. (A, B) 
IFN-γ and IL-4 secreting cell responses from the lungs collected on day 5 post RSV challenge. 
Lung cells were in vitro cultured under stimulation with RSV F peptides, F85-93 (CD8 T cell 
epitope) or F51-66 (CD4 T cell epitope). The levels of IFN- γ (A) and IL-4 (B) were measured in 
the supernatants harvested after 72 h. (C, D) IFN-γ and IL-4 levels were determined in BALF 
samples collected at 5 days after RSV challenge. Lines indicate differences between groups.

Click here to view
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