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Abstract

Background: With over a hundred million annual infections and rising morbidity and mortality, Plasmodium vivax malaria
remains largely a neglected disease. In particular, the dependence of this malaria species on relapses and the potential
significance of the dormant stage as a therapeutic target, are poorly understood.

Methodology/Principal Findings: To quantify relapse parameters and assess the population-wide consequences of anti-
relapse treatment, we formulated a transmission model for P. vivax suitable for parameter inference with a recently
developed statistical method based on routine surveillance data. A low-endemic region in NW India, whose strong
seasonality demarcates the transmission season, provides an opportunity to apply this modeling approach. Our model gives
maximum likelihood estimates of 7.1 months for the mean latency and 31% for the relapse rate, in close agreement with
regression estimates and clinical evaluation studies in the area. With a baseline of prevailing treatment practices, the model
predicts that an effective anti-relapse treatment of 65% of those infected would result in elimination within a decade, and
that periodic mass treatment would dramatically reduce the burden of the disease in a few years.

Conclusion/Significance: The striking dependence of P. vivax on relapses for survival reinforces the urgency to develop
more effective anti-relapse treatments to replace Primaquine (PQ), the only available drug for the last fifty years. Our
methods can provide alternative and simple means to estimate latency times and relapse frequency using routine
epidemiological data, and to evaluate the population-wide impact of relapse treatment in areas similar to our study area.
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Introduction

Recent years have seen an increasing appreciation of the

significance of Plasmodium vivax as a threat to global health.

Estimates of the population at risk of the disease have been

upgraded to between 2.5 and 2.6 billion, and the number of

annual infections to 130–435 million [1]. The parasite has re-

emerged in areas previously cleared of the disease [2], and reports

of serious morbidity and mortality have proved this form of

malaria to be less benign than previously assumed [3,4].

Resistance to Chloroquine (CQ) appears to be spreading, and

serious concerns exist about the efficacy of Primaquine (PQ),

the only drug in use for relapses for over 50 years [5]. With the

persisting gaps in our understanding of its transmission dynamics

(despite rare theoretical studies [6,7]) and mode of action of

available treatments, P. vivax malaria is among the world’s most

neglected diseases [2–4,8]. In particular, central questions remain

on the role of relapses in its population dynamics, especially on

the importance of treating hypnozoites to interrupt transmission

[9].

Of the human malaria parasites, only P. vivax and P. ovale have

the ability to delay the development of a fraction of the infectious

load of sporozoites in the liver. The activation of dormant

hypnozoites results in the relapse of the disease after the primary

infection is cleared from the bloodstream. Although mechanisms

of activation are still unknown [10], they appear to serve the

parasite in conditions less favorable for transmission, such as the

short season of suitable temperatures and available vectors in high

latitudes [11]. The need for an improved treatment that would

target these dormant stages has been raised [9], with the reported

spread of both tolerance and resistance to PQ [12–14].

Furthermore, studies suggest low patient compliance for the full

14–day PQ course, particularly among poor patients [15] and the

shortened 5-day course, designed to limit side-effects in G6PD

(Glucose-6-Phosphate Dehydrogenase)-deficient patients, is of

limited or no use [12,13,15,16]. Besides these deficiencies in
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current treatment, the size of P. vivax’s hidden reservoir poses a

serious challenge to eliminating the disease, with relapses known to

occur for up to 5 years [2,17].

In particular, difficulties in evaluating the effectiveness of anti-

relapse treatment [5,9,18] have contributed to both the continued

use of PQ despite weakening effectiveness, and our inability to

quantify the potential public health benefits of more effective

alternatives. Operational difficulties arise in following treated

patients for prolonged periods of time, with the possibility of

confounding re-infections [10]. The study of relapse patterns is

further complicated in areas of high transmission by strains with

short latency times and higher relapse rates, and the likely

accumulation and re-activation of hypnozoites from many

previous infections [19,20].

Low transmission regions provide an opportunity to assess the

latency time and the fraction of relapsing infections, and to

quantify in a dynamical way the population level consequences of

relapses and of their treatment. In these regions, P. vivax strains

typically exhibit fewer relapses and longer latency times [14], and

relapses and transmission tend to dominate different seasons [21].

This is the case in the Indian subcontinent, in the arid and semi-

arid areas of northwest India, where P. vivax typically exhibits two

seasonal peaks of which the first is dominated by relapses, as we

will further substantiate below, and the second is shared with P.

falciparum and reflects mainly transmission following the monsoon

rains [21].

Methods

Data
The malaria data come from Kutch, a large arid district in the

state of Gujarat, located at the desert fringes of northwest India

with seasonal epidemic malaria [22,23]. The data were provided

by the Commissionerate Health of the Government of Gujarat,

through the National Institute of Malaria Research in India, and

consist of monthly confirmed P. vivax cases from blood slides of

patients visiting public health services between January 1987 and

August 2010. Because of marginal environmental conditions for

transmission determined by the semi-arid climate in the region,

interannual variation in rainfall generates strong yearly variation

in epidemic intensity, as we have shown earlier for the

transmission of P. falciparum [23,24]. Monthly rainfall data were

recorded at the local weather station in Kutch, and supplied by the

Indian Meteorological Department in Pune (India). Yearly

population data were obtained via interpolation of the decadal

census data between 1991 and 2011.

Transmission model
The human component of our P. vivax transmission model is

formulated by dividing the population into classes based on

infection status (Fig. 1A): S, for naı̈ve individuals who are

susceptible to both infection and disease; E, for exposed or

inoculated humans who are not yet infectious; I, for infectious

humans that can transmit the pathogen to the vector; Q, for

individuals that have acquired some degree of immunity from

disease and are therefore more weakly infectious than those in

class I; and H1…n, a chain of n dormant classes for humans who

carry liver-stage hypnozoites. In view of the existing lack of

knowledge about the metabolism of hypnozoites, the chain of H

classes allow us to both represent putative stages of the hypnozoite

in the liver and generate a more realistic distribution of the

duration of the overall liver stage [25] (see Supplement for details).

We consider three H classes, and hereafter refer to this particular

model as SEIH3QS (Fig. 1A). Models with fewer H classes fit the

data poorly, and those with more classes do not have enough

statistical support to justify the added complexity (see below).

In the absence of mosquito data and also keeping our inference

goal in mind, the vector dynamics is incorporated implicitly in

terms of its force of infection, l, and a Gamma-distributed lag time

with mean t to account for the developmental delay of P. vivax

parasites within surviving mosquitoes (see supplement). Variability

in the dynamics arises from fluctuations in mosquito abundance

and behavior, and is incorporated with three exogenous forces:

seasonality (to account for yearly periodic forces), rainfall (as a

climate covariate), and environmental noise (see supplement, and

also [23]). Seasonality of transmission is represented by a set of

flexible functions (see supplement for details) and therefore, is not

specified a priori. The shape and timing of this component of

transmission is freely determined from the data in the process of

fitting the model. Although below we refer to the ‘‘relapse’’ and

‘‘transmission’’ seasons, based on the seasonal pattern of monthly

cases relative to that of the monsoon rains (Figure 2), this

distinction is only used in correlative analyses and in comparisons

between data and model outputs.

To incorporate anti-relapse treatment in the SEIH3QS model,

we assume that a fraction a of the patients (in the I class) are

effectively treated of relapses and move to the Q class, and the

untreated fraction 1 – a enters the dormancy stage via the I-to-H1

transition (as in the control model; see Eq.S1 in supplement). The

fraction a reflects the percentage of new P. vivax infections for

which relapses are fully suppressed; we use this variable to express

different levels of relapse treatment below. The transition of all

treated humans to the Q class, rather than directly to the S class,

follows from our assumption that the hypothetical anti-relapse

drug is effective only against hypnozoites and does not affect any

residual blood-stage parasitemia. This is a reasonable assumption

given the activity of a typical hypnozoitecide [12,13,19].

Model simulation
The model with maximum-likelihood-estimated parameters (see

below) is simulated several years ahead, and for many realizations

of surrogate rainfall time series (generated from the original

Author Summary

Plasmodium vivax, one of the four species responsible for
malaria in humans, represents today a much larger global
public health problem than previously recognized. The
neglect of P. vivax is still apparent in the limited efforts
made so far to understand the regional dynamics of the
disease, and in the non-existence of practical models to
guide and evaluate control measures. One main impedi-
ment is the overall uncertainty in the dynamic role of the
hidden reservoir, resulting from the liver stage known as
hypnozoites and responsible for relapses, a characteristic
feature of this species. Current control efforts and
elimination plans are therefore hampered in their ability
to quantify the impact of effective anti-relapse treatments.
This paper applies a P. vivax transmission model to
surveillance data from a semi-arid region (in NW India),
whose clear demarcation of the transmission and relapse
seasons makes it especially suited for estimating relapse
parameters such as frequency and rate. The model results
quantify the striking dependence of P. vivax on relapses for
its survival, supporting the feasibility of regional elimina-
tion and lending support to the expressed urgency of
replacing Primaquine, the anti- relapse drug now in use for
over fifty years with unsatisfactory efficacy, resistance and
side-effects.

Impact of Relapse Treatment in Vivax Malaria
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rainfall data by extending the standard amplitude-adjusted, fast-

fourier-transform based method, so as to preserve the seasonality

pattern in Fig. 2C (dotted curve), besides the autocorrelation and

power spectrum). To quantify the effect of treatment on P. vivax

transmission, we compute the percent reduction in transmission

cases between Aug-Nov relative to control. To compute the

elimination probability of P. vivax malaria after T years, we

simulate the treatment model for an extensive period of time (up to

1000 yrs ahead, T,1000) and compute the probability that not a

single P. vivax case arises between T and 1000 yrs. We note that

treatment does not represent here the administration of prima-

quine, but of a hypothetical, not-yet-existing, more effective, anti-

Figure 1. P. vivax transmission models. Human classes are represented as squares, and mosquito class l as a circle, with arrows indicating the
direction of transition between classes. The per-capita rate of transition is included next to each arrow (see supplement for model equations and
description). A. The general model SEIHnQS with n H classes and the relapsing loop I-to-H1…n-to-I (in red). The multiple H classes effectively
implement a realistic Gamma-distributed latency period [25], and may also represent possible intermediate stages of hypnozoites during its long stay
in the liver (see supplement for more details). The class Q provides a simple representation of partial, temporary, immunity that confers protection
against clinical infection but not infectiousness [40]. Prompt clinical intervention prevents some patients from developing immunity [41], which is
captured in the I-to-S transition. B. The non-relapse model SEIQS, without the relapse loop but otherwise identical to SEIHnQS. C. The non-relapse
model SEIRS, where the completely immune class R (no blood-stage parasitemia) replaces the Q class, and the I-to-S transition is no longer present.
(This model is same as the VSEIRS model previously used for the population dynamics of P. falciparum malaria in Kutch [23]).
doi:10.1371/journal.pntd.0001979.g001

Impact of Relapse Treatment in Vivax Malaria
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relapse compound. Ideally, such a drug would be an improvement

on the long treatment regime Primaquine requires, and formulat-

ed in a way it can be administered in conjunction with a drug

directed against blood stages (e.g. CQ).

Statistical inference
We formally relate the model to data by assuming that only a

fraction r of new infections are detected by the surveillance

methods [23], and model the data as negative binomially

P . vivax

Figure 2. Malaria time series and regression estimates of relapse frequency and latency. A. The monthly P. vivax (red) and P. falciparum
(black) cases between January 1987 and August 2010 are overlaid. B. The power spectrum of P. vivax data (red) shows a strong yearly cycle as well as
different dominant periods longer than one year (i.e. interannual cycles) (The power spectrum describes how the variance of the data is distributed
among different periods). The interannual cycles of period less than 6 years are also present in the rainfall spectrum (dashed black). C. The
comparison of the observed seasonal patterns of P. vivax (red) and P. falciparum (solid black) shows significant relapses in P. vivax during January–
June when rainfall is minimal (dotted black) – these are called ‘‘relapse cases’’ in the text. The majority of P. vivax cases due to transmission arise
between August and November, and are likewise referred to as ‘‘transmission cases’’. D. The autocorrelation values of P. vivax cases in each of the
four transmission months - August (red), September (blue), October (light blue) and November (yellow) - and the cases in the subsequent twelve
months show large correlation peaks between January and June, giving latency periods ranging between 5 and 8 months. E. A linear regression of
aggregated transmission and relapse cases gives a slope of 0.31, suggesting a 31% average relapse rate. In the driest months of May–June, when
entomological conditions exclude transmission, the regression gives a much tighter relation (not shown). F. The average of these autocorrelation
curves suggests a relapse latency of 7 months.
doi:10.1371/journal.pntd.0001979.g002

Impact of Relapse Treatment in Vivax Malaria
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distributed around these new infections (see Supplement for

details). (We note that only the transitions from E-to-I and H3-to-I

contribute to the observed cases, and that individuals in Q are

considered completely asymptomatic. This does not mean that all

individuals in I are necessarily symptomatic as variation within

that class in symptom levels can partly explain the under-

reporting.)

To estimate model parameters and test different models given

the data, we carried out likelihood-based inference via a recently

introduced iterated filtering methodology [26] for calculating

maximum likelihood estimates (MLEs). Applications of this

methodology to other epidemiological models can be found in

the literature [23,24,27–29]. To investigate the potential weak

identifiability of some parameters (resulting from including more

parameters than the data can support), we computed confidence

intervals for each MLE by using the profile likelihood method

[23,24,28]. We used the R package ‘‘pomp’’ [30] to implement the

algorithm, which is detailed elsewhere [23,27,28].

The SEIH3QS model is tested against two other relapse models

with one and six H classes, denoted by SEIHQS and SEIH6QS

respectively (Fig. 1A). A single H class generates exponentially

distributed latency periods, whereas multiple classes have the

advantage of allowing for a flexible (gamma) distribution [25]. To

ascertain the importance of relapses in explaining the data, the

SEIH3QS model is also compared with two non-relapse models,

SEIQS and SEIRS (Fig. 1B–C). These comparisons are carried

out in terms of the Akaike Information Criterion (AIC), a

likelihood-based selection criterion that penalizes higher model

complexity.

Results

Patterns in the data
P. vivax cases show epidemic patterns characterized by strong

yearly and interannual fluctuations (Fig. 2A), with periodicities

shorter than 6 years mirroring those of rainfall (Fig. 2B). Most

malaria cases for both parasite species typically occur between

August and November following the annual July-to-September

monsoon, and the lowest number of cases occur during the colder

pre-monsoon months (Fig. 2C). Conditions for transmission before

the monsoon are poor, as shown in the decline of reported cases

for P. falciparum (Fig. 2C). The high autocorrelation between

reported P. vivax cases in the pre-monsoon season and those in

between August and December (Fig. 2D) indicates that the pre-

monsoon season mainly reflects relapses, with estimated latency

period between 5 and 8 months. In particular, during the 2 driest

months (May and June) the variance of cases explained by cases in

October and November is 85% (not shown). Thus, reported cases

from January to June can be used to estimate the fraction of cases

between August and November that relapse. A linear regression of

transmission and relapse cases gives a relapse rate of 31% (Fig. 2E),

suggesting that, on average, one in three P. vivax patients (who

recovered from the primary infection) have clinical relapses in the

following spring. This estimate is close to the 28% relapse rate

observed in the neighboring Kheda district [14,31] and the

national average of 30% [32]. Cases show significant autocorre-

lation peaks between the months of August-November and those

from January to June, providing an estimated latency period

between 5 and 8 months (Fig. 2E), and a mean value of 7 months

(Fig. 2F). This relatively long interval is compatible with the

‘‘temperate’’ strains of P. vivax, rather than the ‘‘tropical types’’

with short and frequent relapses found in more endemic parts of

India [14,33].

Model comparison and parameter estimation
The comparison of the models without relapses (SEIQS and

SEIRS) to those with relapses (SEIHQS, SEIH3QS and

SEIH6QS), shows that the data do not support the non-relapsing

models (Table 1). The SEIH3QS model is clearly superior to both

non-relapse models. Moreover, the models with multiple H classes

perform better than the one with a single H class. For parsimony,

the simplicity of the model SEIH3QS is preferred over the model

SEIH6QS with six H classes.

Figure 3 illustrates the performance of the best model

(SEIH3QS) relative to the observed seasonal pattern in the

malaria data. The observed and simulated time series exhibit

peaks and troughs that fall on the same months during most years

(Fig. 3A), and have similar dominant periods of their inter-annual

cycles (Fig. 3B). Such agreement is encouraging given that these

simulations are not one time-step ahead predictions, but they rely

instead only on estimated initial conditions for January 1987 to

compute the entire 23-yr long trajectories. The model tends to

underestimate the large outbreaks prior to 2007 (which explains

the overall lower mean in Fig. 3C), and to overestimate them

afterward. This reversal may reflect a shift in the vector control

policy adopted in 2007 [34], which was not included in the model.

Simulations also reproduce the observed 31% relapse rate and 7-

mo mean latency period (Figs. 3D,E). In particular, the mean

latency is well predicted by the model’s distribution for the latency

period whose respective median and mean are 6.4 and 7.1 months

(Fig. 3F).

Table 1. A likelihood-based comparison of the fitted models.

Model log-likelihood L P AIC likelihood ratio test

SEIH3QS (relapsing, with three H classes) 21809 26 3670 –

SEIH6QS (relapsing, with six H classes) 21805 29 3668 –

SEIHQS (relapsing, with one H class) 21815 24 3678 –

SEIQS (non-relapsing) 21824 21 3690 p%0.001

SEIRS (non-relapsing) 21830 19 3698 p%0.001

Log-likelihood (L) and number of estimated parameters (P) are given for the different models. The model selection criterion known as AIC (for Akaike Information
Criterion) is computed as AIC = 22L+2P. A likelihood ratio test comparing each of the two non-relapse models SEIQS and SEIRS to the best relapse model (SEIH3QS)
rejects these models (based on a chi-square test with 5 and 7 degrees of freedom respectively). The models with multiple dormant classes perform better than the one
with a single class. For parsimony, the model SEIH3QS with three such classes is preferred over the model SEIH6QS with 6 classes (see Methods, Supplementary Material,
for a description of the models).
doi:10.1371/journal.pntd.0001979.t001
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In contrast, the tested non-relapse models (SEIQS and SEIRS)

widely miss the two patterns observed in the data (supplement, Fig.

S2), consistent with their poor statistical fit (Table 1). Thus relapses

clearly play a significant role in the dynamics of P. vivax malaria in

this region. This role becomes more evident when the effect of

rainfall is taken into consideration: pre-monsoon (relapse) and post-

monsoon (transmission) cases reveal a remarkably strong correlation

( = 0.90) during years of low monsoon rain (supplement, Fig. S3),

Figure 3. Comparison of model simulations with malaria data and regression estimates. The data and the regression estimates for relapse
latency and frequency from figure 2 are plotted in red, the median of 1000 model simulations is plotted in blue, and the 10–90 percentile range
shaded in light blue (all simulations use the maximum-likelihood-estimates of the parameters, see suppl Table S1). A. The peaks and troughs of the
monthly simulated cases track the data well, except for the underestimation and overestimation of large outbreaks before and after 2007 respectively
(see text). B. The power spectrum of the median cases from the simulated time series reproduces the yearly and the two longer interannual cycles
observed in the data (and also present in the rainfall covariate, see Fig. 2B). C. The seasonal patterns in the data and simulations show good
agreement. D. A linear regression of aggregated transmission and relapse cases in each of the 1000 simulation time series gives the same 31% relapse
rate as in the data. E. The average autocorrelation curve of the simulated cases reproduces the observed 7-month mean latency period. F. The
gamma-shaped latency distribution is plotted using the shape parameter values taken from supplement Table S1, which predicts median and mean
latency periods of 6.4 and 7.1 months respectively.
doi:10.1371/journal.pntd.0001979.g003

Impact of Relapse Treatment in Vivax Malaria
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indicating that relapses are more vital for the parasite survival after

drier, low, transmission years.

Effects of anti-relapse treatment
The striking dependence of P. vivax on relapses can provide a

much-needed analytical tool for assessing the population-wide

benefits of clinically targeting hypnozoites [5]. Figure 4 summa-

rizes key findings from simulating the SEIH3QS model with a

hypothetical, improved [9,35], relapse treatment (see Methods),

taking current clinical practices in the study area as a baseline.

When implemented for 25 years, the prevention of 10% of relapses

alone can suppress transmission in the post monsoon period by as

much as 45%, and a 30% treatment doubles this effect (Fig. 4A–

B). The gradual weakening of outbreak sizes in successive years

further suggests the possibility of completely eliminating the

parasite, with the effective treatment of 65% of relapses resulting

in the extinction of P. vivax within a decade (Figs. S4). As these

delivery rates could be beyond a country’s operational capacity,

particularly in more endemic areas, we consider the impact of an

annual mass treatment with a coverage rate of 90% implemented

just after the transmission season in January (Methods). We

conservatively estimate that such an intervention, would on

average reduce the P. vivax burden considerably (Fig. 4C).

Moreover, an effective relapse treatment level can have a bigger

control
10% treated
30% treated

Figure 4. Model simulations with an effective anti-relapse treatment. For a given treated fraction a, the model is driven by a surrogate
rainfall series (reproducing main features of the observed rainfall data) and simulated 25 yrs ahead, with 1000 independent runs per surrogate and
1000 surrogate series in all (see Methods, Supplementary Material). The error bars denote standard errors over surrogates. A. The median seasonal
patterns are compared among control (red), 10% treatment (blue) and 30% treatment (light blue), showing a drop of 45% and 90% in transmission
cases (aggregated over Aug–Nov) relative to control for these two treatment levels. B. Treatment effect, defined as the relative drop in transmission
cases, as a function of a. C. In the alternative annual mass treatment scenario, with 90% of the population successfully covered at the beginning of
the year for 5 consecutive years from year 6-to-10 (equivalent to a = 0.9 between January of year 6 and December of year 10, and a = 0 at other times),
the P. vivax burden is substantially reduced on average, ranging from a 50% drop after one annual intervention, to 95% at the end of the treatment
period (the median of the surrogate runs is plotted in red, and the 10–90 percentile range shaded in light blue; the inset shows the cumulative %
reduction in the P. vivax burden after mass treatment). Without further prevention of relapses the parasite will gradually recover over several decades,
highlighting the need to use such an intervention in conjunction with effective treatment of clinical cases.
doi:10.1371/journal.pntd.0001979.g004

Impact of Relapse Treatment in Vivax Malaria
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impact when transmission in the previous year was low (e.g.

cumulative cases below 1000 between August and November),

with the prevention of 10% relapses reducing cases in the

following transmission season by as much as 70% (supplement,

Fig. S4).

Discussion

We formulated a dynamic model of P. vivax transmission, and

applied novel statistical methods for parameter inference from

routine surveillance data, to characterize the relapsing patterns in

a low-endemic region in NW India. Our findings reveal a clear

dependence of the parasites on relapses for survival in an area with

seasonal transmission. They also quantify population-wide im-

pacts, including potential elimination of the parasite, of an

effective anti-relapse treatment. The striking dependence of P.

vivax on relapses demonstrated with our model supports the

hypothesis [5,9] that this stage represents the Achilles heel of this

malaria species, and emphasizes the urgent need to develop more

effective relapse treatments than the currently available Prima-

quine [9,13,18].

Our model identifies a single relapse within one year, in

agreement with clinical studies in the region [14,31,33]. Reported

longer latency times, as long as 5 years [10], should not have a

major impact on our estimated elimination times as treatment that

targets all hypnozoites will also prevent most relapses that would

have stayed dormant for any period in excess of one year.

Although it is not feasible to quantify and remove the effects of an

existing 5-day PQ regime [14] (only recently replaced by a full 14

day course [36]), any resulting bias is expected to be small, given

the inadequacy of the 5-day course [15,16] and the small fraction

of total cases currently treated with PQ [37].

The observation that the impact of a relapse treatment is more

marked when the cases from the preceding transmission season are

low, has clear operational implications. It suggests a more cost-

effective strategy that would rely on the intermittent application of

treatment only in low-transmission years, where resources are

limited and the development of drug resistance is a concern. This

result further implies that combining an anti-relapse treatment

with a more effective blood schizonticide (than CQ) would have a

larger impact than the sum of each individually, as treating new

infections would limit sexual reproduction and subsequent

infections during the same season. Note that this interaction is in

addition to the augmented curative effect of PQ when adminis-

tered with a schizonticide (CQ) on a patient level [5].

More generally, the above observation implies that the effective

treatment of hypnozoites will have most impact when used in

conjunction with other intervention measures that reduce trans-

mission, such as effective vector control. As both rainfall and

vector control influence transmission, the combined use of

effective vector control with an effective relapse treatment should

act synergistically. Because the fitted model implicitly includes

current levels of vector control in the transmission rate b (see

Supplement) any explicit implementation of interventions that

reduce this value in the model should be interpreted as additional

to the baseline of current practices. To illustrate the synergy of

these two modes of intervention, we implemented a reduction in

the fitted transmission rate of the form bnew = (12c) b during the

monsoon months, when the mosquito population tends to rise and

current IRS efforts are concentrated. Small increases of current

control levels can significantly decrease the treatment coverage

needed for elimination in a given time horizon. For example, the

65% coverage needed, under existing vector control practices, for

the total (100%) suppression of P. vivax transmission and its

elimination in a decade (supplement, Fig. S4-B), can be brought

down to 30% with c = 0.1 (that is, with bnew = b60.9).

The eradication attempts in the 1960s combined the attack on

vector and the parasite. However, maintaining gains and

eliminating the silent parasite reservoir in the population proved

a difficult challenge. Effectively removing relapses could play an

important role in overcoming these limitations encountered in the

past. The synergy we inferred in this study between hypnozoite

removal and transmission reduction further highlights the

desirability of a judicious mix of control methods to address new

initiatives to eliminate malaria.

Our approach has relied on the pronounced variability of P.

vivax malaria in a region of unstable transmission where rainfall

acts as a strong environmental determinant at seasonal and

interannual time scales [23]. Seasonal transmission of malaria

limited by rainfall or temperature is a dominant feature of the

global epidemiology of malaria. Relapses provide malaria species

such as P. vivax with the ability to bridge periods unfavorable for

transmission, and potentially, with a competitive advantage when

coexisting with non-relapsing species. Our results in desert fringes

of NW India should generalize to the extensive temperate regions

in South America and Asia where P. vivax dominates. In areas with

more intense, seasonally extended or perennial transmission, the

higher relapse frequency and shorter latency times of prevalent P.

vivax strains could signify an adaptation to competition between

strains of P. vivax or with P. falciparum. If relapses provide a

competitive advantage in areas of extended transmission, blocking

relapses could also have beneficial control implications. However,

these effects cannot be easily extrapolated from our results, and

require investigation with time series from these regions. Although

the model formulation is sufficiently flexible to consider different

relapsing characteristics, such as shorter latency times and multiple

relapses, the ability of our approach to infer relapse parameters

from surveillance data will obviously decrease with weaker

seasonality. Thus, future work should investigate how far beyond

highly seasonal, low endemic regions this approach can be

fruitfully applied.

Our estimates of the impact of treatment depend on the ability

of the fitted model to separate relapses from primary infections.

This ability should be reflected in confidence intervals of the

estimated parameters and this uncertainty is taken into consider-

ation when simulating the model to evaluate the effect of

treatment. Independent information on the seasonality of trans-

mission could be used to further pin down the dynamics of relapses

by specifying this seasonality rather than completely inferring it

from the data. Obtaining such information from the transmission

dynamics of P. falciparum in the same region would appear

plausible, but is not straightforward, as the two species have

different temperature requirements, benefiting P. vivax in the

cooler seasons.

The simplification adopted by considering a single partially

immune (Q) class in our model ignores the details of an age–

stratified immunity distribution, but still proves sufficient in

capturing the transmission dynamics in this epidemic region.

Our results provide little statistical support for the Q class itself,

given the large confidence intervals of related parameter estimates,

which effectively renders this class unnecessary to explain the

observed data. In more endemic areas, where host immunity from

repeated infection is likely to play a more important role [10], the

immune (Q) class may find support from the data.

Although our model makes no assumption about the symptom-

atic or asymptomatic nature of relapses, it does consider that all

relapses contribute to infections that can potentially be counted as

cases (i.e. infections in class I). To allow for relapses that do not
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contribute to cases, as well as for completely asymptomatic

relapses, we have considered a variant of the model in which only

a fraction f of relapses transition into I, and the remaining (12f),

into Q. The relapse parameters and findings on the effects of

treatment proved robust to this variation.

Finally, our analysis illustrates that retrospective surveillance

data, in combination with simple models of malaria transmission

(e.g. [38]) and recent statistical developments for confronting these

models with data, can complement operationally complex clinical

studies of relapses. In particular, as shown here, the variable

incidence patterns in time series of P. vivax malaria from seasonal

transmission regions provide valuable information on the dynamical

role of relapses and the potential effect of anti-relapse treatments.

Simple mechanistic models thus offer a foundation for more detailed

formulations as additional data become available [39].

Supporting Information

Text S1 Model description. Details of model description,

including equations, are included in the supplement.

(PDF)

Figure S1 Correlation between cases and accumulated
rain. The correlation is significantly higher in the months

between June and October (solid line + circle) during the monsoon

season, than when all twelve months are considered (dashed line +
triangle), due to the confounding effects of relapse cases in the

latter.

(PDF)

Figure S2 Comparison between data (red) and models
SEIH3QS (blue), SEIQS (yellow) and SEIRS (green). Each

model is simulated 1000 times. A. A linear regression of

aggregated transmission and relapse cases gives relapse rates of

34% and 35% for the two non-relapse models SEIQS and SEIRS,

respectively, both values higher than the 31% rate estimated from

the SEIH3QS model and suggested by the data. Data points (red

open circles) are also shown. B. The SEIQS model has a shorter

mean latency of 5 months, (and the SEIRS model by construction

has none), compared to the 7-mo latency estimated by the

SEIH3QS model and consistent with the data.

(PDF)

Figure S3 Correlation of relapse and transmission
cases. The SEIH3QS model is simulated (using the MLE

parameters) 25 yrs ahead with 1000 surrogate rainfall series, and

Jan–Jun relapse cases, and the Aug–Nov transmission cases are

aggregated for each simulated year, giving 25,000 paired values.

A. A scatterplot of these (aggregated) relapse and transmission case

pairs does not exhibit a meaningful correlation because of the

confounding effects of rainfall. B. Partitioning by low (red) and

high (blue) rainfall years, defined by total monsoon rain

(aggregated between June–Sept) , and .75 mm, reveals a strong

positive correlation during low-rainfall years. C. The (aggregated)

rainfall distribution has a median of 75 mm, giving the same

number of red and blue points in figure B.

(PDF)

Figure S4 Relapse treatment and elimination probabil-
ity. Elimination is computed as the year-long absence of P. vivax

malaria cases for every year starting in a given year and lasting for

the entire simulation length ( = 1000 yrs). A. Representative

examples of simulated Pv time series for the three treatment levels

used in Fig. 3A, a = 0, 0.1, 0.3, using a single surrogate rainfall.

Progressive suppression of cases at 30% treatment level (light blue)

suggests the possibility of P. vivax elimination in near future. B. Plot

shows mean year of P. vivax elimination as a function of treatment

level (a), indicating that 40% treatment can eliminate the parasite

in 25 years, and 65% treatment can achieve the same within a

decade (mean and error bars are computed over 200 surrogate

rainfall series). C. Plot shows the probability of elimination in

25 yrs (circles) and 10 yrs (stars), versus treatment level, corrob-

orating that 40% and 65% relapse treatment can eliminate P. vivax

malaria in 25 yrs and 10 yrs respectively (at probability P = 0.5).

(PDF)

Figure S5 Correlation of treatment effect and preceding
transmission intensity. The treatment model S1 is simulated

(using MLE parameters) at a 10% treatment level (a = 0.1), 25 yrs

ahead with 1000 surrogate rainfall series. A. A scatterplot of %

drop in current transmission intensity vs preceding (aggregated)

transmission cases shows a negative correlation. This inverse

relationship arises from a strong positive correlation between these

earlier transmission cases and current relapse cases (B), which in

turn correlate negatively with the % drop (C), presumably because

of the parasite’s dependence on relapse to survive during the low-

transmission season.

(PDF)

Table S1 Parameter definition and maximum likeli-
hood estimates (MLEs) for the different models,
SEIH3QS, SEIH6QS and SEIQS. Parameters not estimated

are denoted with superscript *. Setting mEI = 24/yr assumes an

average 15-day human incubation period before clinical symptoms

arise [11].

(PDF)

Table S2 MLEs for the SEIH3QS parameters and their
lower and upper bounds of approximate 95% confidence
intervals (see Table S1 for units; pre-set parameters are
denoted with superscript *. CI values of 0, 1 and ‘

correspond to confidence intervals reaching the boundaries of

parameter space.

(PDF)
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