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Abstract

Two general models for paradigm shifts, deterministic propagation model (DM) and stochastic propagation model (SM), are
proposed to describe paradigm shifts and the adoption of new technological levels. By defining the order parameter m
based on the diversity of ideas, D, it is studied when and how the phase transition or the disappearance of a dominant
paradigm occurs as a cost C in DM or an innovation probability a in SM increases. In addition, we also investigate how the
propagation processes affect the transition nature. From analytical calculations and numerical simulations m is shown to
satisfy the scaling relation m~1{f (C=N) for DM with the number of agents N . In contrast, m in SM scales as
m~1{f (aaN).
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Introduction

Transitions are ubiquitous in human history and in scientific

activities as well as in physical systems. Human history of

civilizations has qualitatively distinguishable periods from stone-

age to contemporary civilizations, which depend on dominating

themes such as philosophy, art, and technology. In scientific

activities such dominating themes correspond to disparate

prevailing ideas or concepts such as chaos, complexity, nanophy-

sics, and string theory, which are generally called as paradigms.

Tomas Kuhn said that the successive transition from one

paradigm to another via revolution is the usual developmental

pattern of mature science [1]. This paradigm shift is also very

similar to the adoption of a new discrete technology level.

Examples of such technological levels are operating system

versions as Linux distributions and versions of recently-popular

smart phones.

To describe the appearance and disappearance of those

paradigms, various models [2–7] were suggested. In appearance

of a paradigm, the propagation of an idea through the social

interaction between individuals is essential. To study how the

information flow affects the formation of a group sharing common

interest in social networks, communication-navigation model with

local memory was studied [3]. However this model [3] did not

consider the innovation process in which a new paradigm appears

and old paradigms disappears. On the other hand, due to its

simplicity, two-state interacting spin systems were also widely used

to investigate how an existing idea evolves into a dominating

theme through the interactions between agents [4–7]. Those

models were generally focused on the emergence of a single

paradigm through social consensus. But, they did not correctly

capture the complex dynamical features of paradigm shifts, such as

invention of new ideas, competition between ideas, propagation of

ideas against the competition to form a new global paradigm, and

decline of already existing ones.

Recently, an interesting model was suggested by Bornholdt et al.

to explain such complex dynamical properties of the paradigm

shift [8]. In the Bornholdt model (BM) [8], two essential processes

for the paradigm shift were suggested. The two essential processes

were never considered simultaneously in previous studies [2–7]. In

BM each agent i resides on a node of a graph and is assigned an

integer ri. The number plays the role of a particular idea or

concept. Then, at any time step the two essential processes are

attempted: (i) With probability a a randomly selected agent k is

assigned a new random integer which does not appear anywhere

else in the system. Thus a represents the ‘‘innovation’’ rate. (ii) An

agent i is randomly chosen. Then one of the nearest neighbors j to

the agent i is randomly selected. Denoting by N the total number

of agents in the system and by nj the total number of agents with

integer value equal to that of j, the integer value of the agent i is

changed into that of its neighbor j with probability nj=N, provided

that i never assumed that particular integer value before. In case it

had, then no update is made. The process (i) is the innovation

process, in which a new idea or a new paradigm to the whole

system is introduced successively. Thus the number of ideas is not

limited in BM. The process (ii) is the propagation process. In the

propagation process, the memory effect that any agent does not

accept any idea experienced before is imposed. This memory

effect was also an essential feature of BM. The memory effect was

argued to be originated from the part of cultural or scientific

activity where people are on an ongoing hunt for new ideas and

ideally never return to exactly their old positions [8]. By the

numerical study of BM on a square lattice Bornhodlt et al. showed

the existence of the ordered phase with a globally dominant

paradigm for the small innovation probability a [8]. In this

ordered phase the pattern of sudden emergence and slow decline

of a dominant paradigm repeats again and again. The epochal

things of BM [8] are the innovation process and the memory

effect.

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e70928



Even though Bornhodlt et al. showed the existence of a

dominant paradigm for small innovation rate a, it is still an open

fundamental question when and how this ordered phase disap-

pears as a gets larger or approaches to 1. The clear understanding

of the transition nature provides more profound physical insight to

understand fundamental properties of the system [9]. Further-

more, the propagation of an idea generally occurs successively and

continuously or has avalanches as can be seen from the spread of

an idea through community networks, social network services and

mass communications. Nevertheless the propagation of a para-

digm in the process (ii) of BM [8] was only considered to occur

locally without avalanche. In addition, the propagation can occur

deterministically as the difference (or the gap) of ideas (or

technological levels) between two interacting agents grows [10–

12], whereas the propagation in BM was only considered

probabilistically and stochastically.

Therefore, to answer the question when and how the transition

occurs from the ordered phase in which a dominant paradigm

exists to the disordered phase without any dominant paradigm,

and to investigate how the details of propagation process affect the

paradigm shifts, we provide two realistic and generalized models

for paradigm shifts, deterministic propagation model (DM) and

stochastic propagation model (SM). In our models, DM and SM,

the innovation process is identical to the process (i) of BM [8]. DM

and SM also have the same memory effect as BM. The essential

difference between our models and BM is in the details of the

propagation process. The details of the propagation are very

important in two senses. The first is that the propagation process is

the essential mechanism to decide the pattern of sudden

emergence and slow decline of a globally dominant paradigm in

the system. The second is that the propagation process in a model

must reflect the real propagation process in the existing system.

The real propagation process should have successive and

continuous propagations, i.e., the avalanche. In our models, DM

and SM, the propagation process has the avalanche, whereas BM

[8] has no avalanche. The real propagation process should also be

decided either by the difference of ideas or probabilistically.

Therefore we consider two models in this paper. In DM the

propagation of an idea between the interacting pair of agents, i
and j, occurs only if the difference of ideas Dri{rj D§C. In SM the

propagation of an idea between the interacting pair occurs

probabilistically and stochastically as in BM.

By defining the order parameter, m, based on the diversity of

ideas, D, we analytically show that the disappearance of a

dominant paradigm can be mapped into the thermal order-

disorder transition in physical systems. In DM it is shown that m
satisfies the scaling relation m~1{f (C=N). In contrast, m in SM

is shown to follow the relation m~1{f (aaN), where a is the

innovation probability. Here f (x) is a scaling function satisfying

f (x)*xb for x%1 and f (x)~1 for x&1. m in BM is also proved

to satisfy the same scaling relation as m in SM. Therefore, the

transition threshold C� in DM scales as C�^N, whereas the

transition probability a� in both SM and BM scales as a�*N{1=a.

The exponents a and b depend both on the propagation

mechanism and on the underlying interaction topology of agents.

Therefore, from this work, we first provide a standard theoretical

framework to understand phase transitions and related phenom-

ena in the paradigm shifts.

Analysis
To be specific, let’s assume that each agent resides on a node of

a certain graph and a pair of nodes connected by a link in the

graph is an interacting pair of agents. At a given time t each agent

i has a non-negative integer ri(t), which represents a particular

idea or a technological level. In the innovation models of

references [10–12], the technological level changes continuously

or takes rational number. In contrast ideas in this paper take only

non-negative integers as in BM [8]. Initially all agents in the

system are assumed to have no idea, i.e., ri(0)~0 for any i. Then

at time tz1, a randomly selected agent i takes an innovation

process with the probability a or propagates his idea to other

agents with the probability 1{a. In the process of the paradigm

shift, innovation naturally occurs occasionally, whereas propaga-

tion occurs frequently and rapidly. Thus, the innovation proba-

bility a should naturally be very small. In the innovation process at

t, ri(t) of a randomly-chosen agent i takes a discrete jump to be the

smallest positive integer which has not been experienced by any

agent in the whole system until the time t [8]. The propagation

process can be a deterministic and rational process or a stochastic

and contingent process.

To analyze phase transitions from the ordered phase to the

disordered phase of paradigm shift models, we should first

understand the model with a~1, which we call the random

innovation model (RIM). Since innovation processes in DM and

SM are the same, DM and SM are reduced to RIM at a~1. RIM,

in which only innovation processes occur without propagation

process, cannot have a dominant paradigm any time and is always

in the disordered phase. In RIM one can exactly calculate the

diversity D(t), which is defined as D(t):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2(t)w{vr(t)w2

p
,

where vru(t)w:v½
P

i ru
i (t)�=N�w and v:::w means the

average over all possible configurations of fr1(t),r2(t),:::,rN (t)g.
In RIM, a randomly selected agent i at the time t changes his idea

into t as ri(t)~t. Let’s denote p:1=N and q:1{1=N, where p is

the selection probability of a particular agent among N agents.

Then the probability Pt(r) that an agent has the idea r at t is

written as Pt(r)~pqt{r for 0vrƒt and Pt(0)~qt. Thus we get

D2(t)~
1{q2t

p2
{

1{2q2tzqtz2tqt

p
zqtz2tqt{q2t: ð1Þ

In the limit N??,

D(t)~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{2t=N{2(t=N)e{t=N

q
: ð2Þ

Equation (2) has been confirmed by numerical simulation. In

the steady state (or t??), D(t??):D(?)~N. D(?)~N
corresponds to the disordered phase for a?1 for paradigm shift

models. Thus we take the order parameter m for the phase

transition of the paradigm shift models in the steady state as

m:1{D(?)=N . Then m~0 for the disordered phase and m~1
for completely ordered phase with D(?)~0, in which all the

agents have one same idea. We now consider two different

paradigm shift models based on specifics of propagation process.

Results

Deterministic Propagation Model
When a new idea (or a new technological level) is created, one

normally decides to adopt the new idea by comparing the new idea

with his present idea. If the difference between the new idea and

the present idea is small, the adoption of the new idea hardly

happens. The larger the difference becomes, the more easily one

adopts the idea. Therefore the propagation process can depend on

the difference in the ideas or the cost [10–12]. In this sense, the

deterministic propagation model (DM) in which the propagation
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process is deterministically controlled by the cost is defined in the

following way. In the propagation process of DM, a randomly

selected agent i propagates his idea ri(t) to each nearest neighbor

j, i.e., rj(tz1)~ri(t) at the time tz1, only if ri(t){rj(t)§C. Here

C is a constant which represents a propagation cost to adopt a new

paradigm. Then the propagation process triggers an avalanche;

i.e., if rj(tz1) is updated, then repeat the same propagation

process for all nearest neighbors of j. This propagation process is

repeated until all the nearest neighbor pairs satisfy the inequality

Drj(t){ri(t)DvC.

In DM, D(?) depends only on C for small a as shown in

Figure 1 A, because a controls only the time ts taken for the system

to arrive the steady state as ts^1=a. This result physically means

that the system is in the steady state if the mean number of

innovations, at, satisfies at&C and the physical properties of the

steady state depend only on C.

First we consider DM on the complete graph (CG). Each agent

on CG is a nearest neighbor of all the other agents. Therefore one

propagation process from a randomly-selected node makes

propagation tries to all the other agents. Let’s think a steady state

configuration that ideas in the system spread in an integer set

frmin,rminz1,:::,rmax(~‘)g when the ‘-th innovation process

happens. In the average sense rmax~‘~at if the ‘-th innovation

happens at t. If a is small enough, there should exist a propagation

process initiated from an agent with r~‘ among the many

propagation processes before the (‘z1)-th innovation process

occurs. The propagation process from the agent with r~‘ makes

the configuration with ri[ f‘{Cz1,‘{Cz2,:::,‘g. Then,

considering the fact that the ‘-th innovation drives the (‘{1)-th
configuration with ri[ f(‘{1){Cz1,(‘{1){Cz2,:::,‘{1g
into the ‘-th configuration with ri[ f‘{Cz1,‘{Cz2,:::,‘g,
the probability P‘(r) that an agent has an idea r in the ‘-th
configuration satisfies recursion relations

P‘(r)~

qP(‘{1)(r) for r[f‘{Cz1,‘{Cz2,:::,‘{1g

pzqP(‘{1)(‘{C) for r~‘

(
:
ð3Þ

By applying the recursion relations (3) C times, we obtain

P‘(r) ~pq‘{rzqCP(‘{C)(r{C)

~pq‘{rzpq‘{rzCzq2CP(‘{2C)(r{2C)

~:::~
P½r=C�

i~0

pq‘{rziC~pq‘{r 1{q(½r=C�z1)C

1{qC ,

ð4Þ

where ½r=C� is an maximal integer which is not greater than r=C.

In the limit t?? or ‘??, P‘(r)~pq‘{r=(1{qC) and D(?) is

written as

D(?)~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1

N
{

C

N

� �2
qC

(1{qC)2

s
ð5Þ

In the large N limit, m thus satisfies

m~1{g(C=N) g(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

x

2
cosech

x

2

� �h i2
r !

: ð6Þ

Even though Equation (6) was derived under the physical

assumption that a is very small, Equation (6) agrees very well with

the simulation results for quite large a or for aƒ0:5 as shown in

Figure 2 A. The ordered state of DM on CG has a peculiar

physical property. Since P‘(r)^(1{(‘{r)=N)=C^1=C for

C%N, there doesn’t exist a unique dominant idea, but C ideas

are nearly equally probable in the steady state. This peculiar

ordered state comes from the global connectivity of CG. In the

sense that DM naturally regards ideas within the difference drvC

as the same one, the ordered state on CG is physically plausible

and understandable.

In contrast, there exists a unique dominating idea in DM on

other graphs with local connectivity for C%N as shown in Figure 1

B, Figure 2 B, C and D. Thus we now want to analytically show

the existence of the ordered state with a dominating idea on the

graphs with local connectivity. In DM any nearest neighbor pair

vijw of agents should satisfy the condition Dri{rj DvC after a

propagation process. Let’s first think about the configuration with

the k-th dominating macroscopic idea rd
k[frmin,rminz1,:::,rmaxg.

Figure 1. Scaling plot of D(t) and a snapshot in DM. (A) Scaling plot of D(t) against at of DM on a square lattice with N~212 and C~82. Inset:
plot of D(t) against t. (B) A snapshot of a steady state configuration of DM on the square lattice with the size 32|32. Black dots denote agents with a
dominant idea rd . White dots denotes those with ideas different from rd .
doi:10.1371/journal.pone.0070928.g001
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Now we want to show how the configuration with the (kz1)-th

dominating idea rd
(kz1) happens. As shown in Figure 1 B, the

nodes (or sites) with rd
k form a macroscopic percolation cluster

through the links (or bonds) of the graph and the nodes with r=rd
k

form only isolated microscopic clusters. Thus the propagation

process which changes the dominating idea happens only through

the macroscopic percolation cluster. Therefore the configuration

with the rd
(kz1) does not happen until the idea r~rd

kzC appears

in the system. After the idea r~rd
kzC appears, subsequent

propagation processes through the macroscopic cluster which

make the configuration with rd
(kz1)(~rd

kzC) appear before the

next innovation process happens. The configurations with

rd
(kz1)~rd

kzCz1,rd
kzCz2 and … are also possible, but the

probabilities that these exceptional configurations happen are

nearly negligible if a is small and N is large. So we neglect these

exceptional configurations in the subsequent calculations. In the

configuration with rd
(kz1)(~rd

kzC), the ideas in the system spread

in the set frd
(kz1){Cz1,rd

(kz1){Cz2,:::,rd
(kz1)g. Then before

the configuration with rd
(kz2) appears, the configuration of the

system can evolve into one in which the ideas spread in the set

frd
(kz1){Cz1,rd

(kz1){Cz2,:::,rd
(kz1),:::,r

d
(kz1)znIg with

nIvC. Here nI is the number of the innovations which occur

before the configuration with rd
(kz2) appears. Generally the system

in the steady state has a configuration with the ideas spread in the

set frd{Cz1,rd{Cz2,:::,rd ,:::,rdznIg.
Now we consider the probability P(r) that an agent has an idea

r in the steady state. Clearly P(r)~0 for rƒrd{C and rwrdznI .

Furthermore, in the large N limit P(r) is expected to satisfy

P(r)^p~1=N for r[frd{Cz1,rd{Cz2,:::,rd{1,rdz1,:::,

rdznIg, because an idea in this set is originated from an

innovation process. From the continuum limit vru
w~Ð

drruP(r), we get D2
nI

as

D2
nI

~
Ð rd znI

rd {C
drr2P(r){

Ð rd znI

rd {C
drr2P(r)

� �2

~
1

3N
(C3zn3

I ){
1

4N2
(n4

I zC4{2n2
I C2):

ð7Þ

Since nI is equally probable to be any integer in the set

f0,1,:::,C{1g,

D2(?)~
1

C

ðC

0

1

3N
(C3zn3

I ){
1

4N2
(n4

I zC4{2n2
I C2)

� �
dnI

~ N2 5

12

C

N

� �3

{
2

15

C

N

� �4
" #

:

ð8Þ

Therefore, m for C%N satisfies m~1{
ffiffiffiffiffiffiffiffiffiffi
5=12

p
(C=N)3=2. For

C&N, DM reduces to RIM and m~0. Thus m satisfies the

scaling relation

m~1{f (C=N), ð9Þ

where f (x)*xb with b~3=2 for x%1 and f (x)~1 for x&1. On

CG the same scaling relation with b~1 holds for m.

To confirm the scaling relation (9) on the graphs with local

connectivity, DM is studied by simulations on various graphs. The

graphs used in this paper are a scale-free network with the degree

exponent c~2:5 [13], and an Erdös-Rényi type random network,

and a two-dimensional square lattice. To accord with the square

lattice, the mean degree vkw of the scale-free and random

networks is set as vkw~4. The simulation data of m on each

graph in Figure 2 are obtained by averaging over at least 1000

realizations. The scaling relation of m with b~3=2 or Equation (9)

Figure 2. Analytic and simulation results of DM. Scaling plots of m against C=N of DM (A) on the complete graph with N~8:0|103 , (B) on a
scale-free network (C) on a random network and (D) on a square lattice. Curves in the figures show the analytic results Equation (6) and Equation (9).
All the simulation data in B, C and D are obtained by use of a~10{2 . Inset of D shows the plots of m for various N against C.
doi:10.1371/journal.pone.0070928.g002
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is confirmed by simulations on the random network and the

square lattice as shown in Figures 2 C and D. In contrast, on a

scale-free network with degree exponent c~2:5, the scaling

relation with b~1:20(3) is obtained (Figure 2 B). The deviation of

the exponent b from 3/2 on the scale-free network is probably

explained from the hub effect of the scale-free networks with cv3,

which provides an aspect of global connectivity. Thus C at which

the phase transition occurs, C�, scales as C�^N on arbitrary

graph.

Even though the scaling relation (9) was derived under the

physical assumption that a is very small, we have confirmed that

Equation (9) agrees very well with simulation results for quite large

a or for aƒ0:5 on the square lattice and the random network as

on CG (Figure 2 A).

Stochastic Propagation Model
We now consider the stochastic propagation model (SM) in

which the propagation process occurs probabilistically and

stochastically. In SM, the feature that a minority idea is more

difficult to be adopted than a more widespread idea [8] is

considered. Therefore, the propagation process in SM is defined in

the following way. If a propagation try is taken at a given time t
with the probability 1{a, first a site i with the idea ri(t) is

randomly selected. Then with the probability ni=N the propaga-

tion process starting from the site i occurs. Here ni is the number

of agents in the system which have the same idea with ri(t). If the

propagation process happens, then the ideas of all nearest

neighbors of i are simultaneously made to be equal to ri(t),
except the ideas of neighbors who have experienced ri(t) before. In

addition, all the neighbors whose ideas are changed also propagate

the idea ri(t) to all of their nearest neighbors in the same manner

with the updated probability ni=N, because ni increases as

propagations continue. The propagations continue until the

propagations are terminated by the probability (1{ni=N) or all

the agents in the system are tried to be propagated. Therefore, the

propagation process of SM also has the avalanche and an idea r
can spread to the whole system for one time step. Moreover, as we

shall see, the scaling properties of SM on graphs with local

connectivity are the same as those of BM [8].

m of SM on CG is analytically calculable, because an idea

propagates to the whole system by single propagation process. For

the calculation one should understand the time evolution of

configurations in SM on CG. The schematic diagram for the

evolution is shown in Figure 3. For the explanation of the

evolution, let’s define the maximal r, rmax
k , appeared in the system

until the time tk at which the k-th dominant idea rd
k appears.

A typical configuration at t(t(k{1)vtvtk) is one with

ri[frd
(k{1),r

max
(k{1)z1,rmax

(k{1)z2,:::g (see Figure 3 A). Then the next

propagation process drives this configuration into one with all

ri~rd
k , where rd

k[frmax
(k{1)z1,rmax

(k{1)z2,:::,rmax
k g (see the process (a)

in Figure 3). Then successive innovation processes make the

configuration with ri[frd
k ,rmax

k z1,rmax
k z2,:::g (see the process (b)

in Figure 3). Note that the propagation process which cannot be

executed by the probability (1{a)(1{1=N) does not change the

configuration of system (see the process (c) in Figure 3 ). Then the

(kz1)-th propagation process drives this configuration into one

with all ri~rd
(kz1) with rd

(kz1)[frmax
k z1,rmax

k z2,:::,rmax
(kz1)g (see

the process (d) in Figure 3). Then an innovation process drives the

configuration with ri[frd
(kz1),r

max
(kz1)z1g (see the process (e) in

Figure 3). In the steady state of SM, this evolution pattern is

repeated again and again. Thus now we analytically calculate

D(?) or m of SM based on this evolution pattern.

Now we consider the probability P(t’ztk)(r) that an agent has the

idea r at t~(t’ztk) with 0ƒt’vt(kz1){tk. In the average sense,

the number of innovations occurring from t~tk to t~(t’ztk) is

at’. Then at t~(t’ztk), similar to RIM, P(t’ztk)(r) is written as

P(t0ztk )(r)~

qat0 for r~rd
k

pq
at0{(r{rmax

k
)

for r[frmax
k z1,rmax

k z2,:::,rmax
k zat0g

0 otherwise

8>><
>>: :

ð10Þ

Thus from vru
w~(rd

k)uP(t’ztk)(r
d
k)z

Prmax
k

zat’
r~rmax

k
z1 ruP(t’ztk)(r),

we get D(t’ztk) of the configuration with

Figure 3. Schematic diagram for the evolution of configura-
tions in SM on CG. A is a configuration with rd

(k{1)~7 and rmax
(k{1)~9.

The next propagation process (a), (or the k-th propagation) at t~tk ,
changes A into B with all ri~rd

k~10 and rmax
k ~13. Successive

innovation processes (b) change B into C with ri[frd
k ,rmax

k z1,rmax
k z

2,rmax
k z3,rmax

k z4g with rd
k~10 and rmax

k ~13. The propagation process
(c), which cannot be executed by the probability (1{a)(1{1=N),
leaves C as it is. The propagation process (d) at t(kz1) initiated from an

agent with r~15 drives C into D with all ri~rd
(kz1)~15 and rmax

(kz1)~17.

An innovation process (e) drives D into E with ri[frd
(kz1),r

max
(kz1)z1g

(rd
(kz1)~15 and rmax

(kz1)~17).

doi:10.1371/journal.pone.0070928.g003
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ri[frd
k ,rmax

k z1,:::,rmax
k zat’g for large N as

D(t’ztk) ~N 1{ exp ({at’=N) exp ({at’=N){2(at’=N)ð½
z2dr(at’{(N{1)(1{ exp ({at’=N)))=N

zdr2(1{ exp ({at’=N))=N2
	
1

2,

ð11Þ

with qat’~(1{1=N)at’~ exp ({at’=N) and dr:rmax
k {rd

k . D(?)

is thus written as

D(?)~

P?
dr~0 P(dr)

P?
t’~0 S(t’)D(t’ztk)P?

t’~0 S(t’)
, ð12Þ

where S(t’) is the probability that no propagation processes

happen from tk until (t’ztk) and P(dr) with dr~rmax
k {rd

k is the

probability that a configuration with ri[frd
k ,rmax

k z1g occurs at the

very next innovation process after tk or at (tkza{1) in the

average sense (see Figure 3 E). Now we calculate S(t’). The

probability that a propagation process at (t’ztk) can be executed

is ½(1{a)ni=N�
P

rwrmax
k

P(t’ztk )(r)~½(1{a)=N�½1{P(t’ztk )(r
d
k)�

~(1{a)(1{qat’)=N with ni~1 and P(t’ztk )(r
d
k)~qat’. Then

S(t’)~S(t’{1) 1{(1{a)(1{ exp ({at’=N))=N½ � in the large N

limit. By taking the continuum time limit,

dS(t’)
dt’

~{S(t’)
1{a

N
(1{ exp ({at’=N))

� �
: ð13Þ

Thus we get

S(t’)~ exp {
1{a

N
t’z

1{a

a
(1{ exp ({at’=N))

� �
ð14Þ

from S(0)~1. Now we want to calculate P(dr). At (tk{1),

P(tk{1)(r
d
k) that an agent has the idea rd

k([frmax
(k{1)z1,:::,rmax

k g) is

P(tk{1)(r
d
k)~pq

rmax
k

{rd
k ~pqdr. Then the propagation process to

make rd
k the k-th dominant idea occurs with the probability

½(1{a)=N�P(tk{1)(r
d
k)(~(1{a)p2qdr). Since the probability for

rmax
k {(rmax

(k{1)z1)§dr is
P

a(tk{t(k{1))wdr S(tk{t(k{1){1),

P(dr) can be written as

P(dr)~(1{a)p2qdr
X?

t’§dr=a

S(t’): ð15Þ

From Equations (11), (12), (14) and (15), m(~1{D(?)=N) on

CG can be calculated through exact enumeration. The results of

the exact enumerations are shown in Figure 4 A.

For small innovation probability a, D(?) or m can be

analytically calculable. For at’%N , dr=N%1. Thus

D(t’ztk)*N
ffiffiffiffiffiffiffiffi
1=3

p
(at’=N)3=2, ð16Þ

S(t’)^ exp ({t’2a(1{a)=2N2), ð17Þ

Figure 4. Analytic and simulation results of SM. (A) Plot of m against a of SM on the complete graph. The data both from the exact

enumerations and simulations are shown. The curve represents the analytic result m~1{a3=4. (B-D) Scaling plots of the simulation data for m of SM
against aaN on the scale-free network (B), on the random network (C) and on the square lattice (D). Inset of D shows the plots of m for various N
against a.
doi:10.1371/journal.pone.0070928.g004
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and

P(dr)^
ffiffiffi
p
p

N

ffiffiffiffiffiffiffiffiffiffi
1{a

2a

r
exp ({dr=N)erfc

dr

N

ffiffiffiffiffiffiffiffiffiffi
1{a

2a

r !
, ð18Þ

where erfc(x)~½2=
ffiffiffi
p
p
�
Ð?

x
e{t2 dt. Therefore, fromÐ?

0
P(dr)ddr~1 we get D(?) as

D(?)^

Ð?
0

P(dr)ddr
Ð?

0
S(t’)D(t’ztk)dt’Ð?

0
S(t’)dt’

*Na3=4 ð19Þ

for at’%N, and

m(a)~1{a3=4: ð20Þ

We also confirm that Equation (20) holds even for quite large a or

for a close to 1 by comparing Equation (20) with the results of the

exact enumerations as shown in Figure 4 A. This result means that

there always exists a dominating idea or the global paradigm on

CG if av1.

On the graphs only with local connectivity, the analytic

approach as on CG to SM is hardly possible. Instead simulations

are carried out. The simulation results on various graphs with local

connectivity show that D(?) satisfies the scaling ansatz

D(?)~h(adN) very well. As shown in Figure 4, m satisfies the

scaling function similar to that of DM as

m~1{f (aaN), ð21Þ

where f (aaN)~h(adN)=N . {a, b} are {2.01(3), 0.49(2)} on the

scale-free network, {1.15(2), 1.05(3)} on the random network,

{1.10(2), 1.13(2)} on the square lattice. Thus the phase transition

probability a� scales as a�*N{1=a and a� decreases as the global

connectivity of the graph decreases. Moreover the exponent b
increases as the global connectivity decreases. The scaling

behavior of SM on the random network is nearly equal to that

on the square lattice. This result means that the scaling behavior

hardly depends on the dimensionality of the graph, but depends

on the connectivity.

We also study m of BM [8]. In BM, a randomly selected agent i
tries to propagate his idea to a randomly chosen nearest neighbor

with the probability ni=N. No further propagation process is

attempted in BM or BM does not allow the avalanche in a

propagation process. Since the propagation in BM is local, it is

difficult to treat the model analytically even on CG. Thus BM is

studied numerically. From the simulations we confirm the same

scaling behavior m~1{f (aaN) with a~1:10(2) and b~1:12(3)
on any graph, especially on CG. The scaling behavior of BM on

any graph is the same as those of SM on the square lattice. BM has

only local propagation process on any graph and does not use the

connectivity of large scale or the global connectivity, even on CG.

Therefore the scaling properties of BM are irrelevant to the

dimensionality or the connectivity of the graph. SM on the square

lattice physically has only local avalanches, and thus the scaling

properties of SM on the square lattice are the same as those of BM.

a� of BM also scales as a�*N{1=a with a^1:1.

Conclusion and Discussion

We introduce two paradigm shift mechanisms as the determin-

istic propagation model (DM) and the stochastic propagation

model (SM). Both models have the memory effect that an agent

never returns to any paradigm experienced before by any process

as BM. In both models there commonly exists the innovation

process, which occurs with the probability a. With 1{a the

propagation process occurs. Both DM and SM have the avalanche

in the propagation process. In DM, the propagation process is

controlled by the cost C, which represents the idea difference or

resistance to make one adopt a new idea. In contrast, the

propagation process of SM occurs probabilistically and stochas-

tically by considering the feature that that a minority idea has

more difficulty for adoption than a more widespread idea.

To analyze phase transitions from the ordered phase with a

dominant paradigm to the disordered phase in paradigm shift

models, the disordered phase is exactly defined by using the

random innovation model (RIM) in which the diversity of ideas

D~N. By defining the order parameter, m as m:1{D(?)=N,

we first provide a novel theoretical framework in which transition

in paradigm shift models is analyzed quantitatively by applying the

scaling theory of statistical physics for the analysis of the traditional

thermal order-disorder transition. In DM m of the steady state

satisfies the scaling relation m~1{f (C=N) on any graphs. In

contrast, m in SM follows the scaling relation m~1{f (aaN).

Here f (x) is a common scaling function satisfying f (x)*xb for

x%1 and f (x)~1 for x&1. m of BM [8] on any graph is also

proved to satisfy the same scaling relation as m of SM on the

square lattice. Thus, in DM the transition threshold C� scales as

C�^N and the transition probability in both SM and BM scales

as a�*N{1=a. The exponents a and b depend both on the models

and on the underlying interaction topologies.

Thus this paper suggests a novel theoretical method based on

the scaling theory of the statistical physics to understand the phase

transitions in social systems such as paradigm shifts quantitatively.

The resultant scaling relations in DM and SM also quantitatively

and exactly show that there cannot exist a dominant paradigm if

innovations happen too frequently or the resistance to make one

adopt a new idea becomes large in the systems with finite N.

The deterministic and stochastic propagations coexist in real

world. Thus, it would be an interesting open question how the

nature of the phase transition and the dynamical properties in

paradigm shifts are affected by the coexistence of two processes.

Furthermore, it would also be very interesting to apply the

paradigm shift models (DM, SM, and BM) to the analysis of the

real data for the paradigm shifts or the technological level shifts.

One of the such real data should be the adoption patterns of

operating system versions or versions of recently-popular smart

phones. Another interesting future study would be to investigate

modified versions of the innovation models in which the

technological level changes continuously or takes rational number

[10–12]. Such innovation models [10–12] only considers the

deterministic propagation process. As emphasized previously, any

propagation should have both stochastic and deterministic aspects.

Therefore it would also be very interesting to investigate the

innovation model with continuously varying technological levels

and the combination of deterministic and stochastic propagation

processes.
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