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Systemic sclerosis (SSc) is a heterogeneous autoimmune disease characterized by three 
interconnected hallmarks (i) vasculopathy, (ii) aberrant immune activation, and (iii) fibroblast 
dysfunction leading to extracellular matrix deposition and fibrosis. Blocking or reversing 
the fibrotic process associated with this devastating disease is still an unmet clinical 
need. Although various components of innate immunity, including macrophages and 
type I interferon, have long been implicated in SSc, the precise mechanisms that regulate 
the global innate immune contribution to SSc pathogenesis remain poorly understood. 
Recent studies have identified new innate immune players, such as pathogen-recognition 
receptors, platelet-derived danger-associated molecular patterns, innate lymphoid cells, 
and plasmacytoid dendritic cells in the pathophysiology of SSc, including vasculopathy 
and fibrosis. In this review, we describe the evidence demonstrating the importance of 
innate immune processes during SSc development with particular emphasis on their role 
in the initiation of pathology. We also discuss potential therapeutic options to modulate 
innate immune cells or signaling in SSc that are emerging from these recent advances.
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inTRODUCTiOn

Systemic sclerosis (SSc) is a complex autoimmune disease interconnecting vasculopathy, autoim-
munity, and fibrosis features. A large body of evidence has indicated that the adaptive immune 
system with autoreactive T cells and autoantibodies produced by B cells plays a central role in SSc 
pathogenesis (1). In addition, inflammatory cytokines produced by the innate immune cells have 
been detected in the affected tissues of both the early and late stage of SSc, suggesting a role of innate 
immunity both at the onset and progression of the disease (2–6). This notion was recently reinforced 
by genomic and genetic approaches that have been undertaken to decipher key and conserved patho-
physiological pathways within organs across disease forms (7–9). Apart from genomic approaches, 
the study of mechanisms governing normal tissue repair has revealed physiological pathways that 
may be disrupted during SSc as well. The concept of unresolved tissue repair leading to sustained 
fibrosis has emerged based on a persistent sterile inflammation that converts a self-limited repair 
response to a non-resolving pathological fibrosis (10, 11). However, the initial events leading to such 
sterile inflammation remain unclear. Recent data showing that an imbalance in danger-associated 
molecular pattern (DAMP) release and/or pathogen-recognition receptor (PRR) signaling leads to 
sustained inflammatory cytokine production by fibroblasts or macrophages may provide the missing 
link in early events of SSc pathophysiology (11). In addition, plasmacytoid dendritic cell (pDC) 
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activation (12, 13) and type I interferon (IFNα/β, IFN-I) produc-
tion has also been recently shown to contribute to SSc.

In this review, we focus on recent evidence highlighting the 
contribution of innate immunity during the course of SSc patho-
genesis, primarily at the early stages of disease. We also discuss 
potential therapeutic options that may modulate innate immune 
cells or signaling in SSc patients.

wHAT CAn Be LeARneD FROM GeneTiC 
STUDieS On innATe iMMUne FUnCTiOn 
DURinG SSc?

Major technological and analytical advances in the past 10 years 
have allowed the extraction of critical information from transcrip-
tomic data such as lineage-specific gene expression, networks of 
interactions, and functional information (14–17). This yielded a 
novel field of study in the integrated comprehension of SSc patho-
genesis, identifying a major contribution of innate immunity.

By analyzing three independent gene expression data sets 
from SSc skin biopsies, the group of Whitfield proposed inter-
connected functional modules involved in SSc pathogenesis, two 
of which involve innate immunity and are dominated by IFN, 
IFN-inducible genes, and type 2 macrophage (M2) signatures. 
The three other subnetworks were linked to adaptive immunity, 
fibrotic processes [response to transforming growth factor beta 
(TGF-β) and extracellular matrix (ECM) disassembly/wound 
healing], cell cycle, proliferation, and apoptosis (9). The same 
group recently identified a common pathogenic signature related 
to an “innate immune-fibrotic axis” that includes IFN-I and 
alternatively activated macrophages commonly referred as M2 
macrophages and describes new specific pathways and hubs 
active in the skin and lung (8). Among shared networks, the 
authors found that the “innate immunity-fibrotic network” is 
conserved between skin and lung while the internal composition 
and interactions of gene expression in those tissues vary.

Such large-scale genomic studies paved the way for multiple 
experimental approaches to determine the molecular processes 
involved in patients and to establish novel therapeutic options 
targeting specific organs or shared pathophysiological processes.

eMeRGinG COnCePT: SSc AS  
An OveR-RePAiR PATHOLOGY

The ability of an organism to efficiently recover from injury 
whether traumatic, infectious, chemical, or internal is pivotal to 
maintain its integrity (18). During tissue repair, innate immune 
cell plasticity actively contributes to the development of an abnor-
mal microenvironment, leading to a shift in the balance between 
the pro-inflammatory and pro-reparative sides of tissue repair, as 
recently reviewed (10).

Early SSc is characterized by a perivascular leukocyte infiltrate 
mainly composed of macrophages and T lymphocytes, reminis-
cent of the process induced during normal wound healing (19, 
20). Whereas normal wound healing is accompanied by a remod-
eling or resolving stage, abnormal wound healing with chronic 
activation of immune cells such as macrophages or stromal cells 

like myofibroblasts fails to resolve fibrosis during SSc. Hence, 
SSc, specifically diffuse cutaneous forms of the disease, could be 
considered as a general form of over-repair. The initial trigger of 
the injury is still unknown, but several lines of recent evidence 
have brought new hypotheses on its nature.

Role of Sterile inflammation in Unresolving 
Tissue Fibrosis During Scleroderma: 
importance of DAMP/PRR imbalance
Recognition of pathogen-associated molecular patterns (PAMPs) 
or endogenous DAMPs by innate immune cells as well as non-
immune cells is the first line of response to pathogen or sterile 
tissue injury. DAMPs, mainly produced by epithelial cells, are 
heterogeneous in form encompassing early produced and highly 
diffusible Ca2+, H2O2, reactive oxygen species (ROS), adenosine 
tri-phosphate, self-nucleic acids, but also proteins like high-
mobility group protein 1, heat shock protein, S100 proteins, and 
fragments of the ECM. The recognition of PAMPs and DAMPs 
relies on cell surface, endosomal, and cytosolic PRRs that include 
toll-like receptors (TLRs), Nod-like receptor, Rig-I-like receptors 
(RLRs), cyclic GMP-AMP synthase, and receptor for advanced 
glycation end products. Innate immune signaling triggered by 
DAMPs during sterile inflammation or the persistence of patho-
gens such as endogenous viruses might represent an important 
pathway responsible for converting self-limited regenerative 
repair into an unresolved fibrotic process during SSc. Hence, 
innate immune signaling via TLRs was recently proposed as a 
key driver of persistent fibrotic response in SSc and other fibrotic-
related diseases (11).

Overexpression of TLR4 and its two co-receptors CD14 and 
myeloid differentiation factor 2 (MD-2) has been described in 
SSc-affected skin and lung. TLR4 expression was mainly associ-
ated with macrophages, fibroblasts, and myofibroblasts (21). In 
the skin, TLR4 expression correlated to fibrosis severity measured 
by modified Rodnan skin score. In vivo, chronic TLR4 activation 
leads to sustained nuclear factor kappa-light-chain-enhancer 
of activated B  cells (NFκB) signaling, resulting in macrophage 
activation and a profibrotic profile (22). Work from the Varga 
lab recently demonstrated that endogenous DAMP activation 
of TLR4 can contribute to converting self-limited tissue repair 
responses into uncontrolled ECM deposition during SSc [for 
recent review, see Ref. (11)]. They proposed that fibronectin, 
containing alternatively spliced exons encoding type III repeat 
extra domain (EDA), and tenascin-C are constitutively produced 
by SSc fibroblasts leading to their accumulation in the skin but 
also in the blood. Together, fibronectin-EDA and tenascin-C act 
as strong profibrotic factors during SSc by binding to fibroblasts 
TLR4, leading to enhanced production of collagen and alpha-
smooth muscle actin (α-SMA) expression (23, 24). Deletion of 
EDA or tenascin-C or disruption of TLR4 signaling resulted in 
reduced fibrotic response in a murine model of SSc. Furthermore, 
tensional forces generated within a rigid fibrotic microenviron-
ment were reported to favor exposure of the EDA domain of 
fibronectin (25), suggesting that increased stiffness of the matrix 
in fibrotic tissue could favor the bioavailability and profibrotic 
activity of fibronectin-EDA.
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Altered expression of multiple DAMPs/TLRs beyond TLR4 
has been described during SSc. Indeed, increased expression of 
TLR9 was found in human SSc skin biopsies in both early and 
late stages of the disease and was mainly associated with α-SMA-
positive myofibroblasts (26), and a TLR9 signature was detected 
in SSc skin. In vitro treatment of normal cutaneous fibroblasts 
with the TLR9 ligand unmethylated-CpG-oligodeoxynucleotides 
(CpG ODN) induced a profibrotic profile involving autocrine 
TGF-β production. Collectively, these results support the role 
of TLR9 signaling in SSc. Furthermore, expression of TLR2 (27) 
and TLR3 (28) is also increased in SSc skin fibroblasts. TLR2 
was shown to respond to the endogenous ligand amyloid A, 
resulting in NFκB activation and increased interleukin (IL)-6 
secretion causing inflammation (27). However, the role of TLR3 
in SSc pathogenesis remains controversial. TLR3 activation 
by polyinosinic:polycytidylic acid (poly I:C) stimulates IFN-I 
production by fibroblasts, which in turn reduces their ability to 
produce ECM components (28). Conversely, such stimulation 
was shown to promote the expression of TGF-β by fibroblasts 
thus contributing to the overall fibrosis (29).

In addition to TLRs, other PRRs have been described to play 
a role in SSc pathogenesis. The IFN-I stimulatory property of 
poly I:C on SSc patient fibroblasts was shown not only to rely on 
TLR3 but also on intracellular RLRs (28). The inflammasome, 
specifically the NLRP3-inflammasome, was shown to contribute 
SSc pathogenesis in vivo (30) through the induction of the micro-
RNA miR-155, which in turn favors excessive ECM production 
by fibroblasts, exacerbating SSc (31).

Studies on the contribution of TLR signaling to fibrosis in SSc 
as well as other fibrotic diseases have generated conflicting results 
(22, 26, 32–35), suggesting that whether TLR activation leads to 
pro- or anti-fibrotic effects depends on many factors. The nature 
of the stimulation (chronic vs acute), of the responding cells 
(immune or non-immune cells), as well as disease stage (inflam-
matory vs remodeling) might modulate the effects of TLRs in the 
fibrotic process. Profibrotic effects of TLR activation seem related 
to fibroblast and macrophage activation in the context of chronic 
stimulation, whereas epithelial and other immune cell activation 
in the context of acute stimulation might lead to anti-fibrotic 
effects. Although additional PRRs have recently been implicated 
in SSc, further studies are required to identify their endogenous 
ligands and mechanisms leading to disease. Nevertheless, PRRs 
and their signaling pathways may represent multiple novel thera-
peutic targets in SSc.

Old Players, new Pathways: Type-2 
Macrophages, Platelets, and Mastocytes
Macrophages and platelets have emerged as key players not only 
during tissue homeostasis and repair but also fibrosis, recently 
reviewed in Ref. (36, 37).

We and others have defined the profibrotic role of platelets 
in SSc. The Distler group has shown that serotonin [5-hydroxy-
tryptamine (5-HT)] stored in platelets strongly induces ECM 
synthesis in interstitial fibroblasts via activation of 5-HT2B recep-
tors (5-HT2B) in a TGF-β-dependent manner (38). Our group 
discovered a pathophysiological loop active in SSc that links 

vasculopathy and fibrosis. Indeed, we showed that platelet activa-
tion induced the production of thymic stromal lymphopoietin 
(TSLP) by dermal microvascular endothelial cells in an IL-1β-
dependent manner. TSLP was found to be strongly expressed in 
SSc skin endothelial cells and correlated to the severity of skin 
fibrosis. In vitro, TSLP was able to induce a profibrotic profile in 
both normal and SSc fibroblasts (39, 40).

Infiltration of macrophages in the early skin lesions of SSc 
patients, particularly in perivascular areas, was first detected over 
20 years ago and could lead to secondary activation of adaptative 
system (19, 20). Since then, numerous studies have established 
the involvement of macrophages in SSc pathogenesis, notably 
their alternatively activated counterpart called M2 macrophages 
as reviewed in Ref. (41). Soluble CD163, a putative marker of M2 
macrophages, was shown to be elevated in SSc patients’ blood and 
associated with their poor clinical outcome (42). These observa-
tions have been reinforced by the recent genetic studies showing 
a prominent M2 macrophage signature in SSc-affected skin and 
lung (8). However, the activation of lung macrophages in SSc 
patients with pulmonary fibrosis is distinct from that observed in 
SSc skin. Activated lung-resident macrophages display a specific 
increase in the expression of genes related to lipid and cholesterol 
trafficking, suggesting a switch in their metabolism. Thus, while 
M2 macrophages are central to the fibrotic process both in skin 
and lung during SSc, distinct stimuli derived from the organ-
specific microenvironment might differentially shape the plastic-
ity of macrophages. In the recent FASSCINATE trial, molecular 
profiling of skin biopsies revealed that IL-6 receptor blockade 
by tocilizumab resulted in a reduced M2 macrophage signature 
observed in SSc skin (43). Accordingly, the blockade of cAMP-
specific phosphodiesterase-4, which inhibits differentiation of M2 
macrophages as well as IL-6 production, led to an amelioration of 
fibrosis in a murine model of SSc induced by bleomycin treatment 
(44). The same group demonstrated that nintedanib, a tyrosine 
kinase inhibitor targeting vascular endothelial-, fibroblast-, and 
platelet-derived growth factor receptors, effectively blocked 
myofibroblast differentiation and reduced pulmonary, dermal, 
and myocardial fibrosis in transgenic Fra2 mice. This effect was 
primarily mediated by preventing M2 macrophage accumulation 
in the affected tissues (45). However, the mechanisms leading to 
aberrant M2 macrophage polarization and the precise pathways 
through which M2 macrophages contribute to tissue fibrosis 
remain unclear. One elegant study by Eming et al. provided novel 
mechanistic insight to the role of M2 macrophages in fibrosis. 
Using a murine model of wound healing, IL-4Ra activation by 
IL-4 and IL-13 was demonstrated to induce the production of 
resting like molecule alpha by M2 macrophages, which in turn 
stimulates the production of enzyme lysyl-hydroxylase-2 (LH-2) 
ultimately contributing to persistent profibrotic collagen cross-
linking in fibroblasts (46). This process was shown to be critical 
for transformation of the tissue into a persistent scar. In humans, 
Relm-β induces LH-2 in fibroblasts, and expression of both factors 
was reported to be increased in lipodermatosclerosis, a condition 
associated with excessive skin fibrosis. Whether this process con-
tributes to SSc is still unknown. The fine mapping of specific mac-
rophage subsets across tissues and during the course of disease, 
as well as elucidating of the molecular mechanisms underlying 
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macrophages-induced abnormal resolution, will pave the road to 
the development of new drugs that prevent/limit fibrosis.

Studies in patients and animal models of SSc have demonstrated 
that mast cells infiltrate the fibrotic skin (47, 48). This infiltration 
was associated with more severe disease phenotypes (48), but 
the function and net contribution of mast cells to fibrosis is only 
beginning to be understood. Mast cells have been suggested to be 
an important source of TGF-β and thus contribute to the overall 
fibrosis (49). Furthermore, a recent report using transgenic mice 
that develop spontaneous skin fibrosis showed a major role for 
mast cells specifically in inducing inflammation of the skin and 
the production of ECM and α-SMA by fibroblasts (50). Together 
with recent observations showing that mast cell deletion ame-
liorates experimental SSc in vivo (47, 51), these results indicate 
that mast cell targeting in SSc patients may represent an effective 
therapeutic approach.

Finally, other innate immune players such as natural killer 
(NK) cells (52, 53) and neutrophils (54) were shown to display 
altered properties and phenotypes in the blood of SSc patients. 
However, further studies are required to evaluate the role of 
NK cells and neutrophils in the SSc pathogenesis, especially in 
the settings of murine experimental models.

new KiDS On THe BLOCK: pDC AnD 
innATe LYMPHOiD CeLL (iLC)

Plasmacytoid dendritic cells are innate immune cells specialized 
in the production of copious amounts of IFN-I (55), and thus play 
a key role in the initiation of antiviral immune responses (56, 57). 
IFN-I production by pDCs requires recognition of viral nucleic 
acids by TLR7 and TLR9, respectively (56, 57). pDCs were also 
shown to produce IFN-I in response to self-nucleic acids and 
consequently contribute to the development of multiple inflam-
matory and autoimmune disorders (58–62). An IFN-I signature, 
reflected by increased expression of numerous IFN-I-stimulated 
genes has been reported in patients with SSc (12). Furthermore, 
genome-wide association studies in SSc have identified polymor-
phisms in genes involved in the regulation of IFN-I expression 
in pDCs, particularly IFN-regulatory factor (IRF)-5, IRF-7, and 
IRF-8 (12). Approximately half of SSc patients (~50%) display an 
IFN-I signature within their peripheral blood mononuclear cells 
(63–65) and in fibrotic skin (66). The association between IFN-I 
signature and SSc disease activity remains controversial as no 
major impact of the IFN-I signature on pathological features of 
SSc, including extent of skin fibrosis, autoantibody specificities, 
and interstitial lung disease, has been reported (63, 65). However, 
when the profile of IFN-induced chemokines was specifically 
analyzed in a large cohort of SSc patients, an association was then 
identified with more severe SSc (67). As pDCs are an important 
source of IFN-I, numerous groups have investigated their role in 
SSc. pDCs were indeed detected in the affected skin of SSc patients 
(65, 68) as well as in the fibrotic skin of mice after bleomycin treat-
ment (13). Furthermore, mice lacking fibrillin-1 (Fbn1), which 
spontaneously develop a stiff skin syndrome that recapitulates the 
skin fibrosis observed in SSc patients, show a high infiltration of 
pDCs in the affected skin (69). The frequency of pDCs is reduced 

in the circulation of SSc patients, likely due to their preferential 
recruitment into the fibrotic skin (13). Anti-topoisomerase I and 
anti-nuclear autoantibodies in SSc patients were shown to form 
immune complexes with apoptotic cell-derived constituents 
in vitro and consequently stimulate IFN-I production by pDCs 
(70, 71) upon uptake via FcγRII and the stimulation of TLR7/9 
(70, 71). While such “interferongenic” properties of immune 
complexes may contribute to the aberrant IFN-I production, an 
IFN-I signature was not associated with the production of specific 
autoantibodies detected in the sera of SSc patients (70), suggesting 
that additional factors may contribute to pDC activation in vivo. 
Furthermore, pDCs in the peripheral blood or fibrotic skin of 
SSc patients spontaneously secrete CXC motif ligand (CXCL)-4 
and IFNα (13, 68). High levels of CXCL4 in the circulation of 
SSc patients were associated with disease severity including skin 
fibrosis and pulmonary arterial hypertension (68). CXCL4 was 
described to potentiate pDC ability to produce IFN-I in  vitro 
largely in response to TLR9 stimulation. In addition, CXCL4 was 
shown to induce both the expression of TLR8 and the ability to 
produce IFN-I in response to its specific ligands in pDCs (13). 
Recently, the pathogenic role of TLR8 was confirmed in  vivo 
using transgenic mice that express human TLR8 and develop 
exacerbated skin fibrosis after bleomycin treatment compared 
with control animals (13). However, whether such exacerbation 
of disease in TLR8 transgenic animals is dependent on pDCs 
remains unknown, and the association between CXCL4 levels 
and the IFN-I signature in SSc patients has not yet been char-
acterized. Ah Kioon et al. showed that bleomycin-induced skin 
fibrosis is strongly attenuated after selective pDC depletion (13). 
Furthermore, this model of fibrosis was associated with an IFN-I 
signature and increased expression of CXCL4 in the affected skin, 
and pDC depletion significantly reduced the occurrence of these 
parameters. From a therapeutic standpoint, pDC depletion ame-
liorated established bleomycin-induced skin fibrosis, indicating 
that pDCs are critical even in the maintenance of skin fibrosis. This 
constitutes the first study showing the deleterious impact of pDCs 
on SSc development in vivo (13). Overall, pDCs play a critical role 
in SSc pathogenesis; however, the molecular mechanisms through 
which they contribute to the disease require further investigation. 
This recent progress nevertheless positions SSc as another auto-
immune pathology that may benefit from therapeutic targeting of 
pDCs using depleting or inhibitory antibodies (72).

Innate lymphoid cells were recently described as novel com-
ponents of the immune system that may be considered as innate 
counterparts of polarized T helper cells (73). Nevertheless, 
knowledge on the role of ILCs in SSc remains limited. Wohlfahrt 
and colleagues have shown elevated numbers of ILC2 in both 
the peripheral blood and the affected skin of patients with SSc 
compared with healthy individuals, and their number correlated 
with the extent of cutaneous fibrosis (74). However, the increased 
frequency of ILC2 in SSc peripheral blood was not observed in a 
different study, which instead reported an elevated frequency of 
CD4 + ILC1 and NKp44 + ILC3 (75).

Nevertheless, in animal models of lung fibrosis induced by 
bleomycin, IL-33, an alarmin that has been reported to be elevated 
in SSc patients (76), induced the expansion of ILC2s producing 
the profibrotic cytokine IL-13 (77). Hence, further investigations 
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TABLe 1 | Potential therapeutics and therapeutics in latest clinical trials specific to innate immunity and fibrosis in SSc.

innate immunity 
targeted 
physiopathological 
pathways

Target Molecules Drug name/
trade name

Clinical trial in SSc Primary end-point Result

(A) Chronic sterile inflammation
TLR4/MD-2 
inhibition

Selective TLR4 
inhibitor, lipid A 
mimetic

E5564/Eritoran None for SSc, tested 
in sepsis (lack of 
efficiency)

Anti-TLR4 NI-0101

Selective TLR4 
inhibitor, small 
molecule

T5342126 None

TLR4/MD-2 
inhibition of 
DAMP

Tenascin-C A1 
domain specific 
blocking antibody

F16 None

Fibronectin-EDA 
specific blocking 
antibody

F8 None

TLR4 
downstream 
signaling

Small molecule 
binding the Cys747 
of the intracellular 
domain of TLR4

TAK-242 None for SSc, tested 
in sepsis (lack of 
efficiency)

TLR7/8/9 Small molecule or 
oligonucleotides

CpG-52364, 
DV-1179, IMO 
3100, IMO-8400

None

NFκB PDE4 inhibitor Crisaborole/
Eucrisa

None for SSc but 
Pilot Study Evaluating 
the Efficacy of 
a Topical PDE4 
Inhibitor for Morphea 
NCT03351114

Change in dermal thickness of 
sentinel plaque from Baseline 
to 12 weeks

pDC Anti-BICD2 antibody BIIB059 None

Type 1 IFN Type 1 interferon 
receptor sub-unit 1 
blocking antibody

MEDI-546 Phase I open-label 
study in diffuse 
cutaneous SSc 
NCT00930683

Safety and tolerability of single 
or multiple intravenous doses

Decreased type I IFN gene 
expression in whole blood 
and skin for subjects with 
positive scores at baseline

(B) Abnormal resolution
Fibroblasts Selective CB2 

agonist
JBT-101/
Lenabasum

Phase II + open-
labeled extension

Safety and reduction of the 
mRSS score

Reduction of 8.4 points in the 
mRSS score in the open-label 
extension

Selective CB2 
agonist

JBT-101/
Lenabasum

Phase III RESOLVE-1 
trial NCT03398837

Change from baseline in mRSS Expected results in 2020

Type-2 
macrophages

Anti-IL-6 receptor 
alpha blocking 
antibody

Tocilizumab/
Roactemra

Phase II FASSCINATE 
trial NCT01532869

Safety and difference in mean 
change from baseline in mRSS 
at week 24

Primary end-point not 
reached but diminished type-
2 signature in the treated arm

Tyrosine kinase 
inhibitor

Nintedanib Phase III SENSCIS 
trial NCT02597933

Efficacy and safety in SSc 
patients with interstitial lung 
disease at week 52

PDE4 inhibitor Crisaborole/
Eucrisa

No clinical trial in 
SSc, but pilot study 
evaluating the efficacy 
of a topical PDE4 
inhibitor for morphea 
NCT03351114

Change in dermal thickness of 
sentinel plaque from Baseline 
to 12 weeks

TGF-β TGF-β isoforms  
1, 2, and 3 blocking 
antibody

Fresolimumab Phase I open-label 
trial NCT01284322

Safety and efficacy (molecular 
assessment of TGF-β 
responsive genes and 
improvement in the mRSS)

Inhibition of TGF-β-regulated 
gene expression and 
improvement in the mRSS 
in the fresolimumab treated 
group

(Continued)
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innate immunity 
targeted 
physiopathological 
pathways

Target Molecules Drug name/
trade name

Clinical trial in SSc Primary end-point Result

Soluble guanylate 
cyclase activator 
blocking TGF-β-
induced release of 
ECM components 
from fibroblasts

BAY63-2521/
Riociguat

Phase II RISE-SSc 
trial NCT02283762

Safety and efficacy (change in 
mRSS at week 52) in patients 
with diffuse cutaneous SSc

BDCA-2, blood dendritic cell antigen 2; DAMP, danger-associated molecular pattern; IFN, interferon; mRSS, modified Rodnan skin score; SSc, systemic sclerosis; TGF-β, 
transforming growth factor beta; TLR, toll-like receptor; PDE4, phosphodiesterase-4; ECM, extracellular matrix; pDC, plasmacytoid dendritic cell; MD-2, myeloid differentiation factor 
2; CB2, cannabinoid receptor type 2.
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