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Abstract

PubMed is a free search engine for biomedical literature accessed by millions of users from

around the world each day. With the rapid growth of biomedical literature—about two arti-

cles are added every minute on average—finding and retrieving the most relevant papers

for a given query is increasingly challenging. We present Best Match, a new relevance

search algorithm for PubMed that leverages the intelligence of our users and cutting-edge

machine-learning technology as an alternative to the traditional date sort order. The Best

Match algorithm is trained with past user searches with dozens of relevance-ranking signals

(factors), the most important being the past usage of an article, publication date, relevance

score, and type of article. This new algorithm demonstrates state-of-the-art retrieval perfor-

mance in benchmarking experiments as well as an improved user experience in real-world

testing (over 20% increase in user click-through rate). Since its deployment in June 2017,

we have observed a significant increase (60%) in PubMed searches with relevance sort

order: it now assists millions of PubMed searches each week. In this work, we hope to

increase the awareness and transparency of this new relevance sort option for PubMed

users, enabling them to retrieve information more effectively.

Introduction

PubMed (www.pubmed.gov) is a widely used search engine, built and maintained by the

United States National Center for Biotechnology Information (NCBI) at the US National Library

of Medicine (NLM), that provides access to more than 28 million scholarly publications in bio-

medicine. On an average working day, there are about 2.5 million PubMed users conducting 3

million searches and 9 million page views. Every article and its associated data elements (also

known as Fields, such as title, abstract, author names, and author affiliations; see S1 Glossary for

definitions and abbreviations) must be first built into the search index of PubMed before users

can search. Then, at query time, PubMed employs all the terms specified in the search to find

matches in all possible fields. Next, by default, all matching articles will be returned in reverse

chronological order. That is, newly published articles are always returned first. While this sort
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order is desirable for seeking the latest information on a given topic or for an individual author,

it may not be ideal for other types of searches (e.g., new topics) or deliver the most relevant arti-

cles to our users most efficiently, as irrelevant results can be returned at the top due to query

ambiguity and complexity. E.g., if a search intent was to find articles studying a given disease in

a certain geographic area or ethnic group (e.g., "melioidosis Taiwan"), then top results matching

the location term in the author affiliation field (instead of treating it as a content keyword)

would be unsatisfactory. Inability to locate semantic concepts in relative proximity can also

result in suboptimal results [1]. The query "cancer related fatigue," for instance, returns many

seemingly irrelevant articles on the first page when sorted by publication date.

We have previously observed that over 80% of the user clicks of search results happened on

the first page. This user behavior [2] is highly similar to that of general web searches despite

the very different date sort order used in PubMed. Thus, for the majority of the PubMed que-

ries for which there are over 20 results, more useful and often still recent papers on page two

and beyond could be easily missed by users.

In response, in 2013, a relevance sort option was made available in PubMed that imple-

mented term frequency–inverse document frequency (TF–IDF) weighting, a classic informa-

tion retrieval (IR) strategy for computing query-document relevancy [3] based on how many

search terms are found, in which fields they are found, and the frequency of the term across all

documents. Additionally, recently published articles are given an artificial boost for sorting.

For databases other than PubMed, alternative IR methods such as BM25 [4] and variations of

the classic TF–IDF algorithm have been studied and applied elsewhere [5–9].

While the classic TF–IDF method shows good performance for relevance ranking, all of its

parameters (e.g., recency boost factor) are based on manual experiments or analyses. Often,

with this approach, parameters are tuned empirically and/or based on domain knowledge.

Recent studies have shown that one can build more robust ranking models trained on large-

scale datasets by using machine-learning algorithms [10]. Particularly, learning to rank (L2R),

a class of machine-learning algorithms for ranking problems, have emerged since the late

2000s and shown significant improvements in retrieval quality over traditional relevance mod-

els by taking advantage of big datasets [11]. With a pretrained L2R model, a relevance score is

assigned for each matching document given a query, with more relevant documents receiving

a higher score. Because of their superior performance, these L2R algorithms have also been

recently applied to many other tasks in biomedical research [12–16].

While there are a number of research studies on L2R, few have explored its applicability

and feasibility as an end-to-end system for real-world use in biomedicine [17]. Furthermore,

although machine-learning or L2R methods have been implemented in large-scale commercial

search systems [18], because of proprietary information, little has been published regarding its

scalability and overall performance with real users.

To this end, we describe the use of L2R to create a new relevance search algorithm for

PubMed search, the first of its kind in (biomedical) scientific literature retrieval to the best of

our knowledge. For validating our method, we present both the offline evaluation results

(computer-ranked results against a gold standard) as well as the online results when tested

with real PubMed users (measured by user click-through rate—CTR). Finally, to demonstrate

its utility, we report its usage rate since its full deployment in PubMed in June 2017 with a

focus on when and how to use it in practice. In doing so, we hope to increase the transparency

of this new relevance sort option (labeled as Best Match in PubMed) for our users such that

they can better understand and ultimately search more effectively in PubMed. The technical

details (in Supporting Information) may also be beneficial to those who are interested in

implementing such a method in production systems. The research source code is available at

https://github.com/ncbi-nlp/PubMed-Best-Match.
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Tool description

Two-stage ranking architecture with improved performance

For PubMed’s Best Match, we adopted a two-stage ranking architecture—in which the two

separate steps, retrieval and reordering, can be optimized independently—for using L2R

[19,20], as it provides both efficiency and flexibility. As shown in Fig 1A, (1) given a user query

translated and mapped to fields automatically, PubMed first retrieves documents that match it

and orders them with a classical term weighting function, BM25 (see S1 Text). (2) The top-

ranked documents are further sorted by a second ranker called LambdaMART [21] (see S2

Text), which stands out as a robust and fast approach with superlative performance in various

ranking tasks (e.g., the 2011 L2R challenge [22] or various TREC tasks [23]). Note that the first

layer is very similar to the previous relevance system used in PubMed starting in 2013. The

main novelty is thus the addition of the second, machine-learning–based layer.

In order to train LambdaMART and test its effectiveness, a set of gold-standard query-doc-

ument pairs is required. Given the lack of real-world datasets for biomedical information

retrieval, we used the user-click information from PubMed search logs (see S3 Text) as the

(pseudo-)gold standard for document relevance and created a benchmark dataset, which con-

tains 46,000 unique queries in total (see S4 Text). A random split of 70% was used for training

the LambdaMART algorithm. When evaluated on the held-out test data (the remaining 30%)

using the Normalized Discounted Cumulative Gain (NDCG), a standard measure for ranking

quality (see S5 Text), our results show that the second ranker is able to learn from the "ground

truth" and obtain more than 3-fold increases in ranking quality when compared with the previ-

ous TF–IDF method (0.48 versus 0.15 in NDCG scores) (see S6 Text).

Document ranking features and their impact on performance

Besides labeled data, another prerequisite for training machine-learning algorithms is transform-

ing each data instance into feature representations. Hence, for distinguishing relevant versus irrele-

vant articles, we designed a set of distinctive features ("ranking factors/signals") that aim to capture

the various characteristics of a document D (e.g., publication year or type), the relationship

between a query and document QD (e.g., number of query term matches in title), or the specifica-

tions of the query Q (e.g., query length). See Fig 1B for a complete list and how they are encoded

in S7 Text. Document features are used to represent the inherent nature of documents irrespective

of the query. Specifically, we characterize a document in multiple dimensions such as its publica-

tion time, publication type, past usage, etc. We use publication year, as we know recency is a criti-

cal factor in finding and reading scholarly articles. Similarly, the type of publication can also be

important (e.g., review articles are generally desired in a literature survey process). The past usage

of an article can be seen as an approximation for assessing its popularity among users. Finally, we

also include features such as document length and language for a fuller description of a document.

Query–document features intend to capture to what degree a document is related to the

query. For instance, the BM25 score is used as a feature to capture this relationship. We also

take into count the number of term matches in specific fields (e.g., title), as well as text proxim-

ity—how close the matches are to each other in the document. The latter is used to favor docu-

ments in which matched term positions are grouped together rather than scattered over the

document. Specifically, we followed the lead of [24] and used 19 features to represent this (e.g.,

count of words between query terms).

The third group regards queries only, ranging from its length (the number of search terms)

to the count of special characters (e.g., those in chemical names) to the number of returned

results (as a measure for whether it relates to a broad versus narrow topic).
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Fig 1. The overall architecture of the new relevance search algorithm in PubMed. (a) It consists of two stages: processing

first by BM25, a classic term-weighting algorithm; the top 500 results are then re-ranked by LambdaMART, a high-

performance L2R algorithm. The machine-learning–based ranking model is learned offline using relevance-ranked training

data together with a set of features extracted from queries, documents, or both. (b) Features designed and experimented in

this study with their brief descriptions and identifiers. D, document; IDF, inverse document frequency; L2R, learning to

rank; Q, query; QD, query–document relationship; TIAB, title and abstract

https://doi.org/10.1371/journal.pbio.2005343.g001
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To assess the importance of each feature (group) towards the overall performance, we con-

ducted feature-ablation studies in which we recorded performance loss when individual (or

groups of) features were removed. We find that the D features (especially publication year and

past usage) and QD features (especially BM25 relevance score) are the most critical and com-

plementary to each other. Although Q features have a relatively minor effect, they can also con-

tribute to improve the overall ranking quality (see S8 Text).

Improved search experience in online evaluation with real users

Given the benchmarking results and feature analysis, we proceeded with a widely used web ana-

lytics method called A/B testing [25], which compares two or more variations of a feature with

real users in a controlled experiment. In our case, for all queries for which users selected rele-

vance sort order, we routed 25% of them to the newly proposed Best Match algorithm while

keeping the rest of the queries (75% of total) with the original TF–IDF algorithm. We then com-

pared the CTRs, the fraction of queries with at least one user click on the top-ranked results (see

S5 Text). Note that queries for which PubMed returned zero or a single article were excluded

from this experiment, as they were not applicable (no click was needed). In addition to focusing

on the rank of 20 (the default number of returned results in the first page), we compared

CTR@10, CTR@5, and CTR@3 to get a sense of the improvement at top-ranked results. Also,

for comparison, we included the results using the default date sort option. This experiment ran

from March 1st, 2017, to June 8th, 2017, consisting of 133,822,362 searches by date, 7,527,507

searches routed to TF–IDF, and 2,509,169 searches routed to Best Match.

As shown in Table 1, the new Best Match algorithm performs significantly better than both

the default date sort as well as the previous relevance search algorithm at every rank position.

Furthermore, relative improvements in CTRs increase steadily as the rank threshold decreases

(e.g., 40% improvement for CTR@3 versus 22% for CTR@20 in comparison with date sort

results), demonstrating that Best Match is especially better at optimizing the top-ranked

results. We also observed that the increase in CTR is applicable to a wide variety of different

queries. That is, both popular and infrequent queries benefit from the new Best Match algo-

rithm (see details in S1 Fig). For instance, over 87% of PubMed queries are unique, and they

have an average CTR@20 of 0.408—see the GitHub repository for more details.

Note that while the absolute increase in CTRs may seem modest, a relative improvement of

1–2% in CTRs in real-world settings (e.g., online ads seen in web search results) is typically

considered successful [26,27]. We also noticed that algorithmic improvements in NDCG

scores can translate into more modest real-world improvements in CTR scores. We believe

this is due to the fact that search quality is just one of the factors affecting CTRs. E.g., a system

that highlights matching terms or returns with snippets (highlights from the article that are

related to the user query) would usually have a higher CTR compared to the same results with-

out such visual cues.

Increased usage of relevance search in PubMed

Given the significant increase in performance of the new Best Match algorithm over the previ-

ous method, we deployed the new algorithm to production in June 2017. To further promote

the update, a Best Match banner was developed as shown in Fig 2. Through log analysis during

December 2017, we find that the Best Match banners are clicked 1 out of 10 times when dis-

played, with a much higher chance of follow-up document clicks: CTR@20 of 52% for over

100,000 queries re-run under Best Match after switching the sort order. This is markedly

higher than the usual CTR of 39% shown in Table 1. In addition, only a very small percentage

(2.5%) of users chose to switch back to the date sort order.
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We have observed that the CTRs of relevance search using the new Best Match algorithm

have continued to increase since June. Moreover, there is a rapid growth in the overall usage of

the relevance sort option. As shown in Fig 3, usage of the relevance sort is steadily increasing

with a faster increase since Best Match has been deployed. From June 2017 to April 2018, the

Table 1. Comparison of the user click-through rate of best match versus the previous TF–IDF method and the default date sort order.

Ranking Method CTR@20 CTR@10 CTR@5 CTR@3

Sort by date 0.32 0.29 0.24 0.20

Sort by TF–IDF 0.36 0.33 0.29 0.25

Sort by Best Match 0.39 0.36 0.32 0.28

All improvements in CTRs by Best Match are statistically significant with 99% confidence (paired t test). Abbreviations: CTR, click-through rate; TF–IDF, term

frequency–inverse document frequency.

https://doi.org/10.1371/journal.pbio.2005343.t001

Fig 2. The Best Match search option in action. When our system detects that search results by Best Match could be helpful to our users, a Best Match banner is

displayed on top of the regular search results (a). A user can click title(s) to view the article abstract (as shown in (b)) or click on the Switch button see complete results

returned by Best Match (as shown in (c)).

https://doi.org/10.1371/journal.pbio.2005343.g002
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overall usage of relevance search has increased from 7.5% to 12% (a 60% increase) of all

PubMed queries.

The new ranking system is highly scalable

The proposed system has been optimized for throughput (see S9 Text) so that it is able to scale

up and exceed the real-world throughput requirement of PubMed searches, approximately 200

queries per second. At maximum, our system is able to process approximately 700 queries per

second at an average of approximately 70 ms per query as we run 100 threads in parallel.

Best practices for using Best Match

Generally speaking, PubMed queries can be categorized in two broad classes: navigational ver-

sus informational. Navigational searches, also referred to as known-item searches, are ones in

which the search intent is to find a specific article or set of articles (e.g., a search with an article

title or author name). On the other hand, informational searches seek to find and/or explore

articles satisfying information needs on a given topic (e.g., using a query like "HIV DVT" to

Fig 3. Usage rate of relevance sort order over 6 months (May 2017 to October 2017). The blue line represents the trend, and the blue area represents the variance.

The vertical line denotes the switch to the new relevance algorithm, Best Match, which is followed by a significant and steady increase in usage. Note that the 1% usage

rate on the y-axis represents about 30,000 queries on an average work day.

https://doi.org/10.1371/journal.pbio.2005343.g003
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gather evidence of deep vein thrombosis related to HIV). In this regard, Best Match is more

appropriate for the latter use cases, for which the most relevant set of results are desired, and is

therefore complementary to the traditional Most Recent sort order in PubMed.

As mentioned earlier, to familiarize our users with the newly developed Best Match search,

a banner is displayed as shown in Fig 2 when appropriate. That is, each time a search is run

under the default "Most Recent" sort order and the query is found to be informational by the

Field Sensor [28], the Best Match banner will be triggered. However, in order to minimize any

potential disruption of usual PubMed searches, it is not triggered if the query returns less than

20 results or if other results are displayed, such as those from our spell checker. As a result of

these rules, currently Best Match banners are only triggered for about 35% of the total PubMed

queries, though topical searches generally account for half of total searches in PubMed.

Finally, as we know different information needs may be better fulfilled by different sort

orders [29], we have improved PubMed’s usability by making it simple for our users to choose

and switch between the two sort orders. In particular, we have implemented and added a two-

part toggle at the top right in the search results page, which allows users to conveniently

change between the two most used search modes, "Most Recent" and "Best Match." When

users switch the sort order, using this new toggle function or the traditional "Sort By" drop-

down menu, it is saved automatically so that all further searches will run using the new order.

Because of the recent success of "Best Match" in PubMed, this mode is now being tested as the

default sort order in the newly developed PubMed Labs (www.pubmed.gov/labs) system, in

which search results are further accompanied with rich snippets.

Discussion

As mentioned, there is unfortunately no existing dataset that meets the need for a machine-

learning–based retrieval system for PubMed, and it is not possible to manually curate a large-

scale relevance data set. Hence, we adopted a common industry practice for assembling a gold-

standard training dataset through the extraction of click-through data in search logs as pseu-

dorelevance [30–34].

There are several known issues with this method. First, in our logs, the number of searches

using relevance sort is still modest at present. Over the last year, we were able to collect some

data (about 46,000 queries) to train a ranking model. To this end, we need queries that are fre-

quent and with explicit user actions so that we have relevance estimation of articles with

regards to these queries. In 2016, with about 150,000 queries run under Best Match per month,

only hundreds of them met the threshold to build a gold standard (see S3 Text for details on

the filters and threshold used and S4 Text for details on the gold standard creation). But, as rel-

evance search gains popularity in PubMed, we will soon be able to collect several thousands of

recurrent queries every few months to better train the ranker over time.

Second, when users click a result or request the full text of an article, they often do not

explore the entire set of search results. Hence, potentially relevant documents may be missed

in the gold standard or considered as irrelevant. Conversely, when an article is clicked, it could

still be irrelevant to the user information need.

Third, there is a potential bias in the fact that we do not account for the position in which

clicked documents were ranked. In other words, if a document is clicked at the 10th position,

it should, in theory, have more weight in training than the one at the first position because the

top document is naturally more likely to be clicked. We are currently experimenting with ways

to account for this particular factor during the creation of training data.

In summary, this paper presents the latest major improvement in PubMed for relevance

search. We used a state-of-the-art information retrieval technique, adapted it to the biological
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domain (e.g., by creating training data and ranking features specific to the scientific literature),

and scaled it to meet the throughput requirement of PubMed with millions of searches each

day. Specifically, we developed an end-to-end pipeline based on an open source search plat-

form (Solr) and an advanced machine-learning algorithm (LambdaMART) for optimizing the

quality of the top-ranked results. We described in detail what features ("signals") we selected

for the machine-learning algorithm, how they were evaluated, and in what way they contribute

to the final ranking results. This paper also demonstrates the whole process and steps in adopt-

ing state-of-the-art research findings into a real-world application such as offline versus online

evaluation, scalability test, usage analysis, etc.

Overall, the new Best Match algorithm shows a significant improvement in finding relevant

information over the default time order in PubMed. It has also resulted in an increased usage

of relevance search over time, which allows us to accumulate more relevance data for itera-

tively improving our machine-learning–based ranker.

We have also noticed that in the last few years, the IR community has started developing

and experimenting with new retrieval methods for document ranking using the latest deep-

learning techniques. While early results (including our own) are promising [35–41], more

work is warranted with regards to retrieval quality, robustness, and scalability for adoption

into real-world applications such as PubMed.

Finally, it is important to note that we design and build our methods based on our users

and their search behaviors. Therefore, we encourage them to try this new relevance search and

provide input so that they can help us continue to improve the ranking method.
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S1 Fig. Average click through rate at rank 20 for queries occurring less than 1,000 times.

The observed overall average CTR@20 of near 0.4 appears to be strongly influenced by unique

queries. The chart is cut at 1,000, but only a minimal number of queries occur more than a

thousand times over a year.

(TIF)

S2 Fig. Offline evaluation of the new relevance algorithm against the silver standard

extracted from the search logs. Precision-recall curves are plotted after the first step (green)

and the second (blue) accordingly. A much higher precision is achieved after the second re-

ranking step, especially for the top ranked results.

(TIF)

S3 Fig. Impact of feature ablation on overall ranking quality (measured by NDCG@20 scores).

(TIF)
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