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Monogamy relation of multi-qubit  
systems for squared Tsallis-q 
entanglement
Guang-Ming Yuan1, Wei Song2, Ming Yang1, Da-Chuang Li2, Jun-Long Zhao1 &  
Zhuo-Liang Cao2

Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of 
entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula  
of Tsallis-q entanglement. For − +q≤ ≤5 13

2

5 13

2
, we prove the monogamy relation in terms of the 

squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite 
entanglement indicator based on squared Tsallis-q entanglement still works well even when the 
indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of 
Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

Quantum entanglement as a physics resource for quantum communication and quantum information process-
ing has been the subject of many recent studies in recent years1–7. The study of quantum entanglement from 
various view points has been a very active area and has led to many interesting results. Monogamy of entangle-
ment(MOE)8 is an interesting property discovered recently in the context of multi-qubit entanglement, which 
means that quantum entanglement cannot be shared freely in multi-qubit quantum systems. The bipartite 
monogamy inequality was first proposed and proved by Coffman, Kundu and Wootters(CKW) in a three-qubit 
system9, and it is also named as CKW inequality:

ρ ρ ρ≥ +C C C( ) ( ) ( ), (1)A BC AB BC
2 2 2

where Cij
2 is the squared of concurrence between the pair i and j10. Later, the monogamy inequality was generalized  

into various entanglement measures such as continuous-variable entanglement11–13, squashed entanglement14–16,  
entanglement negativity17–21, Tsallis-q entanglement22,23, and Rényi-α entanglement24–26. The applications of 
monogamy relation include many fields of physics such as characterizing the entanglement structure in multipar-
tite quantum systems27–41, the security proof in quantum cryptography42, the frustration effects observed in con-
densed matter physics43, and even black hole physics43–48. Originally, MOE was established in terms of the squared 
concurrence(SC). Analogously, Bai et al.49,50 have proved that the squared entanglement of formation(SEF) obeys 
the monogamy relation in arbitrary N-qubit mixed state. It should be noted that the entanglement of forma-
tion(EOF) itself does not satisfy the monogamy relation even for three-qubit pure states. The new monogamy 
relation in terms of SEF overcomes some flaws of the SC and can be used to detect all genuine multipartite entan-
glement for N-qubit systems.

On the other hand, Tsallis-q entanglement is also a well-defined entanglement measure which is the generali-
zation of EOF. For q tending to 1, the Tsallis-q entanglement converges to the EOF. A natural question is whether 
the monogamy relation can be generalized to Tsallis-q entanglement. In fact, Kim has derived a monogamy rela-
tion in terms of Tsallis-q entanglement22. However, the result in ref. 22 fails in including EOF as a special case and 
only holds for 2 ≤  q ≤  3. In this paper we further consider the monogamy relation in terms of the squared Tsallis-q 
entanglement(STqE). Firstly we expand the range of q for the analytic formula of Tsallis-q entanglement. Then we 
prove a monogamy inequality of multi-qubit systems in terms of STqE in an arbitrary N-qubit mixed state for 

≤ ≤− +q5 13
2

5 13
2

, which covers the case of EOF as a special case. Finally, we show that the μ-th power of the 
Tsallis-q entanglement satisfies the monogamy inequalities for three-qubit state.
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Results
Analytic formula of Tsallis-q entanglement. Firstly we recall the definition of Tsallis-q entanglement 
introduced in ref. 22. For a bipartite pure state |ψ〉 AB, the Tsallis-q entanglement is defined as

ψ ρ ρ= =
−

−T S
q

tr( ): ( ) 1
1

(1 ),
(2)q AB q A A

q

for any q >  0 and q ≠  1, where ρA =  trB|ψ〉 AB〈 ψ| is the reduced density matrix by tracing over the subsystem B. For 
the case when q tends to 1, Tq(ρ) converges to the von Neumann entropy, that is

ρ ρ ρ ρ= − = .
→

T tr Slim ( ) log ( )
(3)q

q
1

For a bipartite mixed state ρAB, Tsallis-q entanglement is defined via the convex-roof extension

∑ρ ψ=T p T( ): min ( ),
(4)q AB

i
i q i AB

where the minimum is taken over all possible pure state decompositions of ρ ψ ψ= ∑ pAB i i i AB i .
In ref. 22, Kim has proved an analytic relationship between Tsallis-q entanglement and concurrence for 

1 ≤  q ≤  4 as follows

ψ ψ=T g C( ) ( ( )), (5)q AB q AB

where the function gq(x) is defined as

=
−








−






+ − 




−






− − 













g x
q

x x( ) 1
1

1 1 1
2

1 1
2

,
(6)

q

q q
2 2

According to the results in ref. 22, the analytic formula in Eq. (5) holds for any q such that gq(x) in Eq. (6) is 
monotonically increasing and convex. Next we shall generalize the range of q when the function gq(x) is convex 
and monotonically increasing with respect to x. The monotonicity and convexity of gq(x) follow from the nonneg-
ativity of its first and second derivatives. After a direct calculation, we find that the first derivative of gq(x) with 
respect to x is always nonnegative for q ≥  022. Kim has also proved the nonnegative of the second-order derivative 
gq(x) for 1 ≤  q ≤  4. We can further consider the second-order derivative of gq(x) beyond the region 1 ≤  q ≤  4. We 
first analyze the nonnegative region for the second-order derivative gq(x) for q ∈  (0, 1). Numerical calculation 
shows that under the condition ∂ 2Tq(C)/∂ x2 =  0, the critical value of x increases monotonically with the parame-
ter q. In Fig. 1(a), we plot the solution (x, q) to this critical condition, where for each fixed x there exists a value of 
q such that the second-order derivative of Tq(C) is zero. Because x varying monotonically with q, we should only 
consider the condition ∂ 2Tq(C)/∂ x2 =  0 in the limit x →  1. When x =  1, we have
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Figure 1. The plot of the dependence of x with q which satisfies the equation =
∂

∂
0

T

x
q

2

2  for (a) q ∈  (0, 1) and  
(b) q ∈  (4, 5) respectively.
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∂

∂
= −

− +
≥

→

−T

x
q qlim 2 (3 5 )

3
0,

(7)x

q
q

1

2

2

1 2

which gives the critical point = ≈ .−q 0 7c1
5 13

2
. When q >  qc1, the second-order ∂ 2Tq/∂ x2 is always nonnega-

tive. For q ∈  (4, 5), we find that the value of x decreases monotonically with respect to q as shown in Fig. 1(b). In 
order to determine the critical point we should only consider the condition ∂ 2Tq/∂ x2 =  0 in the limit x →  1. After 
direct calculation, we can obtain that the critical point = ≈ .+q 4 3c2

5 13
2

. When q <  qc2, the second-order  
∂ 2Tq/∂ x2 is always nonnegative. Combining with the previous results in ref. 22, we get that the second derivative 
of gq(x) is always a nonnegative function for ≤ ≤− +q5 13

2
5 13

2
. Thus we have shown that the analytic formula 

of Tsallis-q entanglement in Eq. (5) holds for ≤ ≤− +q5 13
2

5 13
2

.

Monogamy inequalities for STqE in N-qubit systems. In the following we consider the monogamy 
properties of STqE. Using the results presented in Methods, we can prove the main result of this paper.

For an arbitrary N-qubit mixed state ρ
A A An1 2

, the squared Tsallis-q entanglement satisfies the monogamy 
relation

∑ρ ρ≥
=



T T( ) ( ),
(8)q A A A

i

n

q A A
2

2

2
n i1 2 1

where ρ


T ( )q A A An1 2
 quantifies the Tsallis-q entanglement in the partition A1|A2 ···An and ρT ( )q A Ai1

 quantifies the 
one in two-qubit subsystem A1Ai with the parameter ≤ ≤− −q5 13

2
5 13

2
.

For proving the above inequality, we first analyze an N-qubit pure state ψ| 〉
A A An1 2

. Under the partition A1|A2 ···An,  
we have

∑ ∑ψ ψ ρ= 



 ≥










≥

= =




T T C T C T( ) ( ) ( ),
(9)

q A A A q A A A q
i

n

A A
i

n

q A A
2 2 2 2

2

2

2

2
n n i i1 2 1 2 1 1

where in the first inequality we have used the monogamy relation of squared concurrence ≥ ∑ =

C CA A A i
n

A A
2

2
2

n i1 2 1
 

and the monotonically increasing property of T C( )q
2 2  which has been proved in Methods, and the second inequal-

ity is due to the convex property of T C( )q
2 2  (The details for proving the convexity property can be seen from 

Methods).
Next, we prove the monogamy relation for an N-qubit mixed state ρ

A A An1 2
. In this case, the formula of 

Tsallis-q entanglement cannot be applied to ρ


T ( )q A A An1 2
 since the subsystem A2 ···An is not a logic qubit in gen-

eral. But we can still use the definition of Tsallis-q entanglement in Eq. (4). Thus, we have

∑ρ ψ=
ψ| 〉



T p T( ) min ( ),
(10)q A A A p i q i A A A

{ , }n
i i

n1 2 1 2

where the minimum is taken over all possible pure state decompositions {pi, |ψi〉 } of the mixed state ρ
A A An1 2

. 
Under the optimal decomposition ψ| 〉



p{ , }j j A A An1 2
, we have
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∑
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n n n
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n i i

i

1 2 1 2 1 2

1 2 1 2

1 2 1 1

1

where in the second equality we have used the pure state formula of the Tsallis-q entanglement and taken the 
Tq(C) as a function of the concurrence C for ≤ ≤− +q5 13

2
5 13

2
; the third inequality is due to that Tq is a 

monotonically increasing and convex function of the concurrence for ≤ ≤− +q5 13
2

5 13
2

; the forth inequality 
is due to the convex property of concurrence for mixed state; and in the sixth and seventh inequalities we used the 
monotonically increasing and convex properties of T C( )q

2 2  as a function of the squared concurrence for 
≤ ≤− +q5 13

2
5 13

2
 (The details for illustrating the property of STqE can be seen from Methods). Thus we have 

completed the proof of the monogamy inequalities for STqE in N-qubit systems.
As an application of the established monogamy relation in Eq. (8), we can construct the multipartite entangle-

ment indicator τ ρ ρ ρ= − ∑ =


T T( ) ( ) ( )q q A A A i
n

q A A
2

2
2

n i1 2 1
 to detect the genuine multipartite entanglement. We 
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consider a three-qubit pure state ψ = − −p p GHZ p W( ) 13 3 , which is the superposition of a GHZ state 
and a W state with = +GHZ ( 000 111 )/ 23  and = + +W ( 001 010 100 )/ 33 . The three-tangle τ 
introduced in ref. 9 is defined as τ ψ = − −p C C C( ( ) ) A BC AB AC

2 2 2 . For the quantum state |ψ(p)〉 , its three-tangle 
is τ ψ = − −p p p p( ( ) ) 8 6 (1 ) /92 3  which has two zero points at p1 =  0 and p2 ≈  0.627. On the other hand, 
we can directly calculate the value of τq(|ψ(p)〉 ) since the Tsallis-q entanglement has an analytical formula for 
two-qubit quantum states. In Fig. 2 we plot the three-tangle and the indicator τq for the order q =  0.8, 1.1, 1.4. It is 
shown that the indicator τq is always positive for the different order q in contrast to the three-tangle τ having two 
zero points. Thus we have shown that the indicator in terms of Tsallis-q entanglement could detect the genuine 
entanglement in |ψ(p)〉  better than SC.

Monogamy relation of the μ-th power of Tsallis-q entanglement. Finally, besides the squared 
Tsallis-q entanglement, we can further consider the monogamy relation of the μ-th power of Tsallis-q 
entanglement.

For any three-qubit state ρA A A1 2 3
, we can obtain

ρ ρ ρ≥ +µ µ µT T T( ) ( ) ( ), (12)q A A A q A A q A A1 2 3 1 2 1 3

for all ≤ ≤− +q5 13
2

5 13
2

, μ ≥  2.
For proving Eq. (12), we consider the three-qubit case, according to the monogamy relation (8), we have

ρ ρ ρ≥ +T T T( ) ( ) ( ), (13)q A A A q A A q A A
2 2 2

1 2 3 1 2 1 3

for any three-qubit state ρA A A1 2 3
 with ≤ ≤− +q5 13

2
5 13

2
. Without loss of generality, assuming 

ρ ρ>T T( ) ( )q A A q A A1 2 1 3
, we can obtain

ρ ρ ρ ρ
ρ
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1 2
1 2 1 3

where the second inequality comes from the property (1 +  x)t ≥  1 +  xt for x ≤  1, t ≥  1. If ρ =T ( ) 0q A A1 2
 or 

ρ =T ( ) 0q A A1 3
, the inequality obviously holds.

Similarly, we have the following polygamy inequalities. For any three-qubit ρA A A1 2 3
, we have

ρ ρ ρ≤ +µ µ µT T T( ) ( ) ( ), (15)q A A A q A A q A A1 2 3 1 2 1 3

for all ≤ ≤− +q5 13
2

5 13
2

, μ ≤  0.
For any three-qubit state ρA A A1 2 3

 with ≤ ≤− +q5 13
2

5 13
2

, we have

Figure 2. The indicator τq for the superposition state |ψ(p)〉 with q = 0.8 (red line), q = 1.1 (blue line), and 
q = 1.4 (green line). We also plot the three-tangle of |ψ(p)〉  with a black line.
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where in the second inequality we have used the inequality (1 +  x)t <  1 +  xt for x >  0, t ≤  0.

Discussion
In this paper we have generalized the analytic formula of Tsallis-q entanglement to the region 

≤ ≤− +q5 13
2

5 13
2

. Then we proved the monogamy relation in terms of STqE for an arbitrary multi-qubit 
systems, which include previous result in terms of EOF as a special case. Based on the monogamy properties of 
Tsallis-q entanglement, we have shown that the corresponding indicator can work well even when the indicator 
based on the squared concurrence loses its efficacy. In addition, we considered the monogamy or polygamy rela-
tion of the μ-th power of Tsallis-q entanglement. One distinct advantage of our result is that infinitely many ine-
qualities parameterized by q provides greater flexibility than previous monogamy relation in terms of EOF.

Methods
T C( )q

2 2  is a monotonically-increasing function of the squared concurrence C2 for all 
q ≥ 0. Notice that Eq. (5) can also be written as

ψ ψ=T f C( ) ( ( )), (17)q AB q AB
2

where the function fq(x) is defined as

=
−








−




+ − 



−




− − 











.f x

q
x x( ) 1

1
1 1 1

2
1 1

2 (18)
q

q q

The squared Tsallis-q entanglement is a monotonically increasing function of C2 if the first-order derivative 
∂ ∂ >T C x( )/ 0q

2 2  with x =  C2. By direct calculation, we have,

∂

∂
= − −







−
−







− −
− − − −T C

x
L M N q M N

x
( )

2 (1 2 2 ) 2 ( )
1

,
(19)

q q q q q
q q q2 2 1 1 1

which is always nonnegative on 0 ≤  x ≤  1 for all q ≥  0, where L =  1/(q −  1)2, = + −M x1 1 , = − −N x1 1 , 
and the equality holds only at the boundary. Thus we get that Tq

2 is a monotonically increasing function of x with 
x =  C2.

T C( )q
2 2  is a convex function of the squared concurrence C2 for − +

q≤ ≤
5 13

2

5 13

2
. The convex 

property of the squared concurrence is satisfied if the second-order derivative ∂ ∂ = ∂ ∂ >T C x f C x( )/ ( )/ 0q q
2 2 2 2 2 2 2 2  

with x =  C2. We first define a function = ∂  −

 ∂F q T C x: ( 1) ( ) /q q

2 2 2 2 2 on the domain D =  {(x, q)|0 ≤  x ≤  1, 
1 ≤  q ≤  4}, then the nonnegativity of the second-order derivative Tq

2 can be guaranteed by the nonnegativity of Fq 
since it varies with ∂ ∂T C x( )/q

2 2 2 2 by a positive constant. After some deduction, we have

=





− −







−
−

−
− +

−





 +







−
−













.

− −
− − − −

− − − − − − − −

F M N q M N
x

q q M N
x

q M N
x

2(1 2 2 ) 2 ( )
(1 )

2 ( 1) ( )
1

2 2 ( )
1 (20)

q
q q q q

q q q

q q q q q q

2 1 1

3/2

2 2 2 1 1 1 2

In order to prove the nonnegativity of Fq, it is suffice to consider its maximum or minimum values on the 
domain D. The critical points of Fq satisfy the condition

∇ =





∂

∂

∂

∂





= .F

F
x

F
q

, 0
(21)

q
q q

In Fig. 3(a,b), we have plotted the value of x and q which satisfies the equation ∂ Fq/∂ q =  0 and ∂ Fq/∂ x =  0 
respectively. Combining the results in Fig. 3(a,b), we find that the solution of the above equation is q =  1 which is 
one of the boundary of domain D. To ensure the nonnegative of Fq, we should only consider the other two cases 
on the boundary of Fq, i.e., x =  0 and x =  1.
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For the case x =  0,

= − −
→

− −F q qlim 2 (2 2)( 1), (22)x
q

q q

0

1 2

which is always nonnegative in the region q ∈  (1, 4).
For the case when x =  1,

=
− − + − × + −

→

−

F q q q qlim 4 (1 ) [6(2 2) (16 5 2 ) (2 8) ]
3

, (23)x
q

q q q q

1

2

where Eq. (23) is always nonnegative for q =  1 and q =  4, and the first-order derivative of Eq. (23) increases first 
and then decreases for 1 ≤  q ≤  4. Thus we prove that Eq. (23) is nonnegative in the region 1 ≤  q ≤  4. Notice that Fq 
has no critical points in the interior of D, we conclude that Fq is always nonnegative for 1 ≤  q ≤  4. The nonnegative 
of the Fq is also plotted in Fig. 4.

Furthermore, we can consider the nonnegative region for the second-order derivative ∂ ∂T x/q
2 2 2 when q ranges 

in (0, 1). Under the condition ∂ ∂ =T x/ 0q
2 2 2 , we find that the critical value of x increases monotonically with the 

parameter q ∈  (0, 1). In Fig. 5(a), we plot the solution (x, q) to the critical condition ∂ ∂ =T x/ 0q
2 2 2  where for each 

fixed x there exists a value of q such that the second-order derivative of Tq
2 is zero. We should only consider the 

condition ∂ ∂ ≥T x/ 0q
2 2 2  in the limit x →  1. In this case, we have
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Figure 3. The plot of the dependence of x with q which satisfies the equation (a) =
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Figure 4. Fq is plotted as a function of x and q for 0 ≤ x ≤ 1, 1 ≤ q ≤ 4. 
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∂

∂
= −

− + − × + −
−

≥
→

−T

x
q q q

q
lim 4 [6(2 2) (16 5 2 ) (2 8) ]

3( 1)
0,

(24)x

q
q q q q

1

2 2

2

2

which gives the critical point qc3 ≈  0.65. When q ≥  qc3, the second-order ∂ ∂T x/q
2 2 2 is always positive. Similarly, we 

can also analyze the nonnegative region for the second-order derivative ∂ ∂T x/q
2 2 2 when q ranges in (4, 5). In 

Fig. 5(b), it is shown that the critical value of x decreases monotonically along with the parameter q ∈  (4, 5), and 
the critical point qc4 ≈  4.65. When q ≤  qc4, the second-order ∂ ∂T x/q

2 2 2 is always positive. Notice that the analytical 
formula of Tq is established only for ≤ ≤− +q5 13

2
5 13

2
, we conclude that the second-order derivative 

∂ ∂T x/q
2 2 2 is positive for ≤ ≤− +q5 13

2
5 13

2
 which completes the proof of the convexity property of T C( )q

2 2  
with the squared concurrence C2 for ≤ ≤− +q5 13

2
5 13

2
.
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