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A B S T R A C T   

The coronavirus outbreak continues to spread around the world and no one knows when it will stop. Therefore, 
from the first day of the identification of the virus in Wuhan, China, scientists have launched numerous research 
projects to understand the nature of the virus, how to detect it, and search for the most effective medicine to help 
and protect patients. Importantly, a rapid diagnostic and detection system is a priority and should be developed 
to stop COVID-19 from spreading. Medical imaging techniques have been used for this purpose. Current research 
is focused on exploiting different backbones like VGG, ResNet, DenseNet, or combining them to detect COVID-19. 
By using these backbones many aspects cannot be analyzed like the spatial and contextual information in the 
images, although this information can be useful for more robust detection performance. In this paper, we used 3D 
representation of the data as input for the proposed 3DCNN-based deep learning model. The process includes 
using the Bi-dimensional Empirical Mode Decomposition (BEMD) technique to decompose the original image 
into IMFs, and then building a video of these IMF images. The formed video is used as input for the 3DCNN model 
to classify and detect the COVID-19 virus. The 3DCNN model consists of a 3D VGG-16 backbone followed by a 
Context-aware attention (CAA) module, and then fully connected layers for classification. Each CAA module 
takes the feature maps of different blocks of the backbone, which allows learning from different feature maps. In 
our experiments, we used 6484 X-ray images, of which 1802 were COVID-19 positive cases, 1910 normal cases, 
and 2772 pneumonia cases. The experiment results showed that our proposed technique achieved the desired 
results on the selected dataset. Additionally, the use of the 3DCNN model with contextual information processing 
exploited CAA networks to achieve better performance.   

1. Introduction 

Coronavirus (COVID-19) is a contagious respiratory illness that was 
identified in December 2019 in Wuhan, China. As of August 27, 2021, 
there were 215,612,352 confirmed cases of persons infected by coro-
navirus “COVID-19” worldwide, 192,807,624 persons recovered and 
4,491,204 died [1]. The Coronavirus outbreak continues to spread and 
no one knows when it will stop. Therefore, from the first day, since the 
virus was identified, scientists have launched numerous research pro-
jects to understand how the pandemic spreads and how a person’s im-
mune system responds to prevent, diagnose and treat the disease [2]. 
Accordingly, medical professionals and research scientists around the 
world have succeeded in building up an understanding of how the novel 
COVID-19 coronavirus spreads and affects the body. The coronavirus 
attacks mainly the lungs of the patient and then spreads into the body 
and affects other organs such as the kidneys and liver. 

Researchers in other domains have also been involved in pursuing a 

solution for early detection of COVID-19, including efforts to ensure 
social distancing. Among these domains, the computer sciences utilize 
various techniques to analyze data, especially for medical imaging. 
Using features from CT-scans and X-ray images combined with artificial 
intelligence (AI) tools and deep learning-based frameworks, the pro-
posed methods achieved high accuracies with minimal computational 
time [3]. AI techniques have also been used to mitigate the spread of 
COVID-19 thru early detection algorithms, drones, mask detection, etc. 
In this research paper, we propose a deep learning (DL) based frame-
work that combines a 3D convolution neural network (3DCNN) and a 
context-aware attention network on BEMD features of X-ray images to 
detect the virus. In our proposal, we used the BEMD technique to 
decompose each original image into four new images [4], a finite 
number of intrinsic mode functions (IMFs), and then apply the 3DCNN 
to classify and detect COVID-19. The use of 3D data can be more efficient 
for any model to extract useful information compared to using only one 
image. We used a dataset that was gathered by Islam et al. [5]. In 
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addition, we evaluated the proposed method on new data collected from 
the internet (Kaggle and Mendeley). Accordingly, the paper presents a 
set of contributions that can be summarized as:  

● Extraction of three components from the original images using a 
BEMD decomposition technique. Then, creating a video of the 
extracted components for use it in a proposed 3DCNN model.  

● A 3DCNN model is proposed, which consists of a backbone for 
feature extraction followed by two context-aware attention (CAA) 
modules that take as input the feature maps of two different blocks of 
the backbone. The concatenation of CAAs module outputs is used for 
classification using fully connected layers.  

● An evaluation of the obtained results on two datasets with different 
sizes demonstrate the effectiveness of the proposed method on the 
two datasets with an accuracy of 99.99%. 

This research paper is organized as follows. In section 2, we present a 
summary of recent research related to this study. Section 3 presents a 
description of the proposed methodology and in section 4, we describe 
the experiments and results with the related dataset collection and 
preparation. Finally, section 5 concludes the paper. 

2. Related works 

Early work in COVID-19 has included detection by extracting images 
of patient lungs done thru ultrasound technology, and a technique to 
identify and monitor patients affected by viruses. These methods 
required trained and qualified staff. Therefore, the development of 
automated detection and recognition techniques that do not require 
skilled specialists is needed. There are techniques, such as computer 
vision, that provide detection using images and videos. Islam et al. [5] 
introduced a Deep Learning (DL) technique that combines a convolution 
neural network (CNN) with the Long Short-Term Memory (LSTM) to 
detect COVID-19 virus from x-ray images. They used 4575 x-ray images, 
where 1525 were COVID- 19 positive cases. In the same context, Carrer 
et al. [6], discussed a method to detect automatically detect the pleura 
line of lungs and extract the characteristics based on its geometry and 
intensity. The pleura lines that were extracted and modeled were given 
as input to the supervised support vector machine (SVM) classifier to 
identify COVID-19. Farooq et al. [7] used infrared thermography tech-
nology (IRT), which is a medical diagnostic tool that detects heat pat-
terns and measures quantitative temperature data of the human body, 
with machine learning (ML) techniques, to diagnose the COVID-19 
virus. They also illustrated and explained thru a generic comprehen-
sive block diagram a thermal imaging method using a computer aided 
diagnosis (CAD) system. In this method, Machine learning (ML) pre-
processes the images, refines the output, trains the data and extracts 
features to predict the outputs. The CNN was applied to train the data 
and detect the COVID-19 virus. In study [8], the authors demonstrated 
how deep learning could be utilized to detect COVID-19 using images 
regardless of source, such as X-ray, ultrasound, or CT scan. They built a 
CNN model based on a comparison of several known CNN models. Their 
approach aimed to minimize noise to apply deep learning of image 
features to detect COVID-19. Their study showed better results in ul-
trasound images compared to CT scans and X-ray images. They used a 
VGG19 network as a backbone in their detection model. Coronet novel 
techniques were explained in Ref. [9] study to detect COVID-19 from 
X-ray images. They used 1251 images in their experiments, where 284 
were COVID-19, 330 bacterial pneumonia, 327 viral pneumonia, and 
310 images from normal patients. They divided the collected dataset 
into two sets, 80% to train the model and 20% to validate the model. 
Horry et al. [10] proposed a pre-trained model to detect COVID-19. The 
system consists of four pre-trained models such as VGG, Xception, 
Inception and Resnet. The dataset includes 100 COVID-19 images, 100 
pneumonia, and 200 normal cases. They used 80% for training and 20% 
for testing purposes. Iteratively pruned deep learning is capable of 

detecting COVID-19 pulmonary signs from X-ray images. CNN was used 
to train the data and evaluate the model [11]. 

In the same context, Roy et al. [12] used Deep Learning (DL) tech-
niques on lung ultrasonography (LUS) images by analysing this type of 
image using a fully-annotated dataset. The authors in another study [13] 
confirmed that the automatic analysis of X-ray images are a good 
alternative for COVID-19 diagnosis. However, the accuracy of such a 
method is related to the annotated data done by experts, although the 
deep learning models used have the potential for COVID-19 detection. 
Techniques to detect COVID-19 using the concept of transfer learning 
were proposed with five variants of CNNs. They tested VGG-19, Mobi-
leNetv2, Inception, Xception, and ResNetv2 in their first experiment and 
MobileNetv2 in a second assay [14]. Waheed et al. [15], proposed 
GAN-based model named CovidGAN or Auxil-iary Classifier Generative 
Adversarial Network (ACGAN) to find COVID-19. Minaee et al. [16] 
talked about a technique named Deep-COVID based on the concept of 
deep transfer learning to detect COVID-19 from X-ray images. Their 
experiment used ResNet18, ResNet50, SqueezeNet, and DenseNet121. 
The SqueezeNet technique gave them the best performance. 

In another research project, Moutounet et al. [17] developed DL 
schema to differentiate between COVID-19 and other pneumonia from 
X-ray images. They tested VGG-16, VGG-19, InceptionResNetV2, 
InceptionV3, and Xception techniques in their diagnosis. They parti-
tioned the dataset using five-fold cross-validation technique. The best 
performance was obtained using VGG-16. Recently, the authors in 
Ref. [18] developed a CNN variants schema to detect COVID-19 from 
X-Ray images. They divided the dataset into two sets, 80% for training 
and 20% for testing purposes. They proved that the VGG-19 and Den-
seNet were the best to detect COVID-19. In another study [19], con-
ceptual structures and platforms were investigated for their capability 
dealing with COVID-19 diagnosis. Different techniques have been 
developed to detect the pandemic, such as Generative Adversarial Net-
works (GAN), LSTM, Extreme Learning Machine (ELM), and Recurrent 
Neural Networks (RNN). 

To identify COVID-19, Maguolo and Nanni [20] tested the AlexNet 
technique with ten-fold cross-validation for training and testing. In the 
same context, Oh et al. [21] talked about the importance of Artificial 
Intelligence (AI) in the diagnosis of COVID-19 using X-ray images. They 
proposed a CNN method with a small number of trainable parameters to 
detect COVID-19 virus. In another study, Wang et al. [22] developed a 
COVID-19 detection scheme named COVID-Net from X-ray images 
whereas other researchers [23] used a pre-trained models of CNN and 
SVM to detect COVID-19. They utilized eleven CNN pre trained models 
to extract features then applied the SVM for the classifications. In their 
experiment, they found that Resnet50 with SVM gave better accuracy 
and results. 

In the same context, Shi et al. [25] demonstrated the importance of 
medical imaging using CT-scan and X-Ray which can help in COVID-19 
diagnosis. Exploiting the new technologies like Artificial intelligence 
(AI) for analysing these type of images, helps in detecting COVID-19. 
X-ray images with COVID-19 were applied to an SOFM network to 
search and classify patients sickness. Their work showed that unsuper-
vised learning could extract features from X-ray images [26]. Chowd-
hury et al. [27] used in their research a dataset that contains 423 
COVID-19 X-ray images, 1485 viral pneumonia X-ray images, and 1579 
normal X-ray images. They used the transfer learning with the image 
augmentation techniques to train and validate some pre-trained deep 
CNN. Furthermore, it was proposed [28] a modified CNN to detect 
coronavirus from X-ray images. They combined Xception, ResNet50-V2 
techniques and applied five-fold cross-validation techniques on 180 
COVID-19 images, 6054 pneumonia images, and 8851 normal images. 
Loey et al. [40] presented pre-trained models of CNN with deep transfer 
learning and a Generative Adversarial Network (GAN) to detect 
COVID-19. Three techniques were tested, Alexnet, Googlenet, and 
Resnet18. The experiment showed that Googlenet technique was the 
best. Furthermore, the authors in Ref. [41] concatenated Xception and 
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ResNet50 and used five-fold cross-validation techniques on 180 
COVID-19 images, 6054 pneumonia images, and 8851 normal images to 
detect the COVID-19 virus. In another study, Ucar et al. [42] used 
Bayes-SqueezeNet to develop a schema named COVIDiagnosis-Net to 
detect coronavirus using X-ray images. They partitioned the dataset into 
three sets, 80% for training, 10% for validation, and 10% for testing 
purpose without reaching high results compared to other studies. In 
another study [44] the authors, presented a network called DarkCo-
vidNet based on a CNN technique to detect the COVID-19 virus using 
X-ray images. The proposed solution used DarkNet with 17 CNN layers 
for the classification of 1127 images partitioned in five-fold cross--
validation. In another study, Punn et al. [45] used ResNet, Inception-v3, 
Inception ResNet-v2, DenseNet169, and NASNetLarge as a pre-trained 
CNN to detect COVID-19 virus from X-ray images. In their experiment, 
they used 1076 images divided into three sets; 80% for training, 10% for 
testing and 10% for validation purposes. Narin et al. [46] used 
pre-trained models with InceptionV3, ResNet50, Inception-ResNetV2 to 
detect COVID-19 virus with five-fold cross-validation in the dataset 
partition. The authors of another research work [47] combined three 
pre-trained models of CNN, ResNet18, ResNet50, and GoogleNet. The 
grid search technique was used to select the best hyperparameter and 
the pre-trained models were used to extract features and do the classi-
fications. They divided the dataset into 50% for training, 30% for testing 
and 20% for validation purposes. Meanwhile, Li et al. [48] proposed the 
discriminative costsensitive learning (DCSL) technique to detect 
COVID-19. The dataset used was partitioned using a five-fold cross--
validation technique. 

In another study, the authors proposed a deep learning technique 
with 50 layers using ResNet50 to detect COVID-19 [51]. Within 41 it-
erations only, their system achieved 96.23% of accuracy. Khobahi et al. 
[52] used a semi-supervised deep learning technique based on 
Auto-Encoders named CoroNet to detect COVID-19. The dataset was 
divided into two sets; 90% for training and 10% for testing. 

The authors in Ref. [53], developed a COVID-19 detection model 
called BMO-CRNN. Firstly they remove noise in the prepossessing stage, 
then tuned the parameters using a BMO algorithm and CRNN technique 
to extract the features and then the SoftMax (SM) based classification to 
identify COVID-19. Yamaç et al. [54] proposed an approach based on 

the CSEN that can be seen as a bridge between deep learning models and 
representation based methods. CSEN uses both a dictionary and a set of 
training samples to learn a direct mapping from the query samples to the 
sparse support set of representation coefficients. With this unique ability 
and having the advantage of a compact network, the proposed 
CSEN-based COVID-19 recognition systems surpass the competing 
methods and achieve over 98% sensitivity and over 95% specificity. 
Zhou et al. [55] proposed a method that combines image regrouping and 
ResNet-SVM applied to X-ray images. The image regrouping and the 
residual encoder block combined for feature learning and extraction, 
and the extracted features were input into SVM for classification. Tang 
et al. [56] proposed a technique called Ensemble Deep Learning 
(EDL-COVID) by combining deep learning and ensemble learning. The 
model is generated by putting together several snapshot models from 
COVID-Net, which pioneered an open source COVID-19 case detection 
method with a deep neural network applied to X-ray images using a 
weighted average assembling method and different sensitivities of deep 
learning models for different types of classes. In another study [57], the 
authors used five pre-trained CNN models (ResNet50, ResNet101, 
ResNet152, InceptionV3 and Inception-ResNetV2) for the detection of 
coronavirus using X-ray images. They implemented three different bi-
nary classifications with four classes (COVID-19, normal (healthy), viral 
pneumonia and bacterial pneumonia) using five-fold cross-validation. 
According to their experiment, ResNet50 model provided the highest 
classification performance. Ahsan et al. [58] proposed a machine vision 
approach to detect COVID-19 from X-ray images. From the latter, they 
extracted features using histogram oriented gradient (HOG) and 
convolution neural network (CNN) to generate the classification model. 
They also employed a modified anisotropic diffusion filtering (MADF) 
technique for better edge preservation and to reduce the noise in the 
images. To mask the significant fracture in the X-ray images, they used a 
watershed segmentation algorithm. The authors in Ref. [59] demon-
strated that deep learning models can leverage data-source specific 
confounders to differentiate between COVID-19 and pneumonia labels. 
They eliminated many confounders from earlier studies, such as those 
related to large age discrepancies between populations (pediatric vs 
adult), image post-processing artifacts introduced by working from low 
resolution PDF images, and positioning artifacts by pre-segmenting and 

Table 1 
Summary of techniques and datasets used for COVID-19 detection from X-ray images.  

Method Dataset size (images) Techniques used 

COVID-19 Pneumonia Normal 

Islam et al. [5] 613 1525 1525 CNN-LSTM 
HORRY et al. [8] 140 322 60 361 VGG19 
Khan et al. [9] 284 327 310 CoroNet (CNN) 
Horry et al. [10] 100 100 200 VGG16,VGG19,ResNet50,InceptionV3,Xception 
Apostolopoulos et al. [14] 224 714 504 VGG19,MobileNetv2,Inception, Xception, Inception, ResNetv2 
Minaee et al. [16] 71  5000 ResNet18,ResNet50,SqueezeNet, DenseNet-121 
Moutounet-Cartanet al. [17] 125 50 152 VGG16,VGG19,Inception, ResNetV2, InceptionV3,Xception 
Hemdan et al. [18] 25 – 25 VGG19,DenseNet121, InceptionV3, ResNetV2, InceptionResNet-V2,Xception, MobileNetV2 
Maguolo et al. [20] 144 339 – AlexNet 
Chowdhury et al. [27] 423 1485 1579 SqueezeNet, Mobilenetv2, ResNet18,ResNet101, VGG19, DenseNet201 
Rahimzadeh wt al [28] 180 6054 8851 Concatenated CNN 
Loey et al. [40] 69 79 79 GAN, Alexnet, Googlenet, Resnet18 
Rahimzade et al. [41] 180 4575 4575 Xception, ResNet50V2,Concatenated CNN 
Ucar et al. [42] 45 1591 1203 Bayes SqueezeNet 
Bukharia et al. [43] 89 96 93 ResNet50 
Ozturk et al. [44] 127 500 500 DarkNet 
Punn et al. [45] 108 515 453 ResNet,Inception-v3, Inception, ResNet-v2, DenseNet169, NASNetL 
Narin et al. [46] 50  50 ResNet50,InceptionV3, InceptionResNetV2 
Ozcan et al. [47] 131 148 200 GoogleNet, ResNet18, ResNet50 
Li et al. [48] 239 1000 1000 DCSL 
Mukherjee et al. [49] 130  130 Shallow CNN 
Luz et al. [50] 152 5421 7966 MobileNet, ResNet50, VGG16, VGG19 
Farooq et al. [51] 68 931 1203 ResNet50 
Khobahi et al. [52] 89 8521 7966 TFEN, CIN  
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cropping the lungs. A summarization of the proposed methods are pre-
sented in Table 1. 

Algorithm 1. BEMD algorithm   

3. Proposed method 

During the last two years, many methods have been proposed for 
COVID-19 detection using different deep learning architectures on X-ray 
images. The majority of the proposed techniques succeeded in identi-
fying COVID-19 from X-ray images reaching an accuracy of 99%. The 
number of images used in the data sets was not very large, and every 
month the number of images used increases, which can produce some 
cases that can be different from existing cases in terms of the appearance 
of X-ray images and the medical situation of each patient. Therefore, 
researche continues to maintain and improve accuracy. 

In this paper, we propose a novel method to automatically detect 
COVID-19 from X-ray images. It consists of a 3DCNN network with a 
context-aware attention (CAA) module trained on BEMD data extracted 
from the original X-ray images. First, we used the BEMD technique to 
extract four Intrinsic Mode Functions (IMFs) from each original image 
while the size of the images used is 512 × 512. Then from the extracted 
IMFs, we created a video. The latter is then used as an input for the 
proposed 3DCNN model. The utilization of a video having different 
features combined with 3DCNN can better facilitate deep learning than 
just using images. Also, the use of a CAA module allows good learning 
from different features. Fig. 1 shows a flowchart of the proposed 
approach including the extraction of IMFs using the BEMD algorithm as 
well as the proposed architecture of the 3DCNN model. 

3.1. Bidimensional empirical mode decomposition (BEMD) 

The empirical mode decomposition (EMD) is an adaptive decompo-
sition technique in intrinsic mode functions (IMFs) that provide local 

frequency information about a signal and is suitable for non-linear, non- 
stationary data analysis. On images that are a 2D representation, the 
EMD has been extended to bidimensional EMD (BEMD) which is able to 
work on 2D images and is also termed as image EMD (IEMD) or 2D EMD. 
The BEMD algorithm has been applied on different image processing 
tasks like pattern analysis, medical imaging, and texture analysis. By 
detecting the extrama and minima maps, the iterations for each IMF is 
stopped, which make the BEMD a technique with an adaptive iteration 
process. Also, the BEMD algorithm simplifies zero-mean 2D AMFM 
extraction termed BIMFs. 

In the decomposition process, local maxima and minima of the image 
are extracted at each iteration and then interpolated to form the upper 
and the lower envelopes, respectively. The number of two-dimensional 
intrinsic mode functions resulting from the decomposition and their 
properties are highly dependent on the method of interpolation. 

As mentioned in Ref. [37], BEMD is based on using the extrema of the 
original image and then using it for the decomposition. The technique is 
to find the extrema and the minima in the image and then find the 
distance between extrema that provide details to characterize the image 
on intrinsic length scales [38]. In 2D images, the pixels are denoted by 
(m,n) as presented in Algorithm 1 [39] which summarized the basic 
procedure of the BEMD. 

After using the BEMD algorithm, four IMFs are obtained and then 
used to generate the video sequence as an input for the 3DCNN proposed 
model. Some examples of BEMD decomposition are illustrated in Fig. 2 
for each category. 

Fig. 1. Flowchart of the proposed system.  
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In the pre-processing phase, we took the original images. After that, 
we applied the bidimensional empirical mode decomposition (BEMD) 
technique to decompose original images into four IMFs. The latter were 
then used to generate the video and used as the input for the proposed 
3DCNN model, which allows a good learning model from 3D shapes. 

3.2. Proposed architecture 

A convolutional neural network (CNN), is a deep learning neural 
network used to process structured arrays like pixels in an image. It is 
important in many applications like image classification, text classifi-
cation, and pattern recognition [29–32]. CNN is a feed-forward neural 
network. The power of CNN comes from the convolutional layer put on 
top of each other. The architecture of the convolutional neural network 
is composed of many layers that form a feed-forward neural network, 
hidden layers, activation layers and pooling layers. 

Before training the data, BEMD features are extracted and used as 
input of the proposed 3DCNN backbone followed by two CAA modules. 
The pre-processing consists of extracting the BEMD features including 
four IMFS, then collecting them to generate the video format. The pro-
posed 3DCNN model allows a multistage learning technique that permits 
better learning. 

The proposed 3DCNN-based architecture illustrated in Fig. 1 consists 
the parts of features extraction with convolutional and max-pooling 
layers followed by two CAA modules that then create a classification 
block of fully connected layers. The 3D network is based on a VGG16 
architecture for generating features and increasing to a greater spatial 
extent. The proposed model contains ten 3D convolutional layers and 
two fully connected layers. We took layers from VGG-16 that include 
convolutional and max-pooling layers. After two consecutive convolu-
tional layers, a dropout layer is added. The output layers consist of three 

neurons to present COVID-19, pneumonia, and normal classes. Then the 
data is flattened to make the model learn from multi-scale layers while 
also using a complex architecture that performs the learning. Two fully 
connected layers are of 1024 and 128 respectively. 

For the ten convolutional layers, we have used the activation func-
tion and the PReLU (Parametric Rectified Linear Unit). PReLU learns the 
parameters, improves accuracy, and minimizes the computational cost. 
Positive values are fed into the ReLU activation function whereas 
negative values were set to null. The PReLU function is defined as: 

f (yi) =

{
yi if yi > 0
aiyi if yi ≤ 0 (1)  

ai controls the slope of the negative part. When ai = 0, it operates as an 
ReLU; when ai is a readable parameter, it is referred to as Parametric 
ReLU (PReLU). If ai is a small value, PReLU becomes LReLU (ai = 0.01). 
PReLU can be trained using the back propagation concept. 

Context-aware Attention module: analyzing the context is the way 
to extract, recognize a segment or classify the content in an image or a 
video. To do that, the existing deep learning architectures combine 
multiple convolutional and pooling layers to extract features for 
learning like in Ref. [33]. For image classification from X-ray images, the 
lung infection can exist in the variations of the lung position and scale. 
The combination of the convolutional and pooling layers cannot be 
effective for handling all these variations. The authors in Ref. [34] 
attempted to implement a module inspired by SIFT feature extraction 
method [35] that can extract the features based on the image content. 
For that atrous convolution [36] is used to extract the features of the 
same content. For multi-scale features, the use of the output of each 
convolutional-pooling block can be taken. The same strategy is used for 
implementing the context-aware pyramid (CP) module shown in Fig. 3. 

Fig. 2. Some results using BEMD algorithm.  
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Two CAA blocks are used for scale-shape-based extraction. The first one 
takes the output of the third VGG-16 block as input of the first CAA 
module while in the second one, CAA takes the output of the last block of 
the backbone. Each CAA module is composed of adopted Atrous con-
volutions with a variation of dilatation rate and pending parameters. 
The outputs of each atrous convolution are concatenated. Then the two 
CAA modules are combined to get features maps of a Context-aware 
pyramid module using the Pytorch function, which is then used as 
input for the flattened layer. 

In the proposed model, some combined COVID-19 datasets were 
used for training, testing and validation. The use of different features as 
inputs (IMFs) makes the deep learning model capable of a better 
learning. 

3.3. Loss function 

In this paper, binary cross-entropy loss is used to estimate the per-
formance of the classifier [60,61]. As defined, the loss value will in-
crease if the predicted probability deviates from the true label. Binary 
cross-entropy loss calculates the difference between the actual and 
predicted probability distributions for predicting in the range [0,1]. The 
score is minimized and a perfect value is 0. The loss value is expressed as 
follows: 

Loss = −
1
S
∑S

i=1
yilog ŷi + (1 − yi)log(1 − ŷi) (2) 

While S denote is the number of scalar values in the model output. 

4. Experimental results 

In order to evaluate the proposed method for COVID-19 detection 
from X-ray images, a set of evaluation metrics have been used. Also we 
attempted to test the proposed architecture on two dataset with different 
sizes. To demonstrate the obtained results, we compared using the same 
metrics with state-of-the-art methods including Islam et al. [5], 
Chowdhury et al. [27], Rahimzade et al. [41], Ucar et al. [42], An et al. 
[43], Ozturk et al. [44], Punn et al. [45], Narin et al. [46], Ozcan et al. 
[47], Bukhari et al. [48], Mukherjee et al. [49], Shankar et al. [53], 
Yamaç et al. [54], ZHOU et al. [55], Tang et al. [56], Narin et al. [57], 
Ahsan et al. [58], and Kaoutar Ben et al. [59]. This section provides a 
description of the used datasets, experimental setup of the proposed 

deep-learning-based model, and also a discussion of the obtained results. 

4.1. Experimental setup 

For the experiment, we divided the dataset into training, testing and 
validation sets. The training set contains 80% of the data, the testing and 
validations sets contain 10% each. For feature extraction techniques we 
used pre-trained VGG-16 networks, while the adaptation of 3D repre-
sentation is performed. The decomposition of the images into IMFs has 
been made using Matlab exploiting the BEMD algorithm. The BEMD- 
3DCNN model is implemented using Pytorch and Python on an Intel 
(R) Core(TM)i7-2.2 GHz processor with a graphical processing unit 
(GPU) NVIDIA RTX 2070 (8 GB), and 64 GB RAM. 

4.2. Dataset 

In this paper, two datasets were used for training and testing the 
proposed method. The first was used by Islam et al. [5]. They collected 
the images from multiple sources and then did some prepossessing on it 
to reduce the noise. Subsequently, they applied augmentation tech-
niques to get a reasonable number of images to run the CNN. This 
dataset contains 4575 images. The second is collected from the internet 
(Kaggle1 and Mendeley2), then merged to obtain a large-scale dataset for 
training. The new dataset contains 6484 images. 

In our study, we tested the performance of our model using the two 
mentioned datasets. In the experiments we divided the data into 80% for 
training, 10% for validation and 10% for testing. A description of the 
data used in the experiments are presented in Table 2. 

4.3. Evaluation metrics 

To evaluate the image classification method some metrics are 
exploited including recall, precision F1-score, sensitivity, and speci-
ficity. These metrics are computed based on four measures such as True 
Positive (TP), False Positive (FP), True Negative (TN), and False Nega-
tive (FN). While True Positive (TP) denotes COVID-19 cases that are 
correctly predicted, False Positive (FP) refers to samples that are falsely 
classified, TN refer to normal cases that are well predicted, and FN for 
COVID-19 cases that are miss-classified as normal. We also used the 
accuracy of the trained model as a performance metric. These metrics 
are defined as follows. 

Recall: Recall is a metric determining the completeness of the clas-
sifier. Higher recall indicates lower false negatives, while lower recall 
indicates higher false negatives. Precision often decreases with an 
improvement in recall. 

Recall =
TP

TP + FN
(3) 

Precision: Precision shows how much of the data predicted as pos-
itive are predicted correctly. In other words, high precision means fewer 
false positives. 

Fig. 3. Context-Aware attention module.  

Table 2 
Dataset used in our experiment.  

Data/Cases COVID-19 Normal Pneumonia Overall 

Training 1442 1528 2218 5188 
Testing 180 191 277 648 
Validation 180 191 277 648 
Overall 1802 1910 2772 6484  

1 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.  
2 https://data.mendeley.com/datasets/2fxz4px6d8/4. 
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Precision =
TP

TP + FP
(4) 

Sensitivity: Sensitivity is defined as the ratio of correctly detected 
COVID-19 cases to the total number of detected COVID-19 cases, and is 
computed as: 

Sensitivity =
TP

TP + FN
(5) 

Specificity: Specificity is defined as the ratio of correctly detected 
non-COVID-19 to the total number of non-COVID-19, and is measured 
as: 

Specificity =
TN

TN + FP
(6) 

F1-Score: To obtain the F1-score, the product of recall and precision 
is divided by the sum of recall and precision. 

F1 − score =
2 × Recall × Precision

Recall + Precision
(7)  

4.4. Evaluation and discussion 

In the experiments, we divided the data into 80% for training, 10% 
for validation, and 10% for testing the proposed architecture. Fig. 4 and 
Fig. 5 show the evaluation metrics accuracy and loss respectively. These 
figures, show that the proposed method converges quickly to 1 during 
the training and the loss graph shows the convergence to 0. This is due to 
the use of 3D representation of decomposed data using the BEMD al-
gorithm, which gives an opportunity to the model to learn from different 
features. Also, the combination of two CAA modules gives the model the 
possibility to learn from contextual information contained in the 
extracted features. 

Fig. 6 illustrates the confusion matrix of the testing data used for the 
COVID-19 classification process by the proposed BEMD-3DCNN model 
using three class including COVID-19, Normal (non-COVID) and Pneu-
monia. The confusion matrix show that all the data were successfully 
classified by the proposed method. It also demonstrates that the pro-
posed method is efficient for COVID-19 classification with a minimum 
true negative values. 

To demonstrate the performance of each class using the proposed 
BEMD-3DCNN-based method, we exploited the evaluation metrics 
shown in Fig. 7 including accuracy, specificity, sensitivity, and F1-score 
for each class. The proposed method as well as the CNN-LSTM classified 

the classes with high performance, but Fig. 7 reflects that BEMD-3DCNN 
is more accurate and reached 99.99% for all metrics which is a near 
perfect accuracy rate. In our experiment, we used the same metrics as 
used for other existing COVID-19 detection methods. The proposed 
method showed the highest and most accurate detection of COVID-19 
using X-ray images. Also compared with other proposed methods, our 
results are the best in terms of accuracy for COVID-19, normal and 
pneumonia classes. 

The obtained results using precision, recall and F1-score are pre-
sented in Table 3. As each proposed method used specific metrics, we 
attempted to use all the metrics used in previous work. The table shows 
that the results from the BEMD-3DCNN method reached the highest 
values of precision, recall and F1-score, with a difference of 0.8, 0.5 and 
1 point comparing with CNN-LSTM method. For this dataset, the pre-
cision as well as the other metric values demonstrate that deep learning 
methods can detect COVID-19 with a high performance. Thus, it is 
applicable to use these methods as technique for real-time COVID-19 
detection as a safe alternative technique. Further, the maintenance of 
these methods with new data can improve the performance to 100% (see 
Table 3). 

Fig. 5. Loss graph.  

Fig. 6. Confusion matrix.  Fig. 4. Accuracy graph.  
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Another set of metrics was also used to evaluate the proposed 
method against state-of-the-art methods. These metrics are respectively 
sensitivity, and specificity. In Table 4 we summarize the obtained results 
compared with some state-of-the-art methods using the mentioned 
metrics. Some other significant factors are also presented, like data 
sources, data partitioning technique, number of images, classes, and 
performance measures. The Table shows that the proposed method had 
the highest accuracy values as well as best sensitivity and specificity 
values compared with other methods. BEMD-3DCNN was better than [5] 
by a difference of 0.5 for accuracy, 0.6 for sensitivity, and 0.7 for 
specificity. Also, BEMD-3DCNN was better than [48,49] by 3.6 and 5.7 
for sensitivity respectively. Also, comparing with newer methods like 
[56,57], these method reached good results that are close to the ob-
tained results, and also the size of data used for training and evaluation 

are close. The table also shows that the number of classes can affect the 
performance accuracy results like in Ozturk et al. [44] and Yamaç et al. 
[54] as well as the size of data used like for the method in Tang et al. 
[56]. In conclusion, all the proposed method metrics reached good re-
sults that exceed 96% in terms of performance accuracy. However, 
continuous changes in COVID-19 should be taken into consideration 
while maintaining the models with the new data. The BEMD-3DCNN 
method has also been evaluated on the same dataset without CAA 
blocks. Table 4 shows that the proposed method can classify COVID-19 
images with robust accuracy even without CAA blocks. This is because of 
the use of 3D representation in BIMF images. 

Table 4 
COVID-19 detection techniques (comparison).  

Authors Images Classes Partitioning Accuracy Sensitivity Specificity 

Islam et al. [5] 4575 3 80%–20% 99.4 99.3 99.2 
Chowdhury et al. [27] 3487 3 80%–20% 97.9 97.9 98.8 
Rahimzade et al. [41] 180 3 five-fold cross-val 99.5 80.5 99.5 
Ucar et al. [42] 2839 3 80%-10%–10% 98.2 98.2 99.1 
An et al. [43] 278 3 80%–20% 98.1 98.2 98.1 
Ozturk et al. [44] 1127 3 five-fold cross-val 98.0 95.1 95.3 
Punn et al. [45] 1076 3 80%-10%–10% 98.0 91.0 91.0 
Narin et al. [46] 100 2 five-fold cross-val 98.0 96.0 100 
Ozcan et al. [47] 721 4 50%-30%–20% 97.6 97.2 97.9 
Bukhari et al. [48] 2239 3 five-fold cross-val 97.0 97.0 97.0 
Mukherjee et al. [49] 260 2 five-fold cross-val 96.9 94.0 100 
Shankar et al. [53] 247 2 five-fold cross-val 94.8 98.3 98.8 
Yamaç et al. [54] 6200 4 five-fold cross-val – 98.0 95.0 
ZHOU et al. [55] 672 2 70%–30% 93.6 88.0 – 
Tang et al. [56] 15 477 3 90%–10% 95.0 96.0 – 
Narin et al. [57] 7406 2 80%–20% 99.7 98.8 99.8 
Ahsan et al. [58] 5090 3 80%–20% 99.4 93.6 95.7 
Kaoutar Ben et al. [59] 1332 3 65%–6% - 29% 98.1 96.2 98.7 
BEMD-3DCNN(without CAA) 6484 3 80%-10%-10% 99.1 98.8 99.2 
BEMD-3DCNN 6484, 4575 3 80%-10%-10% 99.99 99.99 99.99  

Table 3 
Performance of the BEMD-3DCNN network compared to the existing methods.  

Method Data Accuracy Precision Recall F1-Score 

CNN-LSTM [2] 4575 99.4% 99.2% 99.3% 98.9% 
CNN [24] 4575 99.7% 99.7 99.7 99.55% 
BEMD-3DCNN 4575 99.99% 99.99% 99.99% 99.99% 
BEMD-3DCNN 6484 99.99% 99.99% 99.99% 99.99%  

Fig. 7. Comparison sensitivity, specificity, and F1-score metrics of the proposed method with state-of-the-art methods.  
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5. Conclusion 

COVID-19 spreads between people, mainly when an infected person 
is in close contact with another person. Currently, cases continue to 
increase every day, and many countries are still affected dramatically by 
the disease because of limited resources and the large number of infected 
persons even as vaccination progresses. Hence, it is necessary to identify 
positive cases during any emergency. Accordingly, we introduced a deep 
learning model utilizing a BEMD technique combined with 3DCNN on X- 
ray images to identify the coronavirus. BEMD decomposes the original 
image into IMFs, creates a video with these IMFs, and exploits a 3DCNN 
model with Context-aware attention (CAA) modules to classify and 
detect COVID-19. The proposed technique achieved a high performance 
accuracy of 99.99%. Compared with existing methods, BEMD-3DCNN 
achieved the best results on two datasets. This demonstrates that the 
proposed technique can be used in real-time for early COVID-19 
detection. 
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