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Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are utilized as the standard diagnostic method in pathology labo-
ratories. However, admixture of unwanted tissues and shortage of normal samples, which can be used to detect
somatic mutation, are considered critical factors to accurately diagnose cancer. To explore these challenges, we
sorted the pure tumor cells from 22 FFPE lung adenocarcinoma tissues via Di-Electro-Phoretic Array (DEPArray)
technology, a new cell sorting technology, and analyzed the variants with next-generation sequencing (NGS) for the
most accurate analysis. The allele frequencies of the all gene mutations were improved by 1.2 times in cells sorted
via DEPArray (tumor suppressor genes, 1.3–10.1 times; oncogenes, 1.3–2.6 times). We identified 16 novel mutations
using the sequencing from sorted cells via DEPArray technology, compared to detecting 4 novel mutation by the
sequencing from unsorted cells. Using this analysis, we also revealed that five genes (TP53, EGFR, PTEN, RB1,
KRAS, and CTNNB1) were somatically mutated in multiple homogeneous lung adenocarcinomas. Together, we sorted
pure tumor cells from 22 FFPE lung adenocarcinomas by DEPArray technology and identified 16 novel somatic
mutations. We also established the precise genomic landscape for more accurate diagnosis in 22 lung adenocarci-
nomas with mutations detected in pure tumor cells. The results obtained in this study could offer new avenues for
the treatment and the diagnosis of squamous cell lung cancers.
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Introduction

Formalin-fixed, paraffin-embedded (FFPE) tissues are used
for diagnostic purposes in patients with cancer because
FFPE tissues are well-stained immunohistochemically and
are storable at room temperature which is a convenient and
cost-effective environment (Greytak et al. 2015). Next-
generation sequencing (NGS) technology through FFPE tis-
sue has also been attempted to use as a valuable tool for cancer
genetic diagnostic purposes (Einaga et al. 2017; Ying 2016).
However, there is a huge obstacle in obtaining the accurate
NGS data from FFPE tissue, which is difficulty in identifying
the somatic and tumor-specific variants in the FFPE tissue due
to sequencing artifacts, the lack of normal samples, and het-
erogeneities in FFPE tissue (Bernstein et al. 2002; Do et al.
2013; Wong et al. 1998). Therefore, NGS data from FFPE
tissue is insufficient for assessing the risk of cancer (Petersen
et al. 2016). To date, a traditional method such as Sanger
sequencing of blood, saliva, and buccal smear has been used
to diagnose cancer. The hematoxylin and eosin (H&E) stain-
ing slide is reviewed by a pathologist (Snow et al. 2014).
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However, recent studies have shown that pure tumor cells and
pure stromal cell are sorted from blood cells and live cell lines
through Di-Electro-Phoretic Array system (DEPArray system)
based on the electro-kinetic principle (Fabbri et al. 2013;
Fuchs et al. 2006). Additionally, this technology enables the
pure tumor cells be sorted from small clinical samples and
samples with low tumor cellularity such as FFPE samples
(Bolognesi et al. 2016) and can be an efficient research meth-
od to avoid bias from heterogeneity of FFPE samples of ade-
nocarcinoma which is the most common type of lung cancer
(Calvayrac et al. 2017; Dunne et al. 2016). Although many
laboratories have researched for lung adenocarcinoma, most
of them have stored the FFPE samples due to difficulty in
collecting fresh lung adenocarcinoma tissues and FFPE is
the standard method for preserving the most archived patho-
logical specimens for the long-term (Lin et al. 2009).
Therefore, development of a new technology is needed for
analyzing greater quality of examination to make a more ac-
curate diagnosis of lung cancer in FFPE samples. Here, we
performed pure tumor cell isolation from FFPE samples via
DEPArray technology and demonstrated more precise genetic
analysis using genetic variants from the sorted pure cells.

Materials and methods

Information of 22 FFPE lung adenocarcinoma samples

FFPE lung adenocarcinomas were obtained from Korean pa-
tients of Seoul National University Hospital in South Korea.
The storage time was between 12 and 61 days. Twenty-two
FFPE tissue sections (50 μm thickness) were obtained from
lung adenocarcinoma tissue block using a standard micro-
tome. After dissociation, the number of the total cells was
between 39,000 and 675,000 (Supplementary Table 1). After
sorting process via DEPArray system (Silicon Biosystems,
Bologna, ITALY), pure tumor cells (100–300), pure stromal
cells (100–300), and other minority putative tumor cells (50–
90) were isolated from the dissociated cells from 22 FFPE
lung adenocarcinomas (Supplementary Fig. S1).

Cell isolation from FFPE samples

FFPE tissue sections (50 μm thickness) were washed with
10 ml of 100% xylene for 10 min at room temperature.
After three times washing with xylene, the samples were
rehydrated with 100% ethanol, 70% ethanol, 50% ethanol,
and Milli-Q water. After the deparaffinization processes, sam-
ples were kept with heat-induced antigen retrieval (HIAR)
solution (10 mM sodium citrate buffer) for 5 min at room
temperature and for 1 h at 80 °C. Then, the samples were
cooled down for 20 min at room temperature and washed with
10 ml of RPMI 1640 (Gibco) at room temperature. After the

processes, the samples were dissociated with dissociation
buffer (0.1% collagenase Ia (Sigma), 0.1% dispase (Life tech),
RPMI), and then filtered with 100-μm mesh nylon filter into
15-ml tube. The samples were washed with ice-cold PBATw
(0.05% tween 20, PBS, 1% BSA).

After FFPE tissue dissociation, 5 × 105 cells were stained
with anti-keratin MNF116 (IgG1) (DAKO) and anti-keratin
AE1/AE3 (IgG1) (Millipore-Chemicon) at room temperature.
After first antibody staining, the samples were washed with
ice-cold PBATw, and Alexa Fluor 488 goat anti-mouse IgG1
and Alexa Fluor 647 goat anti-mouse IgG2a were used for
secondary antibody staining. For DAPI staining, the samples
were stained with DNA staining solution (10 μM DAPI (sig-
ma), PBATw) for 30 min at 37 °C.

For sorting process, 5000~10,000 stained cells were loaded
into DEPArray system and were analyzed to isolate pure cells
via the software of DEPArray system. Keratin−/Vimentin+
population, Keratin+/Vimentin− population, and Keratin+/
Vimentin+ population were gated and sorted by DEPArray
system for pure cells (Keratin−/Vimentin+ population, pure
stromal cells; Keratin+/Vimentin− population, pure tumor
cells; Keratin+/Vimentin+ population, other minority putative
tumor cells).

Targeted sequencing

The next-generation sequencings were performed by using the
Ion AmpliSeq Cancer Panel v2 (Life Technologies) that can
detect 2800 COSMIC mutations of 50 oncogenes and tumor
suppressor genes.

The Ion Torrent Libraries were prepared with the Ion
Ampliseq library kit 2.0 (Life Technologies), quantified by
the Qubit dsDNA HS Assay kit (Life Technologies), and the
sizes of libraries were analyzed with Agilent Bioanalyzer
2100 system. The enrichment process for libraries was per-
formed using the Ion Personal Genome Machine (PGM)
Template OT2 200 Template Kit and the Ion One Touch 2
instrument. The prepared libraries were pooled on a 316™
Chip (Life Technologies) per six libraries and sequenced the
Ion Torrent Ion Personal Genome Machine (PGM) system™
(Life Technologies). All procedures for targeted sequencing
for the Ion AmpliSeq Cancer Panel v2 (Life Technologies)
were conducted according to the manufacturer’s protocol.

Data analysis

The sequenced data were processed with Torrent Suite 4.4.3
and were aligned to the Homo sapiens hg19 reference ge-
nome. Variants were generated by the Torrent Variant Caller
and annotated by Annovar (Wang et al. 2010) that used data-
bases such as dbSNP138 (Smigielski et al. 2000), clinvar
(Landrum et al. 2016), 1000 genomes, polypen2, the exome
aggregation consortium (EXAC), and sorting tolerant from
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intolerant (SIFT) algorithm (Ng and Henikoff 2003). The var-
iants were visually validated by using The Integrative
Genomics Viewer (IGV) (Robinson et al . 2017;
Thorvaldsdottir et al. 2013). False-positive variants were ex-
cluded because they were found in misalignments.

Somatic mutation and germline mutation analysis

Somatic mutations and germline mutations were analyzed
with variants called in sorted pure stromal cells and variants
called in pure sorted tumor cells.

Pathway analysis

Pathway analysis was performed for genes having muta-
tions in each tumor utilizing Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa 2002) .
Mutational spectra for mutated genes were screened on
published papers and were manually searched the KEGG
pathway database.

Results

Summary of workflow

It is an important factor for accurate cancer diagnosis and
precise treatments to detect specific variants in FFPE samples
(Mafficini et al. 2014a). Attempts have been made to identify
the variants in FFPE samples, but there were several obstacles
because of technical issues including the heterogeneity of
FFPE tissues and sequence artifacts in DNA from FFPE
(Adank et al. 2006). We sorted pure stromal cells and pure
tumor cells from 22 lung adenocarcinoma formalin-fixed par-
affin-embedded (FFPE) blocks via DEPArray system to per-
form a more precise genetic variant analysis of FFPE pure
tumor tissue. We respectively found variants from pure stro-
mal cells and pure tumor cells collected from each of the 22
FFPE samples via DEPArray technology to improve homoge-
neity of tumor cells and to identify somatic mutations. Pure
double-positive cells (keratin+/vimentin+) were also recov-
ered from four FFPE samples to analyze cells excluding stro-
mal cells and tumor cells in FFPE sample. We extracted DNA
from sorted cells and unsorted cells. The DNA samples were
sequenced with cancer hotspot panels (Life Technologies,
Wal tham, MA USA) on Ion Torrent PGM (Life
Technologies, Waltham, MA USA). Functional effect of the
variants was predicted by polypen2 and SIFT. The results for
variants were analyzed to explore the heterogeneity and char-
acteristics of FFPE samples (Fig. 1).

Heterogeneity of FFPE samples

Although FFPE samples were designed to diagnose tu-
mors, FFPE blocks included non-tumor cells such as
stromal cells. It is difficult to extract pure tumor DNA
from FFPE samples. Heterogeneity of FFPE has been
detected in FFPE samples previously. Significant differ-
ences in variants were displayed even in the same tumor
FFPE samples (Mafficini et al. 2014). Enhancement of
homogeneity in FFPE tumor samples is very important
for developing targeted gene therapies. To improve ho-
mogeneity of tumor cells and to detect tumor variants
for a more accurate cancer diagnosis and research, we
analyzed cell populations in FFPE lung adenocarcinoma
and sorted the stromal cell population (Keratin
−/Vimentin+), the tumor cell population (Keratin+/
Vimentin−), and the double-positive cell population
(Keratin+/Vimentin+) from 22 FFPE lung adenocarcino-
ma samples via The DEPArray System (Fig. 2 and
Supplementary Fig. S1). We analyzed variants in sorted
pure tumor cells and sorted pure stromal cells to inves-
tigate the heterogeneity in FFPE samples and discovered
34 tumor-specific somatic variants in sorted tumor sam-
ples. We found that different mutation patterns were
shown in each subgroup, sorted from FFPE samples
(Fig. 3 and Supplementary Table 2A–C). This suggests
that several subtypes besides tumor cells are in unsorted
FFPE samples and mislead the research and diagnosis
of lung adenocarcinoma.

Improved detection of variants in sorted cells
from FFPE samples

To improve the accuracy of detection of tumor variants,
we isolated 100~300 pure tumor cells, and sorted pure
tumor cells were sequenced for detecting variants in
cancer hot spot regions. Using DEPArray technology
and NGS sequencing, we identified 20 stromal-specific
variants, which would cause bias for accurate diagnosis,
in sequencing data of unsorted FFPE samples. We also
found 34 tumor-specific variants detected in only sorted
tumor cells (Fig. 3). The allele frequencies of sorted
tumor cell variants were increased by 1.3–10.1 times
in three tumor suppressor genes such as TP53, PTEN,
and RB1 (Fig. 4a) and by 1.3–2.6 times in three onco-
genes such as KRAS, CTNNB1, and EGFR (Fig. 4b).
Allele frequencies of the all gene mutations were in-
creased by 1.2 times in sorted cells (Fig. 4c). These
suggests that the more accurate mutation information
was detected through DEPArray technology and NGS
sequencing.
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Novel mutations detected by sorted cell sequencing
and characteristic of somatic mutations in lung
adenocarcinomas

Thirty-four somatic mutations across 16 genes were identified
in 22 pure sorted lung adenocarcinomas. Sixteen mutations of
34 somatic mutations were novel and unreported in dbSNP,
COSMIC, EXAC, and 1000 genome database (Table 1). We

found four novel mutations by the sequencing of unsorted
cells, but revealed 12 more novel mutation by the sequencing
of sorted tumor cells (Supplementary Fig. S2). One hundred
twenty-six germline mutations were also discovered, and three
mutations of them were unpublished in dbSNP, COSMIC,
EXAC, and 1000 genome database (Supplementary Table 3).
Especially RB1 (p.I680T) of 16 newly identified somatic mu-
tations were evaluated to deleterious in PROVEAN and SIFT

Fig. 2 Cell analysis and pure cell sorting via DEParray technology.Cell populations in FFPE sample (left), cell populations after gating (middle), and
stained cell images (right), which are analyzed by DEPArray technology for cell sorting, are plotted
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Fig. 1 Experimental workflow. This flow chart provides brief experimental step including FFPE sampling, sequencing processing, and variants
analysis
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(Table 1). Based on somatic mutations detected by sorted cell
sequencing, TP53, EGFR, PTEN, RB1, KRAS, CTNNB1,
GNAQ, SMAD4, IDH1, CDKN2A, APC, PIK3CA, HRAS,
and NRAS were observed significantly in 22 lung adenocarci-
nomas (Fig. 5). Using this mutation profile, we also revealed
five core somatically mutated pathways: RAS signaling path-
way (ten cases, 45%), WNT signaling pathway (three cases,
14%), PIK3K/AKT signaling pathway (four cases, 18%),
TP53 signaling pathway (seven cases, 32%), and cell cycle
progression pathway(four cases, 18%) (Fig. 6).

Discussion

Nowadays, we have incorporated next-generation sequencing
(NGS) technology from a research environment into clinical
practice (Shen et al. 2015). Accuracy and precision of NGS
technology are required for making a clinical diagnosis (Pinho
2017). To identify the causes and to develop strategies for pre-
vention, diagnosis, and treatment of lung adenocarcinoma, it is
very important to classify somatic variants developed in cancer
based on mutagen and germline variants passed from a parent to
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Fig. 3 Heterogeneity in FFPE samples. Stromal-specific variants, tumor and stromal sharing variants, and tumor-specific variants are shown in total
variants of unsorted FFPE samples

J Appl Genetics (2018) 59:269–277 273



Ta
bl
e
1

S
om

at
ic
m
ut
at
io
ns

id
en
tif
ie
d
us
in
g
so
rt
ed

ce
ll
se
qu
en
ci
ng

Sa
m
pl
e

G
en
e

Po
si
tio

n
R
ef

A
lt

Ty
pe

of
al
te
ra
tio

n
N
M

nu
m
be
r

A
A

ch
an
ge

Pr
ov
ea
n

pr
ed
ic
tio

n
SI
F
T

pr
ed
ic
tio

n
db
SN

P
ID

C
O
SM

IC
ID

E
X
A
C

10
00

G
en
om

e
U
ns
or
te
d
ce
ll

se
qu
en
ci
ng

S
or
te
d
ce
ll

se
qu
en
ci
ng

#3
E
G
F
R

ch
r7
:5
52
59
51
5

T
G

m
is
se
ns
e

N
M
_0
05
22
8

p.
L
85
8R

D
el
et
er
io
us

D
el
et
er
io
us

rs
12
14
34
56
8

C
O
SM

62
24

D
et
ec
te
d

D
et
ec
te
d

#3
G
N
A
Q

ch
r9
:8
04
09
49
1

C
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_0
02
07
2

p.
G
20
8
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#5
P
TE

N
ch
r1
0:
89
62
42
59

–
A

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
00
31
4

p.
R
11
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#6
C
TN

N
B
1

ch
r3
:4
12
66
10
0

T
G

m
is
se
ns
e

N
M
_ 00
10
98
20
9

p.
S3

3A
D
el
et
er
io
us

D
el
et
er
io
us

C
O
SM

56
83

D
et
ec
te
d

D
et
ec
te
d

#6
E
G
F
R

ch
r7
:5
52
42
48
7

C
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_0
05
22
8

p.
P7

53
fs

D
et
ec
te
d

D
et
ec
te
d

#6
P
TE

N
ch
r1
0:
89
62
42
59

–
A

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
00
31
4

p.
R
11
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#6
R
B
1

ch
r1
3:
49
03
39
02

T
C

m
is
se
ns
e

N
M
_0
00
32
1

p.
I6
80
T

D
el
et
er
io
us

D
el
et
er
io
us

N
ot

de
te
ct
ed

D
et
ec
te
d

#6
TP

53
ch
r1
7:
75
77
08
2

C
G

m
is
se
ns
e

N
M
_0
01
12
61
15

p.
E
15
4Q

D
el
et
er
io
us

D
el
et
er
io
us

C
O
SM

14
80
05
7

N
ot

de
te
ct
ed

D
et
ec
te
d

#8
K
R
A
S

ch
r1
2:
25
39
82
84

C
T

m
is
se
ns
e

N
M
_0
04
98
5

p.
G
12
D

D
el
et
er
io
us

D
el
et
er
io
us

rs
12
19
13
52
9

C
O
SM

52
1

R
ep
or
te
d

D
et
ec
te
d

D
et
ec
te
d

#8
R
B
1

ch
r1
3:
48
94
16
75

–
A

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
00
32
1

p.
K
32
9
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#8
SM

A
D
4

ch
r1
8:
48
57
51
61

–
T

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
05
35
9

p.
F1
19

fs
N
ot

de
te
ct
ed

D
et
ec
te
d

#9
ID

H
1

ch
r2
:2
09
11
31
60

T
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_ 00
12
82
38
6

p.
N
11
6
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#9
R
B
1

ch
r1
3:
48
94
26
87

A
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_0
00
32
1

p.
R
35
8f
s

N
ot

de
te
ct
ed

D
et
ec
te
d

#1
0

TP
53

ch
r1
7:
75
77
53
4

C
A

m
is
se
ns
e

N
M
_0
01
12
61
15

p.
R
11
7S

D
el
et
er
io
us

D
el
et
er
io
us

rs
28
93
45
71

C
O
SM

13
14
78

D
et
ec
te
d

D
et
ec
te
d

#1
2

K
R
A
S

ch
r1
2:
25
39
82
84

C
A

m
is
se
ns
e

N
M
_0
04
98
5

p.
G
12

V
D
el
et
er
io
us

D
el
et
er
io
us

rs
12
19
13
52
9

C
O
SM

11
40
13
3

D
et
ec
te
d

D
et
ec
te
d

#1
2

C
D
K
N
2A

ch
r9
:2
19
71
12
5

–
A

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
00
07
7

p.
L
78

fs
N
ot

de
te
ct
ed

D
et
ec
te
d

#1
4

C
TN

N
B
1

ch
r3
:4
12
66
10
1

C
G

m
is
se
ns
e

N
M
_ 00
10
98
20
9

p.
S3

3C
D
el
et
er
io
us

D
el
et
er
io
us

rs
12
19
13
40
0

C
O
SM

56
77

D
et
ec
te
d

D
et
ec
te
d

#1
7

TP
53

ch
r1
7:
75
78
39
8

–
G

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
01
12
61
15

p.
H
46
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#1
8

TP
53

ch
r1
7:
75
77
53
8

C
T

m
is
se
ns
e

N
M
_0
01
12
61
15

p.
R
11
6Q

D
el
et
er
io
us

D
el
et
er
io
us

rs
11
54
06
52

C
O
SM

99
02
1

R
ep
or
te
d

D
et
ec
te
d

D
et
ec
te
d

#2
0

E
G
F
R

ch
r7
:5
52
59
51
5

T
G

m
is
se
ns
e

N
M
_0
05
22
8

p.
L
85
8R

D
el
et
er
io
us

D
el
et
er
io
us

rs
12
14
34
56
8

C
O
SM

62
24

D
et
ec
te
d

D
et
ec
te
d

#2
0

P
TE

N
ch
r1
0:
89
69
28
66

A
C

m
is
se
ns
e

N
M
_0
00
31
4

p.
N
11
7
T

N
eu
tr
al

To
le
ra
te
d

D
et
ec
te
d

D
et
ec
te
d

#2
1

K
IT

ch
r4
:5
55
99
30
1

T
C

si
le
nt

N
M
_0
00
22
2

p.
C
80
9C

D
et
ec
te
d

D
et
ec
te
d

#2
1

A
P
C

ch
r5
:1
12
17
54
23

C
T

no
ns
en
se

N
M
_0
01
12
75
11

p.
Q
13
60
X

rs
12
19
13
32
9

C
O
SM

18
86
2

D
et
ec
te
d

D
et
ec
te
d

#2
1

E
G
F
R

ch
r7
:5
52
59
51
5

T
G

m
is
se
ns
e

N
M
_0
05
22
8

p.
L
85
8R

D
el
et
er
io
us

D
el
et
er
io
us

rs
12
14
34
56
8

C
O
SM

62
24

D
et
ec
te
d

D
et
ec
te
d

#2
4

P
IK
3C

A
ch
r3
:1
78
91
68
57

T
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_0
06
21
8

p.
F8

2
fs

rs
14
10
98
97
3

D
et
ec
te
d

D
et
ec
te
d

#2
4

H
R
A
S

ch
r1
1:
53
42
94

C
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_ 00
11
30
44
2

p.
G
10

fs
N
ot

de
te
ct
ed

D
et
ec
te
d

#2
5

E
G
F
R

ch
r7
:5
52
59
51
5

T
G

m
is
se
ns
e

N
M
_0
05
22
8

p.
L
85
8R

D
el
et
er
io
us

D
el
et
er
io
us

rs
12
14
34
56
8

C
O
SM

62
24

D
et
ec
te
d

D
et
ec
te
d

#2
7

N
R
A
S

ch
r1
:1
15
25
65
29

T
C

m
is
se
ns
e

N
M
_0
02
52
4

p.
Q
61
R

D
el
et
er
io
us

D
el
et
er
io
us

rs
11
55
42
90

C
O
SM

58
4

D
et
ec
te
d

D
et
ec
te
d

#2
7

TP
53

ch
r1
7:
75
78
20
3

C
A

m
is
se
ns
e

N
M
_0
01
12
61
15

p.
V
84

L
D
el
et
er
io
us

D
el
et
er
io
us

C
O
SM

13
86
66
9

D
et
ec
te
d

D
et
ec
te
d

#2
8

JA
K
3

ch
r1
9:
17
94
56
97

G
T

si
le
nt

N
M
_0
00
21
5

p.
G
72
1G

D
et
ec
te
d

D
et
ec
te
d

#2
9

TP
53

ch
r1
7:
75
77
10
8

C
A

m
is
se
ns
e

N
M
_0
01
12
61
15

p.
C
14
5F

D
el
et
er
io
us

D
el
et
er
io
us

C
O
SM

56
23
38

R
ep
or
te
d

D
et
ec
te
d

D
et
ec
te
d

#2
9

P
TE

N
ch
r1
0:
89
62
42
59

–
A

fr
am

es
hi
ft
in
se
rt
io
n

N
M
_0
00
31
4

p.
R
11
fs

N
ot

de
te
ct
ed

D
et
ec
te
d

#3
1

K
R
A
S

ch
r1
2:
25
39
82
84

C
A

m
is
se
ns
e

N
M
_0
04
98
5

p.
G
12

V
D
el
et
er
io
us

D
el
et
er
io
us

rs
12
19
13
52
9

C
O
SM

11
40
13
3

D
et
ec
te
d

D
et
ec
te
d

#3
1

TP
53

ch
r1
7:
75
78
21
5

A
–

fr
am

es
hi
ft
de
le
tio

n
N
M
_0
01
12
61
15

p.
F8

0
fs

C
O
SM

44
35
8

N
ot

de
te
ct
ed

D
et
ec
te
d

R
ef

se
q,
re
fe
re
nc
e
se
qu
en
ce
;A

lt
se
q,
al
te
rn
at
e
se
qu
en
ce
;A
A
,a
m
in
o
ac
id

274 J Appl Genetics (2018) 59:269–277



a child and able to be inherited cancer. We identified 34 somatic
mutations across 16 genes and 126 germlinemutations across 17
genes including 10 germlinemutations unreported in dbSNP and
COSMIC.Most of germline mutations (88%)were also detected
by traditional sequencing method without cell sorting. Ninety-
three out of 126 germline mutations were silent SNVs, and only
three out of 126 germline mutations were unenrolled in dbSNP,
COSMIC, EXAC, and 1000 genome database (Supplementary
Table 3). However, in the case of somatic mutation analysis, we
discovered 20 somatic mutations including 4 novel somatic mu-
tations by the sequencing of unsorted cells, and 14 more somatic
mutation including 12 novel mutations by the sequencing of
sorted tumor cells (Supplementary Fig. S2b). These imply that
sorted cell sequencing is more accurate for somatic mutation
diagnosis. These imply that germline mutations were detected

fully by traditional next-generation sequencing, but tumor-
specific somatic mutation, which is significant factor for cancer
diagnostics, was observed more sensitively by sequencing from
sorted pure tumor cells.

We found that there are epithelial-to-mesenchymal transition
(EMT) sub-populations in FFPE samples. Epithelial mesenchy-
mal transition causes embryonic development and cancer pro-
gression. Epithelial-to-mesenchymal transition (EMT), which
indicates the conversion of epithelial cells to migratory mesen-
chymal cells, has been shown by intermediate keratin/vimentin
expression ratios (Polioudaki et al. 2015), and we sorted stromal
and tumor cells with vimentin antibody and keratin antibody.
Further study with sorted cells as keratin/vimentin expression
ratios is needed for assessing EMT characteristics in lung
adenocarcinoma.

#6 #31 #29 #27 #18 #10 #17 #25 #3 #21 #20 #5 #9 #8 #12 #14 #24 #11 #13 #26 #28 #30
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EGFR 23%
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Fig. 5 Mutation profiling. Name of significantly mutated genes (left), distribution of mutations across 22 lung adenocarcinomas (middle), and
frequency of significantly mutated genes (right) are plotted (bottom). Somatic mutation numbers are shown across patients (top)

Fig. 6 Somatically altered
pathways in FFPE lung
adenocarcinomas. Somatically
altered pathways are plotted with
somatic mutations in cell cycle
progression and cell proliferation
and survival-related pathways
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As the results of current study, DEPArray system is a very
useful tool to identify mutations from small amount of tumor
cells, to avoid false-positive mutation and to find the most
accurate mutations from FFPE tumor samples. However, the
system also has a limitation that the system is difficult to
handle large number of cells from large volume of cancers
because of sorting time and the expenses.

In conclusion, we successfully established precise muta-
tional analysis of lung adenocarcinoma and identified 16 un-
reported somatic mutation and 10 germline mutations in block
using sorted technology-applied NGS method. Newly detect-
ed mutations and our accurate mutational profiling, using
sorted technology-applied NGS method, will be suitable to
research main causes of adenocarcinoma and critical factors
for precision medicine of lung adenocarcinoma. Additionally,
characteristics of all variants were considered because somatic
variants were a feature of cancer and germline variants are a
cause of heritable diseases.
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