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SUMMARY

Zika virus (ZIKV) infection causes Guillain-Barré syndrome and severe birth defects. ZIKV envelope (E)

protein is the major viral protein involved in cell receptor binding and entry and is therefore consid-

ered one of the major determinants in ZIKV pathogenesis. Here we report a gene-wide mapping of

functional residues of ZIKV E protein using a mutant library, with changes covering every nucleotide

position. By comparing the replication fitness of every viral mutant between mosquito and human

cells, we identified that mutations affecting glycosylation display the most divergence. By character-

izing individual mutants, we show that ablation of glycosylation selectively benefits ZIKV infection of

mosquito cells by enhancing cell entry, whereas it either has little impact on ZIKV infection on certain

human cells or leads to decreased infection through the entry factor DC-SIGN. In conclusion, we define

the roles of individual residues of ZIKV envelope protein, which contribute to ZIKV replication fitness

in human and mosquito cells.
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INTRODUCTION

Zika virus (ZIKV) is a mosquito-borne human pathogen of the Flaviviridae family, which also includes the

dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and yellow fever virus

(YFV) (Lindenbach, 2007). ZIKV was first isolated from the serum of a sentinel rhesus monkey in the

Zika forest of Uganda in 1947 and was subsequently recovered from the mosquito Aedes africanus in

the same forest (Dick et al., 1952). ZIKV infection is mostly asymptomatic, but it can cause influenza-

like symptoms, such as fever, headache, joint pain, and maculopapular rash (Simpson, 1964; Duffy

et al., 2009). The recent outbreak of ZIKV in the Americas has demonstrated the potential for ZIKV to

cause more serious disease, including microcephaly, other congenital malformations, and Guillain-Barré

syndrome.

The ZIKV genome consists of a 10.8-kilobase single-stranded positive-sense RNA that codes for three

structural proteins (capsid [C], membrane [prM/M], and envelope [E]) and seven non-structural proteins

(NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). In addition, there are short UTRs on both the 50 and
30 ends of the genome (Kuno and Chang, 2007). The mature ZIKV virion is roughly spherical and �50 nm

in diameter. It contains a nucleocapsid that is surrounded by an icosahedral shell consisting of 180 copies

of both E glycoprotein and M protein anchored in a lipid bilayer (Sirohi et al., 2016; Kostyuchenko et al.,

2016). The flavivirus E protein, arranged as dimers on the surface of the mature virion, is the major viral pro-

tein involved in host-cell entry factor binding and fusion (Lindenbach, 2007). Each E protein monomer con-

sists of four domains—three ectodomains (DI, DII, and DIII) and a transmembrane domain (TM). The struc-

turally central DI acts as a bridge between DII and DIII and contains one N-linked glycosylation site (N154).

The N-linked glycosylation at residue 153/154 of the E protein is conserved across most flaviviruses and has

been shown to be important for optimal infection of mosquito and mammalian cells (Lee et al., 2010; Roeh-

rig et al., 2007; Post et al., 1992; Heinz and Allison, 2003). DII includes the dimerization interface and a fusion

loop that interacts with the endosomal membrane after conformation change. The IgG-like DIII is a contin-

uous polypeptide segment and is thought to be important for binding to entry factors. Several host entry

factors, including DC-SIGN, AXL, and TYRO3, have been shown to be important for mediating ZIKV infec-

tion (Hamel et al., 2015; Nowakowski et al., 2016). However, the detailed mechanism by which the E protein

interacts with host-cell entry factors or the sequence determinants that contribute to human versus mos-

quito cell tropisms is not fully known.
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We have developed a high-throughput fitness profiling approach that combines high-density mutagenesis

with the power of next-generation sequencing to identify functional residues in the context of virus infec-

tion (Qi et al., 2014, 2017; Remenyi et al., 2014; Wu et al., 2016). In this study, we applied this approach to

systematically analyze the functional residues of ZIKV E protein during infection of mosquito and human

cells. We achieved high sensitivity in identifying residues essential for ZIKV E protein function. Surprisingly,

we found that N-linked glycosylation at position N154 had differential effects on ZIKV infection between

mosquito and human cells. Ablation of this glycosylation had little impact on viral infection of human cells

(A549 and hCMEC), whereas it significantly increased infection of mosquito cells (C6/36), most probably by

enhancing ZIKV entry. Last, N154 glycosylation was found to be important for ZIKV infection of mammalian

cells through the entry factor DC-SIGN, further broadening our current knowledge concerning the glyco-

sylation of E protein in the mammalian and invertebrate ZIKV life cycles.

RESULTS

Establishing Infectious cDNA Clone of ZIKV Strain PRVABC59

To facilitate mutational analysis of the ZIKV genome, we generated a plasmid (pZ-PR) carrying ZIKV cDNA,

whichwas generated fromanearly passageof PRVABC59 virus. The ZIKVPRVABC59 strain was isolated from

ahuman serumspecimen fromPuerto Rico inDecember 2015. Theplasmid contains cDNAcoding the entire

ZIKV RNA genome, a T7 promoter on the 50 end to drive ZIKV RNA in vitro transcription, and a BstBI site on

the 30 end to linearize the plasmid (Figures 1A and 1B, and Data S1). For reconstituting ZIKV virions, 50-cap-
ped viral genomic RNA was generated by in vitro transcription (Figure 1C) and then electroporated into

BHK21 cells. Culture supernatant containing recombinant ZIKVwas harvested at 3 days post electroporation

and further subjected to single-round amplification in C6/36 cells to generate the viral stock. Next, we

compared recombinant and parental ZIKVs in cell culture and found that there was no obvious difference

in either the percentages of cells positive for ZIKV infection or the signal intensity of E proteins (Figure 1D).

In addition, they showed comparable growth kinetics in mammalian (Figure 1E) and mosquito cells (Fig-

ure 1F). These results indicate that the recombinant ZIKV can be reconstituted from the ZIKV cDNA plasmid

and that it displays infectivity and growth comparable with that of the parental virus.

Constructing a Library of Mutations in ZIKV E Protein

After generating the ZIKV cDNA clone, we aimed to systematically analyze the role of each residue of the

E protein using a high-throughput fitness profiling approach. In this study, error-prone PCR was employed

to introduce random point mutations into the ZIKV E protein coding region (1,512 nt) by using an enzyme

blend tominimize themutation bias (Figure 2A). To better control themutation rate of the error-prone PCR,

the E protein was divided into three fragments, which together cover the whole sequence of the E protein.

A mutant plasmid DNA library of ZIKV E protein was constructed by combining �40,000 clones from each

fragment sub-library. To reconstitute the mutant virus library, the viral RNA library was generated from the

plasmid DNA library by in vitro transcription and then electroporated into BHK-21 cells.

To evaluate the quality of the ZIKV E mutant libraries, both the plasmid DNA library and the reconstituted

virus library were subjected to deep sequencing analysis. In addition, we sequenced a technical replicate

for the DNA library, and triplicates for the virus library, to estimate the reproducibility of individual steps

(Table S2). In the DNA library, 99.27% (4,503 of 4,536) of the expected mutations were identified by

deep sequencing, of which 3,849 mutations showed an average relative frequency higher than 20 per

million reads (Data S2). Here the relative frequency of each mutation was determined by dividing its muta-

tion read count by the total population read count (see Transparent Methods). These 3,849 mutations

covered all 1,512 nt positions of the ZIKV E protein and could be categorized as 2,729 missense

(70.88%), 928 silent (24.11%), and 192 nonsense (4.99%) mutations. The 2,729 missense mutations intro-

duced 2,494 unique amino acid changes and covered all residues of the ZIKV E protein. In addition, the

mutations showed relatively even distributions across the E protein coding sequence (Figure 2C) and no

strong bias on the nucleotide composition (Table S3). As the error-prone PCR enzyme blend introduces

mutations randomly, the frequency of mutations in the plasmid DNA library should follow a Poisson distri-

bution, where all mutation events are independent and random. Based on the deep sequencing result from

the DNA plasmid library, each individual viral genome has 0.82 mutations on an average. About 44.2% of

the genomes are expected to be wild type (WT), 36.1% of the genomes are expected to have a single

mutation, and 14.7% of the genomes are expected to have two mutations. Only 5.0% of the genomes

are expected to have more than two mutations. In the reconstituted virus library, 93.56% of the expected

mutations were identified, with 2,860 mutations showing an average relative frequency greater than 20 per
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Figure 1. Construction of ZIKV Infectious cDNA Clone Using Strain PRVABC59

(A) Illustration of the cloning strategy.

(B) Analysis of cDNA fragments on an agarose gel. The first five fragments were amplified from cDNA synthesized with

random hexamer, and the sixth fragment was generated from cDNA synthesized with specific oligo against the last 20 nt

of ZIKV 30 end (Table S1).

(C) Analysis of in vitro transcribed ZIKV RNA on a denaturing agarose gel. pZ-PR plasmids were linearized by BstBI, treated

(or mock treated) with mung bean nuclease to remove the two extra nucleotides, in vitro transcribed, and then separated

on a 0.8% formaldehyde denaturing gel.

(D) Immunostaining of ZIKV E proteins in parental or recombinant ZIKV-infected cells. Vero cells were infected at an MOI

of 0.5, and after 16 hr, cells were fixed and subjected to IFA with aE (4G2) antibody.

(E and F) Multiple-step growth curve analysis of recombinant and parental ZIKVs. Vero (E) and C6/36 (F) cells were infected

at an MOI of 0.01, and supernatants were harvested at the indicated time points post infection to titrate virion production.

Viral titers with error bars are plotted as mean G SD (n = 3).

See also Table S1 and Data S1.
million reads. Compared with the plasmid DNA library, these mutations included similar numbers of silent

(908% and 31.75%), slightly fewer missense (1,845% and 64.51%), and significantly fewer nonsense (107%

and 3.74%) mutations (Data S2). The 1,845 missense mutations introduced 1,753 unique amino acid

changes and covered 503 of the 504 residues of the ZIKV E protein (except Gly5). These results clearly

show that we have generated a high-quality plasmid DNA library and that we have reconstituted a virus

library with high complexity. To evaluate the reproducibility of the experimental procedures, we examined

the frequency distribution of all mutant types across replicate libraries; we observed similar distribution be-

tween both the DNA libraries and among the three virus libraries (Figure S1A). In addition, we compared

the relative frequency of individual mutations between replicate libraries. Pearson’s correlation coefficients
iScience 1, 97–111, March 23, 2018 99



Figure 2. Construction and Characterization of ZIKV E Protein Mutational Library

(A) Construction of the plasmid DNA library. Three segments (yellow) covering the entire E coding region were generated

by error-prone PCR, whereas the corresponding left and right fragments (blue) were generated by high-fidelity PCR.

Fragments were further assembled and cloned into pZ-PR plasmids.

(B) A schematic representation of virus library construction and fitness profiling. Virus library was reconstituted by in vitro

transcription from DNA library, followed by electroporation of viral RNA into BHK21 cells. Virus library was then passaged

in C6/36, A549, or hCMEC cells. Deep sequencing of plasmid DNA library, reconstituted virus library, and passaged

libraries was performed.

(C) Relative frequencies of individual point mutations are plotted across the E protein. Mutations were examined by deep

sequencing of the ZIKV E gene, and the relative frequency of each mutation was calculated by dividing the mutation

occurrence by the total population count (WT plus mutations). A smooth curve was fitted by cross-correlation and plotted.

See also Figures S1 and S2, Tables S2 and S3, and Data S2.
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of 0.97 for the technical replicates of the DNA library and 0.89 or 0.88 for the virus libraries (Figure S1B) were

obtained. These strong correlations validated the reproducibility of our high-throughput fitness profiling

platform.

To collect sufficient quantities of ZIKV mutant viruses for subsequent experiments, our virus library was har-

vested at 4 days after RNA electroporation. Trans-complementation after RNA transfection should enable

the reconstitution of most mutant viruses. Owing to some viral amplification, more likely in the late period,

there could be some selection effect on mutants. To evaluate the potential selection effect on the virus

library, we calculated the relative fitness (RF) score (expressed as relative frequencyvirus/relative frequen-

cyDNA) for each mutant in the virus library. As shown in Figure S1C, the RF score of silent mutations

(mean = 0.88) was higher than those of nonsense (mean = 0.06) and missense (mean = 0.21) mutations, sug-

gesting that some fitness selection did occur during the virus reconstitution step. However, the high

complexity of missense mutations in the virus library, and the depth of our sequencing, can support a

high-resolution fitness profiling of ZIKV E protein in the three culture cell lines.
Fitness Profiling of E Protein Mutants in Mosquito and Human Cells

The ZIKV E protein mediates viral entry into host cells, defines tropism, and is an attractive target to coun-

teract infection. As an arbovirus, the life cycle of ZIKV involves transmission between Aedes mosquitoes

and human hosts (Ayres, 2016; Marchette et al., 1969). Therefore, it is important to identify host-specific

functional residues of the E protein, which in turn can facilitate studies of the viral life cycle, especially

regarding its entry mechanisms. In this study, one mosquito (C6/36) and two human (A549 and hCMEC/D3)

cell lines were employed for the following reasons: (1) C6/36 cells were generated from the larvae of Aedes

albopictus and have been widely used to study ZIKV and other flaviviruses; (2) epithelial cells are natural

targets for ZIKV infection (Ma et al., 2016; Singh et al., 2017; Tang et al., 2016b), and as a human epithelial

cell line, A549 expresses a majority of reported ZIKV entry factors (except DC-SIGN) (unpublished RNAseq

result), supporting efficient infection of ZIKV; and (3) ZIKV targets neuronal cells by passing the human

blood-brain barrier (Tang et al., 2016a; Nowakowski et al., 2016; Miner and Diamond, 2017), and barrier

endothelial cells are permissive for ZIKV infection (Richard et al., 2017; Liu et al., 2016; Singh et al.,

2017); thus, hCMEC/D3, which is a human blood-brain barrier endothelial cell line, was also chosen for

our study. We first examined the fitness of E protein mutants by passaging the reconstituted virus library

in these three cell lines, respectively (Figure 2B and Data S2), and noticed that the RF score distributions

of silent mutations were clearly different from those of nonsense andmissense mutations (Figure S2), which

indicated a fitness selection in all three cell lines. It is notable that there are some nonsense mutations iden-

tified in the passaged virus libraries. To have rapid adaptation and evolution, RNA viruses have an average

mutation rate (closely equivalent to mutational frequency) of 10�4–10�5 mutations per nucleotide per

round of RNA replication (Domingo et al., 1996; Drake et al., 1998; Meyerhans and Vartanian, 1999; Ramirez

et al., 1995). In our passaged virus libraries from C6/36, A549, and CMEC cells, the mean frequency of

nonsense mutations is 3.08 3 10�5, 3.42 3 10�5, and 3.23 3 10�5, respectively, which is consistent with

the spontaneous mutation rates that occur during genome replication. Therefore, we conclude that

nonsense mutations identified in our virus libraries were most likely generated by spontaneous mutations

instead of contamination by transfected RNA.

As a control for our fitness profile, we evaluated residues that have high variability in nature. We down-

loaded all ZIKV E protein sequences from Virus Pathogen Resource and extracted 52 unique complete

sequences. After calculating the polymorphism score of each residue, we found that nine residues were

highly diverse with a SNP score R 100 (Data S3 and Figure 3A). The high diversity of these residues may

suggest the ability of tolerating mutations. Indeed, the average RF scores of mutations on these nine res-

idues were close to 1 in all three cell lines (Figure 3B). Moreover, we found that the frequently occurring

natural variants on these nine residues did not cause or only slightly caused fitness loss (Figure 3C).

To guide our analysis of the fitness data, we focused on the pH-induced conformation change of E protein.

Previous studies have shown that H146 and H323 in tick-borne encephalitis virus (equivalent to H144 and

H323 in ZIKV) functioned as molecular switches (Figure 3D; Prakash et al., 2010; Fritz et al., 2008). Addition-

ally, R9 in domain I (DI) and E373 (E377 in ZIKV) in domain III (DIII) form a salt bridge through their side chains

in neutral pH, and that this interaction is essential for the dimeric conformation of E in mature virions

(Figure 3D). After extensive conformation change triggered by low pH, a different salt bridge forms be-

tween E373 and H323, which may contribute to the stability of the post-fusion trimer (Bressanelli et al.,
iScience 1, 97–111, March 23, 2018 101



Figure 3. Analysis of Residues Highly Polymorphic or Involved in Conserved Function

(A) Ribbon diagrams of E protein monomer and localization of nine residues highly polymorphic in natural ZIKV sequence.

Yellow, domain I; blue, domain II; green, domain III; gray, transmembrane domain.

(B) Average relative fitness (RF) score of mutations on residues. The RF score of mutation is expressed as the ratio of

relative frequency in viral library to the relative frequency in DNA library. The average RF score of mutations on residue is

defined as an average of RF scores of all missense mutations on this residue.

(C) RF scores of naturally occurring mutations. Data are plotted as mean + SD (n = 3).

(D) Localization of four conserved residues potentially functioning in pH-induced conformational change. A salt bridge

between R9 and E377 is highlighted.

(E) RF scores of mutations on residues R9, H144, H323, and E377.

See also Data S3.
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Figure 4. Fitness Profiling of ZIKV E Protein Mutant Virus Libraries

(A) Plot of averaged relative fitness (RF) scores of mutations at each residue position.

(B) Smoothed local average plot of mutants’ RF scores. Smoothed local average was expressed as the rolling mean of the

mutations’ RF scores with a window size of 20. Arrow, N-linked glycosylation site (N154).
2004). After analyzing the fitness of mutations on these four residues, we found that (1) every mutation

showed comparable fitness among the three cell lines; (2) all mutations on H323 and E377 showed RF

scores lower than 0.5, and four specific mutations (H323N, H323L, E377V, and E377D) reduced the RF

scores to < 0.1; and (3) in contrast, five mutations on R9 and H144 (R9G, R9M, R9S, H144N, and H144Y)

showed RF scores greater than 0.5 and no mutation on these two residues reduced the RF scores below

0.1 (Figure 3E). These results suggest that H323 and E377 are important for the survival of ZIKV independent

of the cell type, whereas R9 and H144 play relatively minor roles. In addition, the above findings validate the

sensitivity of our high-throughput fitness profiling approach.

Next, we plotted the RF scores of mutations across the entire ZIKV E protein (Figure 4A) and found that the

majority of mutations resulted in comparable fitness among the original reconstituted virus and the three

passaged libraries. Interestingly, there was a cluster of beneficial mutations in C6/36 cells around the

N-linked glycosylation site (N154). Smoothed local average analysis further confirmed that mutations in

the glycosylation region presented the most dramatic difference in comparable fitness, wherein they

showed significantly higher fitness inmosquito C6/36 cells but not in the two human cells tested (Figure 4B).
iScience 1, 97–111, March 23, 2018 103



Figure 5. Analysis of Mutations in the N-Linked Glycosylation Region

(A) RF scores of mutations covering the five residues on and surrounding the N154 position.

(B) Infectivity of ZIKV WT and mutants. Titers of ZIKV WT and mutants were determined by plaque-forming assay on A549

cells, whereas genome copies of the same viruses were quantified by qRT-PCR. The ratio of viral genome copies to PFU

was plotted as mean G SD (n = 3).

(C) Analysis of E protein N-linked glycosylation using PNGase F treatment and Western blotting. Black arrow, N-linked

glycosylation; red arrow, absence of N-linked glycosylation.

(D) Cells from same infection as (C) were also subjected to immunostaining using aE (4G2) antibody.

See also Figure S3.
Constructing and Characterizing Individual N-Linked-Glycosylation-Defective Mutants

Previous studies on the cryoelectron microscopy (cryo-EM) structure of ZIKV mature virion showed that the

E protein was glycosylated at the N154 position (Sirohi et al., 2016; Kostyuchenko et al., 2016). This is consis-

tent with the knowledge that N-linked glycosylation requires an N-X-S/T consensus sequence (Taylor and

Drickamer, 2011), which is present as N154-D155-T156 in the ZIKV strain PRVABC59. In our deep

sequencing analysis, many mutations at or around the N154 position were beneficial for ZIKV replication

in mosquito C6/36 cells, likely due to the ablation of N-linked glycosylation. As shown in Figure 5A, all silent

mutations (I152I, V153V, N154N, D155D, and T156T) did not obviously affect viral fitness, further validating

our high-throughput screening approach. Eleven missense mutations were identified on two residues,

N154 and T156, and in general, they selectively increased ZIKV fitness in C6/36 cells by 10-fold. In addition,
104 iScience 1, 97–111, March 23, 2018



four missense mutations on I152 (I152V, I152N, and I152T) and V153 (V153D) caused a similar phenotype.

Taken together, the profiling results suggest that glycosylation removal at N154 of ZIKV E protein might

contribute to increased viral fitness in mosquito C6/36 cells.

To confirm the profiling results and to explore the mechanism of how N-linked glycosylation affects ZIKV

fitness, five point mutations, four on N154 and one on T156, were individually introduced into the pZ-PR

plasmid. ZIKV mutants were reconstituted in BHK21 cells and were further amplified in C6/36 cells to

generate viral stocks. In plaque-forming assays on A549 cells, all mutants generated plaques of size com-

parable with that of WT ZIKV (data not shown). To quantify the infectivity of ZIKVWT andmutants, we calcu-

lated the particle-to-plaque-forming unit (PFU) ratios by utilizing genome copy number and the results

of the plaque assay (Figure 5B). A ratio of 1.0 3 103 was obtained for the WT virus, and ratios between

1.0 3 103 and 1.4 3 103 were obtained for the mutants, suggesting comparable infectivity among WT

and mutants.

To test whether these five mutations affected the N-linked glycosylation, we employed peptide-N-glyco-

sidase F (PNGase F) treatment andWestern blotting. As shown in Figure 5C, PNGase F treatment increased

the mobility of WT E protein, suggesting the removal of N-linked glycosylation. All mutant E proteins dis-

played the samemobility as PNGase F-treatedWT E protein and were not sensitive to PNGase F treatment,

indicating that all five mutations abolished N-linked glycosylation. We further examined the E protein local-

ization and expression by immunofluorescence assay (IFA) and found that E proteins from ZIKVWT andmu-

tants showed similar localization and expression levels during infection of A549 cells (Figures 5D and S3).

However, when infecting C6/36 cells, ZIKV mutants expressed more E proteins than the WT virus, which is

consistent with the results from Western blotting (Figures 5C and S3).
Ablation of N-Linked Glycosylation Benefits ZIKV Replication in Mosquito Cells by Enhancing

Virus Entry

To evaluate the roles of the N-linked glycosylation during ZIKV infection of mosquito and human cells, we

characterized the growth kinetics of WT and mutant viruses by quantifying intracellular viral genome repli-

cation (Figures 6A and S4A) and extracellular infectious virion production (Figures 6B and S4B). The data

showed that all viruses grew comparably in A549 cells. In contrast, the growth of mutant viruses was selec-

tively enhanced in C6/36 cells. The genome copies of mutant viruses were�10 times higher than that of the

WT virus at days 1 and 2 post infection, leading to �10 times more virion release at days 2 and 3 post infec-

tion. These results clearly demonstrate that ablation of N-linked glycosylation specifically benefited ZIKV

growth in C6/36 cells, but not in A549 cells, validating our findings from the high-throughput fitness

profiling analysis. Furthermore, we found that mutant viruses also showed significantly enhanced growth

(Figure S5) in Aedes aegypti CCL-125 cells, indicating that this phenotype may be common to mosquito

cell lines but not something specific to C6/36 cells. However, we also noticed that at late times post infec-

tion of C6/36 cells, WT andmutant viruses showed similar genome replication and virus production (day 4 in

Figures 6A and 6B, days 4 and 6 in Figure S4). One possible reason for this observation may be that infected

C6/36 cells do not undergo cell lysis; thus, once the monolayer is completely infected, fitness advantages

become no longer apparent. At 4 and 6 days post infection, all C6/36 cells were positive for ZIKV infection,

maintained similar levels of intracellular viral genomes, and released comparable amounts of virions.

Therefore, a possible mechanism that explains why ZIKV mutants show higher fitness in C6/36 cells is

that ablation of N-linked glycosylation might enhance the early events of virus infection, including attach-

ment and entry.

To test this hypothesis, we first quantified the efficiency of ZIKV attachment and found that mutant viruses

bound to the cell surface as efficiently as the WT virus did (Figures 6C and S6). Next, we examined the ef-

ficiency of viral genome delivery into the cytoplasm by quantifying cell-associated viral RNA. C6/36 cells

were absorbed with WT or mutant viruses at 4�C and then returned to 28�C to initiate virus entry followed

by viral protein expression and genome replication. Cells were collected at various times post infection to

quantify the viral genome. Right after 4�C incubation and washing, cell-associated genome copies of WT

andmutant viruses were similar (Figure 6D, 0 hr). At 0.5 hr after returning to 28�C, despite an overall drop of

�80%, the genome copies of all viruses were still comparable (Figure 6D, 0.5 hr). It is likely that ZIKV loses a

large portion of virions in acidic endosomes, as was reported for DENV (van der Schaar et al., 2007), which

would explain the drop of viral genome copies between 0 and 0.5 hr. Genome copies of the WT virus kept

decreasing until 2 hr and thenmaintained a steady level until 8 hr, a level that may reflect the amount of viral
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Figure 6. Characterization of ZIKV N-Linked-Glycosylation-Defective Mutants

(A) Intracellular genome replication of ZIKV WT and mutants. A549 or C6/36 cells were infected with ZIKV WT, mA, or mB

at an MOI of 0.05 and harvested at indicated times for RNA purification and qRT-PCR analysis.

(B) Infectious virus production. Supernatants were harvested from same cells as (A) to determine viral titers.

(C) Attachment efficiency of ZIKVWT andmutants on surface of C6/36 cells. C6/36 were incubated with ZIKVs at anMOI of

10 for 1.5 hr at 4�C, followed by washing with ice-cold PBS three times, and then immediately subjected to RNA

purification and qRT-PCR to determine viral genome copies. Relative attaching efficiency to the WT virus was plotted as

mean G SD (n = 3).

(D) Entry efficiency of ZIKVWT andmutants. C6/36 cells were incubated with ZIKVs as (C). After washing with ice-cold PBS,

cells were replenished with warm culture medium before returning to 28�C, harvested at indicated times, and subjected

to qRT-PCR analysis. *p<0.05; **p<0.01.

See also Figures S4, S5, and S6.
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genome successfully delivered to the cytoplasm. In contrast, genome copies of mutant viruses did not obvi-

ously change between 0.5 and 8 hr. Starting from 1 hr, mutant viruses consistently showed higher genome

copies than theWT virus, implying a higher efficiency of viral genome delivery. After 8 hr, genome copies of

WT and mutant viruses robustly increased, indicating successful genome replication in each. Taken

together, during ZIKV infection of mosquito cells, N-linked glycosylation seems to impair virus entry, result-

ing in less viral genome delivery into the cytoplasm than in non-glycosylated mutant viruses.
N-Linked Glycosylation is Important for ZIKV Infection of Mammalian Cells through DC-SIGN

The conserved N-D-T sequence motif was identified in the majority of ZIKV strains (Faye et al., 2014; Lan-

ciotti et al., 2008), suggesting that N-linked glycosylation of E protein should play some role(s) in certain

step(s) of the ZIKV life cycle, although we did not identify this using the above in vitro cell systems. DC-

SIGN, also known as CD209, mediates DENV infection of dendritic cells by binding E protein glycan(s)

(Navarro-Sanchez et al., 2003; Tassaneetrithep et al., 2003; Pokidysheva et al., 2006). Furthermore,

expression of DC-SIGN makes cells susceptible to ZIKV infection (Hamel et al., 2015). Therefore, by using

the mutant viruses, we sought to test whether the N-linked glycosylation of E protein was required for

ZIKV infection of DC-SIGN-expressing cells. Because 293T cells are not susceptible to ZIKV infection

owing to the lack of existing entry factor(s) (Hamel et al., 2015), we first established DC-SIGN-expressing

cells by transfecting 293T cells with DC-SIGN expression plasmid. As shown in Figure S7, control 293T

cells were largely non-permissive to ZIKV infection. The expression of DC-SIGN strongly enhanced WT

ZIKV infection, resulting in �10% cells positive for ZIKV E protein. Furthermore, we tested the infection

efficiency of ZIKV WT and mutants by using the DC-SIGN-expressing 293T cells. The results showed that

when compared with the WT virus, infection with mutant viruses resulted in significantly fewer E-protein-

positive cells (Figure 7A), as well as an �80% decrease of viral genome replication (Figure 7B). Moreover,

similar results were also observed during ZIKV infection of human immature dendritic cells (Figures 7C

and 7D). These observations suggest that N-linked glycosylation of E protein plays an important role

in ZIKV infection through the entry factor DC-SIGN.
DISCUSSION

In this study, we generated an infectious cDNA clone of ZIKV strain PRVABC59 and used a high-throughput

fitness profiling approach to assess the impact of mutations at every amino acid position of E protein on

viral fitness. We found that nine residues showing high polymorphism in natural sequences could tolerate

mutations, and we also evaluated the role of four conserved residues involved in E protein pH-induced

conformation change. By comparing ZIKV replication fitness in mosquito and human cells, we discovered

that mutations affecting N-linked glycosylation of E protein presented the most dramatic difference. These

mutations either only slightly affected or did not affect ZIKV infection of human cells, whereas they signif-

icantly increased ZIKV growth in mosquito cells. In an attempt to explore the underlying mechanism, we

discovered that ablation of N-linked glycosylation enhanced ZIKV entry into mosquito cells. Furthermore,

N154 glycosylation was found to be important for ZIKV infection of mammalian cells through the entry fac-

tor DC-SIGN, indicating functional conservation among flaviviruses.
High-Throughput Fitness Profiling of ZIKV E Protein

Traditionally, mutagenesis at a specified position is the common approach for examining functional resi-

dues of a virus. The underlying principle of our high-throughput fitness profiling approach is to mutagenize

the entire viral gene (or even genome) toward a single-nucleotide resolution, aiming to interrogate every

position across the viral gene, passage the mutant library in a desired selection condition, and quantify the

frequency change of each mutation to evaluate its phenotype. By using a mutant library of ZIKV E protein in

which every individual amino acid is substituted with other residues, this study represents the first applica-

tion of a high-throughput approach to analyze the functional residues of an entire ZIKV protein. In the

future, this high-resolution profiling approach could be applied to other proteins to systematically under-

stand ZIKV infection and its related pathogenesis. In addition, our library of high-density ZIKV E mutants

could be applied to examine the roles of E protein in other aspects. In recent studies, mutant libraries of

viral envelope proteins were used to characterize viral mutations escaping from monoclonal antibody

neutralization and predict antibody-binding regions (Doud et al., 2017; Lin et al., 2012; Fulton et al.,

2017). Through a similar strategy, our high-resolution profiling approach, facilitated by the library of

ZIKV E mutants, could be applied to define protein epitope(s) for neutralizing antibody(s), including mono-

clonal antibodies and polyclonal antibodies in patient sera.
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Figure 7. N-Linked Glycosylation Enhances ZIKV Infection through Entry Factor DC-SIGN

(A) Immunostaining of ZIKV E protein. DC-SIGN-cFLAG-transfected 293T cells were infected with ZIKV WT or mutants at

an MOI of 0.2 for 16 hr and then fixed and subjected to IFA analysis with aE (4G2) and aFLAG antibodies.

(B) Total RNA was purified from the same cells as (A) and subjected to qRT-PCR analysis to quantify viral genome copies.

(C) Immunostaining of ZIKV E protein in immature dendritic cells infected with ZIKV WT or mutants.

(D) Quantification of viral genome copies in the infected immature dendritic cells. The relative viral genome copies to the

WT virus was plotted as means G SD (n = 3). *p<0.05; **p<0.01..

See also Figure S7.
N-Linked Glycosylation at Position N154 of ZIKV E Protein

Employing the high-throughput fitness profiling analysis, we are able to identify mutations that impair viral

fitness in a specific cell background, which enables us to select informative mutants to dissect the multiple

functions of a protein. In this study, by comparing ZIKV fitness in mosquito and human cells, we discovered

that mutations affecting the N-linked glycosylation of E protein presented the most dramatic difference. In

studies of other flaviviruses, N-linked glycosylation at position N153/154 of the E protein was shown to be

important for viral growth in both mammalian andmosquito cells (Hanna et al., 2005; Mondotte et al., 2007;

Lee et al., 2010; Beasley et al., 2005; Scherret et al., 2001). For example, ablation of N153 glycosylation of

the E protein reduced DENV production over 10-fold in cultured cells, including mosquito cells (C6/36),

mammalian epithelial cells (Vero), and fibroblast cells (BHK21) (Mondotte et al., 2007; Lee et al., 2010). Simi-

larly, N154 glycosylation was required for the efficient growth of WNV inmultiple cell lines, including C6/36,

Vero, and DF-1 (Beasley et al., 2005; Scherret et al., 2001; Moudy et al., 2009). Surprisingly, N-linked
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glycosylation at position N154 of E protein was not necessary for ZIKV replication in either human epithelial

cells (A549) or endothelial cells (hCMEC). In addition, ablation of N-linked glycosylation significantly

enhanced ZIKV growth in C6/36 cells (Figures 4, 6A and 6B). Further exploring the mechanism, we found

that N-linked glycosylation of ZIKV E protein did not affect the initial attachment of virions to the cell surface

(Figure 6C) but did notably impair viral entry into C6/36 cells (Figure 6D). In a study of WNV using subviral

particles (SVPs), SVPs lacking glycosylation of E protein were found to be modestly more efficient in entry

on BHK-21 and QT6 cells, whereas this absence enhanced the infection of C6/36 cells. However, the latter

experiments showed that this increase of entry did not lead to more viral production of non-glycosylated

mutants, probably owing to deficiency in virion assembly and egress (Hanna et al., 2005).

The initial step in the life cycle of flaviviruses is attachment of the virion to host-cell entry factor(s), followed

by entry into cells via endocytosis, through which the virus particles are transported to endosomes. The

acidic environment in the endosome lumen promotes rearrangement and conformational change of E pro-

tein, resulting in the fusion of the virion envelope with the endosomal membrane, followed by release of the

viral genome into the cytoplasm (Heinz et al., 2004; van der Schaar et al., 2007; Zhang et al., 2004). Based on

cryo-EM structures of ZIKV, the glycans at the N154 position of the E protein lie over the dimer interface in

close proximity to the fusion loop of domain II (Sirohi et al., 2016; Kostyuchenko et al., 2016). Considering

their substantial size, glycans might generate steric effects impairing ZIKV E protein conformational change

in endosome and/or the membrane fusion process between virion and endosome of mosquito cells, which

can explain why ablation of N-linked glycosylation enhanced ZIKV entry in C6/36 cells (Figure 7D). However,

we also found that ablation of N-linked glycosylation did not enhance ZIKV infection of human A549 and

hCMEC cells, implying that it plays different role(s) in entry of mosquito and human cells. In future research,

themechanisms underlying the impairment of N-linked glycosylation of E protein on ZIKV entry inmosquito

cells and the different roles of glycosylation among flaviviruses need to be investigated.

Two sequences in the ZIKV PRVABC59 strain, N154-D155-T156 and N481-G482-S483, match the N-linked

glycosylation consensus element (N-X-S/T). However, the residue N481 is embedded in the lipid bilayer

of ZIKV envelope and is therefore unlikely to be glycosylated. The N154-D155-T156 sequence exists in

many but not all ZIKV strains (Faye et al., 2014; May and Relich, 2016). E protein variants defective in

N-linked glycosylation, especially a Thr to Ile (T156I) change, were frequently observed among ZIKV

strains. It is suggested that acquisition of the N154 glycosylation site is a recurrent event in the history

of ZIKV (Faye et al., 2014). However, this hypothesis could be limited, as some loss-of-glycosylation var-

iants might be a consequence of passaging ZIKV strains before sequencing. In our study of the ZIKV Pu-

erto Rico strain, mutations of residue N154 did not obviously change viral growth in two human cells,

significantly enhanced viral fitness in mosquito cells (Figures 5 and 6), and impaired virus infection

through the DC-SIGN entry factor (Figure 7). However, in ZIKV African isolates, substitution or deletion

of N154 is rarely observed. In addition, we noticed that, when compared with the corresponding silent

mutations, two of five mutations (N154Y and N154K) of N154 did not obviously increase viral fitness in

mosquito cells, whereas all six mutations of T156 did so significantly (Figure 5A). All the above informa-

tion suggests that residue N154 may also serve other function(s), independent of N-linked glycosylation,

in ZIKV replication. In addition, it also validates the advantage of the high-resolution fitness profiling

platform in unbiasedly analyzing functional residues.

It has been shown that DC-SIGNmediates flavivirus infection of human dendritic cells by binding E protein

glycan(s) (Hamel et al., 2015; Tassaneetrithep et al., 2003), and dendritic cells were important targets for

flavivirus infection in patients (Wu et al., 2000; Marovich et al., 2001). In addition, N-linked glycosylation

of the E protein of WNV could possibly enhance its neuroinvasion (Beasley et al., 2005; Shirato et al.,

2004). In our study, N-linked glycosylation of the E protein was shown to be important for ZIKV infection

of immature dendritic cells and also 293T cells expressing DC-SIGN (Figure 7). The above information sug-

gests that glycosylation of ZIKV E protein may contribute to its virulence in patients and mouse models.

However, all the data in our study were collected from in vitro infection of human and mosquito cell lines,

and future detailed investigation with mouse models and mosquito vectors will be required to examine

the potential connection between E protein N-linked glycosylation and ZIKV virulence, particularly

neuroinvasion.

In summary, this is the first study to systematically map functional residues of the ZIKV E protein and char-

acterize the roles of its N-linked glycosylation at the N154 position. The study validates the advantage of a
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high-resolution fitness profiling platform in unbiasedly analyzing functional residues. Future research will

be required to elucidate the molecular mechanism of the viral entry affected by N-linked glycosylation

of ZIKV E protein, in cell culture and in animal models. Our library of ZIKV E mutants could be employed

to examine the roles of E protein in other conditions, for example, mapping neutralizing antibody-binding

epitopes and interactions with entry factor(s). We also expect that the high-throughput fitness profiling

approach will be applied to study other ZIKV viral proteins.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figures 

Fig. S1.  

 

Fig. S1. Related to Fig. 2. Analysis of deep sequencing results of plasmid DNA and  

reconstituted virus libraries. (A) Mutation frequency distribution of DNA and virus 

libraries. Frequency distributions were smoothed by Gaussian kernel density estimation. 

Two replicates of DNA libraries are shown as orange polygons. Three replicates of input 

virus libraries are shown as blue polygons. (B) Correlations of relative frequency of 

individual point mutations between samples. (C) Log10 relative fitness indices for silent 

mutations, nonsense mutations, and missense mutations in virus library are shown as 

histograms. 



 

Fig. S2 

 

Fig. S2. Related to Fig. 2. Log10 relative fitness indices for silent mutations, nonsense 

mutations, and missense mutations in passaged libraries are shown as histograms. 

  



Fig. S3 

 

Fig. S3. Related to Fig. 5. Western blotting signal intensity (A) and fluorescence (B) and 

was quantified with ImageJ, normalized to corresponding WT virus and plotted. Results 

were analyzed by unpaired Student’s t test. Differences between WT and mutants were 

considered statistically significant when p<0.05 (*) or p<0.01 (**).  

  



 

Fig. S4 

 

Fig. S4. Related to Fig. 6. Multiple-step growth curve analysis of ZIKV WT and five N-

linked glycosylation defective mutants. (A) Intracellular genome replication of ZIKV WT 

and mutants. A549 or C6/36 cells were infected with ZIKV WT or mutants at a MOI of 

0.05, total RNA was purified from cells at the indicated time points post-infection, and 

subjected to qRT-PCR analysis. (B) Infectious virus production. Supernatants were 

harvested from same cells as (A), and viral titers were determined by plaque assay. 

  



Fig. S5 

 

Fig. S5. Related to Fig. 6. Ablation of E protein N-linked glycosylation enhances ZIKV 

growth in Aedes aegypti CCL-125 cells. (A) Cells were infected with ZIKV WT, mA or 

mB at a MOI of 1 for two days, and then subjected to immunostaining using αE (4G2) 

antibody. (B) Cells were infected with ZIKV WT, mA or mB at a MOI of 0.1, harvested at 

indicated times for RNA purification and qRT-PCR analysis. Viral genome copy 

numbers were plotted as mean ± SD (n=3). (C) Infectious virus production. 

Supernatants were harvested from same cells as (B) to determine viral titers. Results 

were analyzed by unpaired Student’s t test. Differences were considered statistically 

significant when p<0.05 (*) or p<0.01 (**).  

 

 



Fig. S6.  

 

Fig. S6. Related to Fig. 6. Attachment efficiency of ZIKV WT and mutants on surface of 

A549 cells. A549 were culture to ~100% confluency, then incubated with ZIKV WT or 

mutants at a MOI of 10 at 4 oC with constantly agitation. One and half hours later, cells 

were washed with ice cold PBS for three time, then immediately subjected to RNA 

purification and qRT-PCR to determine viral genome copy numbers. Relative attaching 

efficiency to WT virus was plotted as mean ± SD (n=3). 

  



 

Fig. S7 

 

Fig. S7. Related to Fig. 7. Expression of DC-SIGN mediated ZIKV infection. 293T cells 

were transfected with pCMV-DCSIGN-cFLAG or pCMV-DsRed-express (control) 

plasmids and one day later, cells were infected with ZIKV WT at a MOI of 0.2. Cells 

were fixed at 24 hours post infection, and subjected to IFA analysis with αE (4G2) and 

αFLAG antibodies. 

  



Supplemental Tables  

Table S1. Sequence of primers. Related to Figure 1. 

primers sequence comments 

BR-F AGGCGTATCACGAGGCCCTTTCGTCTTCAAGAATT
CTAATACGACTCACTATAGAGTTGTTGATCTGTGTG
AATCAG 

Amply the first 
ZIKV genomic 
fragment 

BR-R1 CTTCCCAAAAGCCAAGCGATGGCGGCCGCTGCTAA
CGCGAAGCCAGG 

BR-F1 CCTGGCTTCGCGTTAGCAGCGGCCGCCATCGCTTG
GCTTTTGGGAAG 

Amply the 
second ZIKV 
genomic 
fragment 

BR-R2 CGTTATAGACGAACACCCCGGTACCGCATCTCGTC
TCCT 

BR-F2 AGGAGACGAGATGCGGTACCGGGGTGTTCGTCTAT
AACG 

Amply the third 
ZIKV genomic 
fragment BR-R3 GTTGAACCTAGCAGTCTACGCGTCATTACTCTGTAC

ACTCC 

BR-F3 GGAGTGTACAGAGTAATGACGCGTAGACTGCTAGG
TTCAAC 

Amply the 
fourth ZIKV 
genomic 
fragment 

BR-R4 GCGCAGCTGCTGCCTGCAGGCCTGGGATCAAGTA
CATGTA 

BR-F4 TACATGTACTTGATCCCAGGCCTGCAGGCAGCAGC
TGCGC 

Amply the fifth 
ZIKV genomic 
fragment BR-R5 GTTCAAGAATCCAAGGGCTTCAAACTCTAGAAATCT

AGCC 

BR-F5 GGCTAGATTTCTAGAGTTTGAAGCCCTTGGATTCTT
GAAC 

Amply the sixth 
ZIKV genomic 
fragment BR-R GCTTATCGATGATAAGCTGTCAAACATGAGAATTCG

AAGACCCATGGATTTCCCCACACCGG 

ep-A-F ATTGCCCCGGCATACAGC Generate sub 
library A by 
error prone 
PCR ep-A-R GGCTTCGGCTCTCGGTGA 

ep-B-F GAGCGAAAGTTGAGATAACGC Generate sub 
library B by 
error prone 
PCR ep-B-R TCAACCTCCCAACTGGGGT 

ep-C-F GCTCAGATGGCGGTGGAC Generate sub 
library C by 
error prone 
PCR ep-C-R 

gattGGTACCGCATCTCGTCTCCTTCTTTGAGAAGTC
CACCGAGCACCCCACATCAG 

Sub-Full-
F ACGAGGCCCTTTCGTCTTC 

Amply whole 
fragment for 
cloning Sub-Full-

R gattGGTACCGCATCTCGTCTCCT 



SubA-
Left-R GCTGTATGCCGGGGCAAT 

With Sub-Full-
F, generate left 
fragment of 
subA 

SubA-
Right-F TCACCGAGAGCCGAAGCC 

With Sub-Full-
R, generate 
right fragment 
of subA 

SubB-
Left-R GCGTTATCTCAACTTTCGCTC 

With Sub-Full-
F, generate left 
fragment of 
subB 

SubB-
Right-F ACCCCAGTTGGGAGGTTGA 

With Sub-Full-
R, generate left 
fragment of 
subB 

SubC-
Left-R GTCCACCGCCATCTGAGC 

With Sub-Full-
F, generate left 
fragment of 
subC 

ZD1-F TGATACTGCTGATTGCCC Deep 
sequencing 
primer set 1 ZD1-R TCGACAGTCGGTTTGTCC 

ZD2-F TGTCACCGTAATGGCACA Deep 
sequencing 
primer set 2 ZD2-R GTAGGCTTCACCTTGTGT 

ZD3-F TCTGACAGCCGCTGCCCA Deep 
sequencing 
primer set 3 ZD3-R ATGCAAACTTAGCGCATG 

ZD4-F GCAAAGGGAGCCTGGTGA Deep 
sequencing 
primer set 4 ZD4-R GTTTCATGTCCTGTGTCA 

ZD5-F CAGTGGGATGATCGTTAA Deep 
sequencing 
primer set 5 ZD5-R TGAAAAGTCAAGGCCTGT 

ZD6-F CTTGATTGTGAACCGAGG Deep 
sequencing 
primer set 6 ZD6-R TGTTGTTCCAGTGTGGAG 

ZD7-F CTGGGGCAGACACCGGAA Deep 
sequencing 
primer set 7 ZD7-R TCCATCTCAGCCTCCAGA 

ZD8-F CACGGCCCTTGCTGGAGC Deep 
sequencing 
primer set 8 ZD8-R GATCTTGGTGAATGTGAA 

ZD9-F TCCTTGTGTACTGCAGCG 



ZD9-R TCCCAACTGGGGTCAGAG 

Deep 
sequencing 
primer set 9 

ZD10-F TGGCGGTGGACATGCAAA Deep 
sequencing 
primer set 10 ZD10-R ATCTTCTTCTCCCCGACT 

ZD11-F CTCTTACATTGTCATAGG Deep 
sequencing 
primer set 11 ZD11-R TCCAACTGATCCAAAGTC 

ZD12-F TTGGGAGACACAGCCTGG Deep 
sequencing 
primer set 12 ZD12-R ACCACATCAGCAACGTTC 

ZD13-F TCTCACAAATTCTCATTG Deep 
sequencing 
primer set 13 ZD13-R TTTGAGAAGTCCACCGAG 

N154D-F AGTGGGATGATCGTT gAT GACACAGGACATGAA A489G, mA 
 N154D-R TTCATGTCCTGTGTCATCAACGATCATCCCACT 

N154T-F AGTGGGATGATCGTT AcT GACACAGGACATGAA A490C, mB 
 N154T-R TTCATGTCCTGTGTCAGTAACGATCATCCCACT 

N154S-F AGTGGGATGATCGTT AgT GACACAGGACATGAA A490G, mC 
 N154S-R TTCATGTCCTGTGTCACTAACGATCATCCCACT 

N154K-F AGTGGGATGATCGTT AAa GACACAGGACATGAA T491A, mD 
 N154K-R TTCATGTCCTGTGTCTTTAACGATCATCCCACT 

T156A-F ATGATCGTTAATGAC gCA GGACATGAAACTGAT 
A495G, mE 

T156A-R ATCAGTTTCATGTCCTGCGTCATTAACGATCAT 

Y shape 
adapter-F 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNN
T 

Anneal to 
generate Y 
shape adaptor Y shape 

adapter-
R 

/5Phos/NNNAGATCGGAAGAGCGGTTCAGCAGGAAT
GCCGAG 

UniFcell-
F 

AATGATACGGCGACCACCGAGATCTACACTCTTTC
CCTACACGAC 

Amply adaptor 
ligated 
amplicon UniFcell-

R 
CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCA
TTCCTGCTGAACC 

DCSIGN-
Full-F agaGAATTccacc ATGAGTGACTCCAAGGAAC 

 
Clone full 
length DC-
SIGN with C-
terminal FLAG 
tag into pCMV-
noHA vector 

DCSIGN-
Full-R 

GAGgtcga cta CTTGTCGTCATCGTCTTTGTAGTC 
CGCAGGAGGGGGGTTTG 

  



Table S2. Summary of deep sequencing reads count. Related Figure 2. 

 

Samples 
Total reads 

(Million) 
WT Reads 
(Million) 

Mutation Reads 
(Million) 

Mutation Rate 
(%) 

DNA-1 6.59 6.19 0.40 6.13 

DNA-2 20.37 19.09 1.27 6.24 

RNA-1 5.14 4.92 0.22 4.36 

RNA-2 1.95 1.88 0.06 3.31 

RNA-3 3.56 3.42 0.14 4.04 

C6-1 3.97 3.76 0.20 5.15 

C6-2 5.48 5.19 0.29 5.32 

C6-3 6.48 6.17 0.31 4.81 

A549-1 5.29 5.07 0.22 4.09 

A549-2 5.37 5.12 0.24 4.50 

A549-3 4.65 4.44 0.21 4.46 

CMEC-1 3.24 3.09 0.16 4.85 

CMEC-2 4.83 4.63 0.21 4.27 

CMEC-3 12.52 11.94 0.58 4.61 

 

  



Table S3. Frequency of mutation types. Related to Figure 2. 

 

  
Original nt Mutation frequency 

C 0.15 

G 0.18 

T 0.22 

A 0.27 



Transparent Methods 

 

Cells, viruses and plaque assays 

Aedes albopictus C6/36 and Aedes aegypti CCL-125 cells were obtained from ATCC. 

C6/36 cells were maintained in DMEM medium supplemented with 10% FBS at 28 oC 

with 5% CO2; CCL-125 cells were maintained in MEM medium supplemented with 20% 

FBS. Vero and BHK21 cells were cultured in DMEM with 10% FBS. Human epithelial 

A549 cells were cultured in RPMI1640 with 10% FBS. Human cerebral microvascular 

endothelial cells (hCMEC/D3) were maintained in EndoGRO-MV complete culture media 

(Millipore). The parental ZIKV Puerto Rico strain PRVABC59 (GenBank number 

KU501215) was obtained from United States Centers for Disease Control and Prevention. 

Titers of infectious viral particles were measured by a standard plaque assay as descried 

previously (Qi et al., 2015).  Briefly, 6X104 Vero or A549 cells were seeded in 12-well 

plates one day before infection, then infected with virus for 1 h and overlaid with 1% 

methylcellulose (Sigma).  Four days later, cells were fixed and stained with 0.2% crystal 

violet in 20% ethanol, and plaques were counted to determine the titer. 

Human dendric cells generation 

Human PBMCs were isolated from healthy donors by density centrifugation over Ficoll-

Paque Plus in UCLA virology core. Monocytes were isolate from PBMCs with CD14 

magnetic beads (Miltenyi Biotec) and cultured at 106 cells/ml in RPMI1640 medium 

supplemented with 10% human serum, 1000U/ml each of human GM-CSF and IL-4 for 7 

days.  

Construction of ZIKV infectious cDNA clone 

After receiving the virus from CDC, ZIKV was amplified in C6/36 cells, and total RNA of 

infected cells was extracted with Purelink RNA Mini Kit (Ambion). ZIKV cDNA covering 

the complete genome was synthesized using SuperScript III reverse transcriptase 

(Thermo Fisher) with random hexamer (Fragments 1 to 5) or ZIKV specific primer against 

the last 20 nt of ZIKV 3’-end (Fragment 6). Then, six ZIKV sub-genomic fragments 

covering the whole genome were amplified using KOD polymerase (Millipore). Six 



fragments were assembled into EcoR I linearized pBR322 plasmid to generate pZ-PR 

plasmid using HiFi DNA Assembly Cloning Kit (NEB), and further transformed into DH10B 

E.coli. The whole sequence of pZ-PR plasmid was verified by Sanger DNA sequencing. 

Sequence of pZ-PR is available from NCBI GenBank: KY583506 and also in 

supplemental Materials and methods.  

Reconstitution of ZIKV from pZ-PR plasmid  

Recombinant ZIKV was generated from plasmid pZ-PR, containing the full-length cDNA 

of ZIKV Puerto Rico strain, using the previously describe method (Shan et al., 2016) with 

some modifications. In Brief, pZ-PR plasmid was amplified in DH10B E.coli and then 

purified using PureLink HiPure Plasmid Midiprep Kit (Thermo Fisher). To generate DNA 

template for RNA in vitro transcription, 100 μg of pZ-PR was linearized with BstBI, 

followed by end blunting with Mung Bean Nuclease (NEB). Then, the end-blunted 

template DNA was purified with phenol-chloroform, precipitated with ethanol, and 

resuspended in 20 μl RNase-free water. 5’-capped RNA was in vitro transcribed using 

mMESSAGE mMACHINE T7 kit (Ambion) with 1 μg template DNA and an additional 1 μl 

of 30 mM GTP solution. In vitro transcribed RNA was further purified with 

phenolchloroform, precipitated with ethanol, resuspended in 100 μl RNase-free water, 

aliquoted, and stored in -80 oC freezer.  

For cell transfection, 12 μg of RNA was mixed with 5X106 BHK21 cells in 200 μl 

Electroporation Solution (Bioland), and electroporated in 4-mm cuvette with the  

GenePulser apparatus (Bio-Rad) at the setting of 240 V and 950 μF, pulsing once. After 

10 min recovery at room temperature, transfected cells were resuspended in 10 ml warm 

culturing medium, incubated in cell incubator overnight, and then washed once and 

replenished with fresh medium. Three to four days post electroporation when ~40% of 

cells showing CPE, supernatants were collected, span at 8000 g for 10 min at 4 oC to 

remove cellular debris, aliquoted and stored at -80 oC.  

  

Generation of the plasmid DNA library of ZIKV E protein mutations  

To generate the mutant plasmid DNA library of ZIKV E protein, we designed an errorprone 

PCR strategy utilizing the pZ-PR plasmid as the template and the GeneMorph II Random 

Mutagenesis Kit (Agilent) to generate the point mutations during PCR  



amplification (Al-Mawsawi et al., 2014, Wu et al., 2015). The ZIKV E coding region was 

divided into three segments ranging from 516 to 545 bp (Fig. 2A) for the purpose of 

controlling mutational rate in error-prone PCR reaction. The mutated inserts were 

generated with 12-cycles amplification using the GeneMorph II Random Mutagenesis Kit, 

1 μg pZ-PR plasmid and corresponding primers. To generate full length fragments for 

cloning, the corresponding left and right fragments were amplified using high fidelity KOD 

DNA polymerase (Millipore) for 18 cycles. Each mutated insert and its corresponding left 

and right fragments were combined, and the resulting full length DNA inserts were 

generated by amplification with KOD polymerase for 20 cycles. Then, the full length 

inserts were digested with KpnI and EcoRI, while the vector pZ-PR plasmid was digested 

with KpnI and EcoRI followed by treatment with Shrimp Alkaline Phosphatase (NEB). 

Ligation was performed for each of the three sub libraries with T4 DNA ligase (NEB) with 

a vector: insert ratio of 1:5. Ligated products were purified with phenol-chloroform, 

precipitated with ethanol, resuspended in 10 μl sterilized water, and electroporated into 

DH10B E.coli competent cells. For each of the three sub libraries, ~40,000 colonies were 

collected from LB plates, and directly subjected to plasmid DNA purification. Equal 

amounts of the three sub libraries were then mixed to generate the DNA library, and 

stored at -80 oC in aliquot. 

 

Preparation of virus library and passages 

To reconstitute the virus library, 5’ capped RNA was in vitro transcribed from the plasmid 

DNA library, electroporated into BHK21 cells, and cell supernatant was collected at 4 

days post transfection. Cell supernatant containing the library of virus mutants was span 

at 8000 g for 10 min at 4 oC to remove cellular debris, titrated and stored at -80 oC in 

aliquot. Virus library was further passaged in C6/36, A549 or hCMEC cells by infecting 40 

million cells at a MOI of 0.05. Virus supernatants were collected at 4 days post infection, 

debris clarified, RNase A treated, and then subjected to RNA purification followed by deep 

sequencing analysis. 

 

Next-generation sequencing of virus mutations and data analysis 



Viral supernatants were treated with RNase A, then virion RNA was extracted using 

QIAamp Viral RNA Mini Kit (Qiagen), and reverse transcribed to cDNA using Superscript 

III Reverse Transcriptase (Thermo Fisher). The plasmid DNA library or cDNA from the 

viral libraries (virus or passaged libraries) were used as templates to generate 

thirteen158-bp deep sequencing amplicons. The resulting PCR amplicons were 3’-end 

dA-tailed, and ligated to Y-shape sequencing adapters using T4 DNA ligase (NEB). 

Yshape adapters were generated by annealing two oligos: 5’-ACA CTC TTT CCC TAC 

ACG ACG CTC TTC CGA TCT NNN NNN T-3’ and 5’-/5Phos/NNN NNN AGA TCG GAA  

GAG CGG TTC AGC AGG AAT GCC GAG-3’. The six “N” stands for the multiplex ID for 

distinguishing different samples.  The adapter-ligated products were further PCR 

amplified for 18 cycles using KOD polymerase and UniFcell primers. The final PCR 

products were gel purified, and pooled for deep sequencing on an Illumina Hiseq 3000 

platform with 150 bp paired-end reads. Raw sequencing reads were demultiplexed by 

using the six-nucleotide barcodes. Sequencing error was corrected by filtering unmatched 

forward and reverse reads. Each mutation was called by comparing individual reads to 

the WT pZ-PR reference sequence. The relative frequency and relative fitness score (RF 

score) for a given mutation was calculated as follows: For a mutation i in deep sequencing 

amplicon n of sample t (where t could be DNA plasmid, or virus libraries):  

Relative frequencyi,n,t = Read counti,n,t / Coveragen,t, where Read counti,n,t represented the 

number of read in amplicon n of sample t that carried mutation i and Coveragen,t 

represented the total read count (including WT and all mutations) of the amplicon n of 

sample t.  

RF score = Relative frequencyi,n,Virus / Relative frequencyi,n,DNA, where Relative 

frequencyi,n,Virus represented relative frequency of mutation i in viral library (virus or 

passaged library) and Relative frequencyi,n,DNA represented relative frequency of mutation 

i in DNA plasmid library. Data and Software Availability  

All analysis was performed with customized python scripts, which are available upon 

request. Raw sequencing data is available from NIH Short Read Archive: PRJNA373927. 

Polymorphism calculation  

 

https://www.thermofisher.com/us/en/home/life-science/pcr/reverse-transcription/reverse-transcriptase-enzymes/superscript-iii-reverse-transcriptase.html


Polymorphism score of each residue was calculated using a formula previously reported 

(Crooks et al., 2004). S = -100 * Sum (Pi * logPi) where Pi is the frequency of mutations 

at position i. The score is the normalized entropy of the observed mutation distribution. 

Construction of individual ZIKV mutants 

Single nucleotide mutations were introduced into pZ-PR plasmid individually. To generate 

mutant virus, BHK21 cells were electroporated with in vitro transcribed RNA, and viral 

supernatant were collected at 4 days post transfection. Mutant viruses were further 

amplified in C6/36 cells, then supernatants were collected, clarified of debris and stored 

at -80 oC in aliquot. Virion RNA was also extracted, and reverse transcribed to cDNA. E 

protein coding sequence of all mutants were PCR amplified individually, followed by 

Sanger DNA sequencing to verify the sequence. 

 

Reverse transcription and real-time PCR 

Quantitative RT-PCR was performed as previously described (Gong et al., 2016). Briefly, 

total RNA was extracted from infected cells with Purelink RNA Mini Kit (Ambion) or from 

RNAase A treated cell supernatant with QIAamp Viral RNA Mini Kit (Qiagen), reverse 

transcribed using Superscript III Reverse Transcriptase (Thermo Fisher) and random 

hexamer, and then subjected to real-time PCR analysis using primers: 5’-TTG TGG AAG 

GTA TGT CAG GTG-3’ and 5’- ATC TTA CCT CCG CCA TGT TG-3’. 

 

Western blotting 

ZIKV infected C6/36 or A549 cells were lysed in denaturing buffer, mock treated or treated 

with PNGase F(NEB) to remove N-linked glycan from proteins. Then proteins were diluted 

5 times in SDS-PAGE sample buffer, heated at 95 ̊C, resolved by SDS-PAGE gel 

electrophoresis, and transferred onto PVDF membrane. ZIKV E protein was detected with 

the monoclonal antibody D1-4G2-4-15 (Absolute Antibody). HRP-conjugated secondary 

antibodies were used and detection was performed with SuperSignal West Femto 

Maximum Sensitivity Substrate (Thermo Fisher). 

 

Indirect immunofluorescence assay 

https://www.thermofisher.com/us/en/home/life-science/pcr/reverse-transcription/reverse-transcriptase-enzymes/superscript-iii-reverse-transcriptase.html


Expression and localization of ZIKV E proteins was determined by indirect 

immunofluorescence assay. Cells were infected with ZIKV WT or mutants, fixed in 2% 

paraformaldehyde, permeabilized with 0.1% Triton-X100, and then blocked with 3% BSA 

plus 10% FBS. ZIKV E proteins were detected with mouse monoclonal antibody clone 

D1-4G2-4-15 (Absolute Antibody), followed by Alexa Fluor 488-conjugated anti-mouse 

IgG antibody (Life Sciences). DAPI was used for the staining of DNA. Samples were 

examined using a Nikon microscope using 63X/1.40-0.60 oil lens. 

 

Statistical analysis  

All numerical data were calculated and plotted with mean+/- SD. Results were analyzed 

by unpaired Student’s t test. Differences were considered statistically significant when 

p<0.05 (*) or p<0.01 (**).  

 

Key resources table 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse monoclonal anti-ZIKV E Absolute Antibody D1-4G2-4-15 
CD14 magnetic beads Miltenyi Biotec 130-050-201 
Monoclonal anti-FLAG Sigma F3165 

 

Bacterial and Virus Strains  

Zika virus Puerto Rico strain Centers for Disease 
Control and 
Prevention 

PRVABC59 

   
Biological Samples   

Human PBMCs from healthy donor UCLA virology core N/A 
   

Chemicals, Peptides, and Recombinant Proteins 

   

Critical Commercial Assays 

GeneMorph II Random Mutagenesis Kit Agilent 200550 
mMESSAGE mMACHINE T7 kit Ambio mMESSAGE 

mMACHINE T7 
kit 



   

Deposited Data 

Sequence of pZ-PR plasmid NCBI GenBank KY583506 
Deep sequencing raw reads on an Illumina 
Hiseq 3000 platform 

NIH Short Read 
Archive 

PRJNA373927 

   

Experimental Models: Cell Lines 

Aedes albopictus C6/36 ATCC CRL-1660 
Aedes aegypti CCL-125 cells ATCC CCL-125 
Human: A549 ATCC CRM-CCL-185 
Hamster: BHK-21 ATCC CCL-10 
Monkey: Vero ATCC CRL-1586 

Human cerebral microvascular endothelial 
cells (hCMEC/D3) 

Millipore SCC066 

Experimental Models: Organisms/Strains 

   

Oligonucleotides 

Primers for cloning, qPCR, library 
construction, and deep sequencing 

This paper N/A 

   

Recombinant DNA   

ZIKV cDNA plasmid pZ-R This paper N/A 
DC-SIGN expression plasmid pCMV-
DCSIGN-cFLAG 

This paper N/A 

pCMV-DsRed-expression Clontech 632416 
pCMV-noHA Gong et al 2016 https://www.ncbi.

nlm.nih.gov/pub
med/27832591 

   

Software and Algorithms   

customized python scripts This paper N/A 

 

  



 

Supplemental References 

AL-MAWSAWI, L. Q., WU, N. C., OLSON, C. A., SHI, V. C., QI, H., ZHENG, X., WU, T. 
T. & SUN, R. 2014. High-throughput profiling of point mutations across the HIV-1 
genome. Retrovirology, 11, 124. 

CROOKS, G. E., HON, G., CHANDONIA, J. M. & BRENNER, S. E. 2004. WebLogo: a 
sequence logo generator. Genome Res, 14, 1188-90. 

GONG, D., KIM, Y. H., XIAO, Y., DU, Y., XIE, Y., LEE, K. K., FENG, J., FARHAT, N., 
ZHAO, D., SHU, S., DAI, X., CHANDA, S. K., RANA, T. M., KROGAN, N. J., 
SUN, R. & WU, T. T. 2016. A Herpesvirus Protein Selectively Inhibits Cellular 
mRNA Nuclear Export. Cell Host Microbe, 20, 642-653. 

QI, J., HAN, C., GONG, D., LIU, P., ZHOU, S. & DENG, H. 2015. Murine 
Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and 
Functions in both Viral Lytic Replication and Latency during In Vivo Infection. J 
Virol, 89, 5788-800. 

SHAN, C., XIE, X., MURUATO, A. E., ROSSI, S. L., ROUNDY, C. M., AZAR, S. R., 
YANG, Y., TESH, R. B., BOURNE, N., BARRETT, A. D., VASILAKIS, N., 
WEAVER, S. C. & SHI, P. Y. 2016. An Infectious cDNA Clone of Zika Virus to 
Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host 
Microbe, 19, 891-900. 

WU, N. C., OLSON, C. A., DU, Y., LE, S., TRAN, K., REMENYI, R., GONG, D., AL-
MAWSAWI, L. Q., QI, H., WU, T. T. & SUN, R. 2015. Functional Constraint 
Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation 
and Functionality. PLoS Genet, 11, e1005310. 

 


	High-Throughput Fitness Profiling of Zika Virus E Protein Reveals Different Roles for Glycosylation during Infection of Mam ...
	Introduction
	Results
	Establishing Infectious cDNA Clone of ZIKV Strain PRVABC59
	Constructing a Library of Mutations in ZIKV E Protein
	Fitness Profiling of E Protein Mutants in Mosquito and Human Cells
	Constructing and Characterizing Individual N-Linked-Glycosylation-Defective Mutants
	Ablation of N-Linked Glycosylation Benefits ZIKV Replication in Mosquito Cells by Enhancing Virus Entry
	N-Linked Glycosylation is Important for ZIKV Infection of Mammalian Cells through DC-SIGN

	Discussion
	High-Throughput Fitness Profiling of ZIKV E Protein
	N-Linked Glycosylation at Position N154 of ZIKV E Protein

	Methods
	Data and Software Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References




