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Background: Regulatory T cells (Treg) are enriched in human colorectal cancer (CRC) where they suppress anti-tumour immunity.
The chemokine receptor CCR5 has been implicated in the recruitment of Treg from blood into CRC and tumour growth is delayed
in CCR5� /� mice, associated with reduced tumour Treg infiltration.

Methods: Tissue and blood samples were obtained from patients undergoing resection of CRC. Tumour-infiltrating lymphocytes
were phenotyped for chemokine receptors using flow cytometry. The presence of tissue chemokines was assessed. Standard
chemotaxis and suppression assays were performed and the effects of CCR5 blockade were tested in murine tumour models.

Results: Functional CCR5 was highly expressed by human CRC infiltrating Treg and CCR5high Treg were more suppressive than
their CCR5low Treg counterparts. Human CRC-Treg were more proliferative and activated than other T cells suggesting that local
proliferation could provide an alternative explanation for the observed tumour Treg enrichment. Pharmacological inhibition of
CCR5 failed to reduce tumour Treg infiltration in murine tumour models although it did result in delayed tumour growth.

Conclusions: CCR5 inhibition does not mediate anti-tumour effects as a consequence of inhibiting Treg recruitment. Other
mechanisms must be found to explain this effect. This has important implications for anti-CCR5 therapy in CRC.

Regulatory T cells (Treg) are enriched in CRC relative to other
tissue compartments (Loddenkemper et al, 2006; Salama et al,
2009; Sinicrope et al, 2009). Tumour Treg enrichment occurs in
cancer-bearing mouse models and anti-tumour immunity is
promoted through Treg depletion in several models including
CRC (Ha, 2009). This is the basis of the Treg-mediated tumour
immune escape hypothesis. (Danke et al, 2004).

Two populations of Treg exist: naturally occurring (nTreg) are
generated in the thymus (Darrasse-Jèze et al, 2005), whereas
induced Treg (iTreg) differentiate from CD4þCD25- cells in the
presence of TGF-� (Fantini et al, 2004). Both nTreg and iTreg
express the canonical Treg markers: CD25, Foxp3 and CTLA-4 and
it is thus difficult to distinguish the two. Recently, the stability of
nTreg Foxp3 expression has been linked to demethylation of CpG

motifs in a highly conserved element of the Foxp3 locus known as
the Treg-specific determining region (TSDR) (Floess et al, 2007).

Treg recruitment to tumours from blood is regulated by their
ability to cross tumour endothelium promoted by functional
chemokine receptors and adhesion molecules (Adams and Eksteen,
2006). In human ovarian cancer, the tumour expresses CCL22
allowing it to recruit CCR4þ Treg (Curiel et al, 2004) and in
gastric cancer, tumour Treg infiltration correlated with CCL17þ
or CCL22þ cell infiltration (Mizukami et al, 2008). More recently,
CCR5 and CCR6 have been implicated. In a murine model of
pancreatic cancer, CCR5 expression was demonstrated on tumour-
infiltrating Treg (Tan et al, 2009) and reduction of tumour CCL5
expression by shRNA was associated with smaller tumours
and reduced tumour Treg infiltration. The same effect was
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demonstrated for subcutaneous tumours originating from a CRC
cell line (Chang et al, 2012). Furthermore, delayed tumour growth
with an associated reduction in tumour Treg infiltration is reported
in CCR5� /� mice compared with wild-type mice (Chang et al,
2012; Schlecker et al, 2012).

Studies investigating the role of CCR5 in mouse models of
human disease are hampered by the fact that no selective
antagonist or neutralising antibody to murine CCR5 currently
exists (Mansfield et al, 2009). In contrast, a human CCR5 small
molecular antagonist, Maraviroc, has been approved for the
treatment of patients with HIV infection, acting by inhibition of
viral entry through the CCR5 receptor (Ray, 2009). The drug has
an excellent safety profile, is highly selective for CCR5 and is
administered orally (Dorr et al, 2005) leading to the potential of
developing clinical trials in patients with CRC. Maraviroc possesses
no activity, however, against murine CCR5 (Saita et al, 2007). This
led us to study the role of CCR5 in Treg recruitment to CRC with
the view to developing a clinical trial using Maraviroc in patients
with CRC.

METHODS

Human samples. Peripheral blood and tissue samples of CRC,
adjacent distal colon and tumour-draining lymph node (TDLN)
were obtained from patients undergoing a bowel resection as part
of their treatment for CRC at the QEHB. Peripheral blood was also
obtained, with consent, from healthy volunteers. Ethical approval
had been obtained from the local research and ethics committee
(LREC South Birmingham 2003/242, renewed 2012) and all
patients donating tissue had given full prior consent.

Lymphocyte isolation. Mechanical digestion of tissue samples was
performed using the gentleMACS dissociator (Miltenyi Biotec Ltd,
Surrey, UK), in order to avoid denaturation of cell-surface epitopes
(Mulder et al, 1994; Ford et al, 1996; Diederichsen et al, 1999).
Enzymatic digestion of tissues in collagenase II solution
(20 mg ml� 1, C2-22, VWR International Ltd, Leicestershire, UK)
for 1 h increases the lymphocyte yield (Grange et al, 2011) and was
used to obtain lymphocytes for use in functional assays. Digested
tissue was passed through a cell strainer (BD Biosciences Ltd,
Oxford, UK) and layered on top of a discontinuous gradient
of 70% and 30% Percoll solutions (GE Healthcare Ltd,
Buckinghamshire, UK). The mononuclear cell band was aspirated
and the cell suspension was washed and resuspended in complete
media containing 1% foetal calf serum (FCS) and antibiotics
(penicillin 1 U ml� 1, streptomycin 1mg ml� 1, gentamicin
10 mg ml� 1, amphotericin B 0.25 mg ml� 1).

Lymphocyte phenotyping and cell sorting. The cell suspension
was labelled with a fixable live/dead marker (Life Technologies Ltd,
Paisley, UK) and the following antibodies: CD3-Alexa-Fluor 750
(Clone UCHT1, Abd Serotec, Oxford, UK), CD4-V500 (Clone
RPA-T4, BD), CD8-PE-CF594 (Clone RPA-T8, BD), CD25 (Clone
M-A251, BD) and CD127-FITC (Clone HIL-7R-M21, BD). Cells
were labelled with additional antibodies against various cell-surface
and intra-cellular markers. In certain experiments, cells were fixed
and permeabilised using formalin and saponin solutions prior to
intra-cellular antibody labelling. Samples were analysed using a
CyAn ADP 3-laser, 9-colour flow cytometer (Beckman Coulter Inc,
Brea, CA, USA). The Treg population was defined by gating on live
CD3þ CD4þ CD25þ CD127low cells. Conventional T cells
(Tconv) were defined by gating on live CD3þ CD4þ CD25- cells.
To obtain purified Treg and Tconv for functional assays, antibody-
labelled cells were sorted using a MoFlo XDP High-Speed Cell
Sorter (Beckman Coulter Inc) in purity mode.

Suppression assay. Responder T cells (Tresp) were obtained by
isolating lymphocytes from 10 ml of peripheral blood from an
unmatched donor and labelling with CellTrace Violet dye (Life
Technologies Ltd). An equal number of CCR5low Treg, CCR5high

Treg and Tconv were three-way sorted into a round-bottomed 96-
well plate. Violet-labelled Tresp were then plate-sorted into the
same wells yielding Treg:Tresp ratios of 1 : 1, 1 : 2 or 1 : 4. Human
Treg Suppression Inspector beads (Miltenyi Biotec Ltd) provided a
polyclonal stimulus for proliferation and were added to each well at
a bead:lymphocyte ratio of 1 : 2. The total volume of each well was
made up to 200 ml with RPMI þ 10% FCS. The plate was
incubated at 37 1C and 5% CO2 for 3 days. Violet dye wash-out was
analysed by flow cytometry. Results were reported as percent
suppression (McMurchy and Levings, 2012):

Percent suppression ¼ 100
Percentage of proliferating cells with Treg present

Percentage of proliferating cells without Treg present
�100

Transwell cell migration assay. Bead-free CD3þ cells were
purified from CRC cell suspension by positive immunomagnetic
selection (Dynabeads FlowComp Human CD3, Life Technologies
Ltd). Purity was 495%. Cells were washed and suspended in
RPMI þ 0.1% bovine serum albumin (BSA) and incubated
overnight with either 1mM Maraviroc or an equal volume of DMSO
vehicle, prior to the transwell assay. In the bottom of a 96-well
transwell plate (Corning Inc, Corning, NY, USA), RPMI þ 0.1%
BSA either alone or containing 20 ng ml� 1 recombinant CCL4
(Peprotech Inc, Rocky Hill, NJ, USA) was placed. CD3þ cell
suspension was placed in the upper compartment of the transwell
and the plate was incubated at 37 1C 5% CO2 for 4 h. Migrated and
non-migrated cells were harvested, labelled with antibodies against
CD4, CD25 and CD127, and analysed using the CyAn flow
cytometer after addition of 20 ml AccuCheck counting beads (Life
Technologies Ltd). The chemotactic index for the absolute number
or percentage of a lymphocyte subset was reported:

Chemotactic index ¼

The absolute number or percentageð Þ of a
lymphocyte subset that migrated in response to chemokine

The absolute number ðor percentageÞ of the subset that
migrated to media alone

Immunohistochemistry. Formalin-fixed paraffin-embedded (FFPE)
5 mm sections were deparaffinised and rehydrated by passage
through Clearene (Leica GmBH, Wetzlar, Germany) and graduated
alcohols. Antigen retrieval was via microwaving in pre-heated
EDTA buffer (0.37 g EDTA in 1 l distilled water, pH adjusted to 8.0
using 1N sodium hydroxide, 0.05% Tween 20) for 15 min. Frozen
5 mm sections were thawed and fixed in acetone for 5 min.
Endogenous peroxidase was blocked by incubation with Perox-
idase-Blocking Solution (Dako Ltd, Cambridge, UK) for 10 min. Fc
receptors were blocked by incubation in 10% casein solution
(Vector Labs Inc, Burlingame, CA, USA) for 30 min. Sections were
incubated in a primary antibody solution to the target antigen at a
pre-determined dilution (goat polyclonal anti-CCL3, anti-CCL4,
anti-CCL5, anti-CCL20, all at 10 mg/ml, R&D Systems, Abingdon,
UK) or an isotype-matched control antibody solution at equal
concentration for 1 h at room temperature. The sections were
incubated in an HRP-conjugated development solution (Vector
ImmPress, Vector Labs Inc) and visualised in either ImmPACT
NovaRED or ImmPACT DAB-Nickel (Vector Labs Inc). Sections
were counter-stained in Meyer’s haematoxylin (Dako Ltd), cleared
and mounted in DPX (Leica GmBH). Tissue expression was
visualised using a Leica DM6000 microscope and the manufac-
turer’s software.

For double immunohistochemistry, following antigen visualisa-
tion with DAB-Nickel (anti-Foxp3, Clone 236A/E7, 10 mg ml� 1,
Abcam, Cambridge, UK), sections were re-blocked with casein
solution then incubated with the second primary antibody solution
(anti-CCR5, Clone 45531, 10 mg ml� 1, R&D Systems Inc) for 1 h at
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room temperature. Sections were incubated with the Vector
ImmPress system as before, visualised with NovaRED.

Real-time PCR. RNA was extracted from snap-frozen tissue
samples using the Qiagen RNeasy minikit (Qiagen GmBH, Hilden,
Germany) and the concentration was adjusted to 100 mg ml� 1

following assessment of RNA quantity by UV absorbance at 260/
280 nm. Three micrograms of RNA was reverse-transcribed using
the iScript kit (Bio-Rad Inc, Hercules, CA, USA). Differences in
chemokine mRNA expression between CRC and matched colon
tissue was assessed in duplicate, relative to chosen housekeeping
genes, calculated by the 2(�DDCt) method.

RNA was isolated from CRC-sorted Treg and Tconv using the
RNeasy micro kit (Qiagen GmBH) and transcribed into cDNA
(iScript). Gene expression was compared between Treg and Tconv
relative to GAPDH. All target primers and probes were pre-
designed and obtained from Life Technologies.

Methylation at the Foxp3 locus. A total of 10 000 to 20 000
CCR5low Treg, CCR5high Treg and Tconv were cell-sorted from
three different CRC samples and DNA was extracted using the
DNeasy Blood & Tissue kit (Qiagen GmBH). DNA was bisulfite-
treated (Epitect Bisulfite kit, Qiagen GmBH). The primers and
probes used to amplify the TSDR region and detect allelic
methylation status have been published previously (Tatura et al,
2012).

Western blotting. Protein was extracted from 30 mg snap-frozen
tissue by incubation in ice-cold lysis buffer (CellLytic MT, Sigma-
Aldrich Ltd, Dorset, UK) containing Proteinase Inhibitor Cocktail
(Roche Ltd, Welwyn Garden City, UK). The lysate protein
concentrations were determined against a BSA standard using a
bicinchoninic acid (BCA) assay and normalised to 2 mg BSA per
ml. Forty micrograms of protein per sample in SDS sample buffer
containing 10 mM �-mercaptoethanol and 8 M urea was resolved
on a 12% SDS–PAGE gel and transferred to a nitrocellulose
membrane. Membranes were blocked in 5% non-fat milk dissolved
in PBS for 1 h at room temperature. Membranes were subsequently
incubated overnight at 4 1C with goat anti-human antibodies
against various chemokines or GUS (R&D Systems) followed by a
1 h room temperature incubation with HRP-conjugated anti-goat
antibodies. Protein bands were detected with the PicoWest ECL
system (Thermo Fisher Scientific Inc, Rockford, IL, USA).
Membranes were not stripped.

Mice, tumour cell lines and CCR5 inhibitors. Procedures
involving mice and their welfare were conducted in accordance
with institutional guidelines that comply with United Kingdom
national policies (Animals (Scientific Procedures) Act 1986). All
animal experiments underwent rigorous scientific and ethical
review by the Joint Ethics and Research Governance Committee of
the University of Birmingham, UK. BALB/c wild-type mice were
purchased from Charles River, Margate, UK. hCCR5KI mice, in
which murine CCR5 is replaced by human CCR5 allowing the
testing of human CCR5 inhibitors (Mansfield et al, 2009), were a
gift from Pfizer Inc, New York, NY, USA and were bred to
homozygosity. CT26 cells, an undifferentiated colon carcinoma cell
line, and B16-F10 cells, a melanoma cell line, were purchased from
the ATCC via LGC Standards, Teddington, UK. Both cell lines
were transduced to express luciferase. Met-RANTES was a gift
from Dr Amanda Proudfoot, Merck-Serono, Lucerne, Switzerland.
TAK-779 (Repository reference: ARP968) was obtained from the
Centre for AIDS Reagents, NIBSC and was donated by the AIDS
Research and Reference Programme, Division of AIDS, NIAID,
NIH. UK-484900 and Maraviroc were gifted by Pfizer Inc. A twice-
daily dosing regime of UK-484900 results in complete functional
CCR5 blockade and human CCR5 is activated by murine
chemokines with the same EC50 as for human chemokines
(Dorr, 2008).

Tumour cell in vitro proliferation assays. A total of 1� 104 CT26
or B16-F10 cells were seeded into a 96-well plate in 200ml of DMEM
þ 10% FCS. Met-RANTES, TAK-779, UK-484900 and PBS were
added to wells at different concentrations in triplicate. The cells were
cultured for 24 h at 37 1C 5% CO2 until 40%–50% confluence. 20ml
of CellTiter 96 Aqueous One Solution (G3580, Promega Inc,
Madison, WI, USA), an MTT reagent, was added to each well,
incubated at 37 1C for 3 h and absorbance read at 490 nm.

Subcutaneous tumour models. A total of 5� 105 CT26 cells or
2.5� 105 B16-F10 cells were inoculated into the left flank of female
BALB/c or hCCR5KI mice, respectively. Tumour engraftment was
confirmed by bioluminescent imaging (BLI) at day 7 and further
imaging was performed every 72 h thereafter. Once daily injection
of met-RANTES and TAK-779 was commenced at day 7, or from
day 0 in the case of UK-484900. Mice were culled at 10 days post
commencement of treatment, following cardiac puncture and
tumour and spleen tissue was harvested. Fresh tissue was analysed
by flow cytometry and the proportion of live CD4þ cells that had a
Treg phenotype (CD4þ Foxp3þ ) was analysed.

RESULTS

Treg are enriched in human CRC. Lymphocytes were isolated
from a total of 70 samples of CRC from 70 patients, with
matched distal colon in 60 cases, matched TDLN in 8 cases and
matched peripheral blood in 7 cases. The proportion of CD4þ cells
that had a Treg phenotype (CD4þCD25þCD127low), referred to
as the Treg proportion, was calculated for each sample and compared
across tissue compartments. There was no significant difference in
the median Treg proportion in peripheral blood samples between
healthy volunteers and CRC patients (2.6 IQR: 2.2–3.2 vs 3.7 IQR:
3.0–3.7, P¼ 0.49, Mann-Whitney). Differences in the Treg propor-
tion between all other tissue compartments reached statistical
significance (Distal colon 4.8 IQR: 3.0–6.3 vs CRC 14.2 IQR:
9.8–18.9 vs TDLN 9.1 IQR: 7.4–11). The absolute number of Treg,
adjusted per mg of tissue, was 75 for CRC (IQR: 58–120) vs 7.7 for
colon (IQR: 4.8–9.7), P¼ 0.016, Wilcoxon signed-rank test.

The median percentage Foxp3 expression was 93.5% (IQR:
92.0–96.2), 16.2% (IQR: 13.8–19.5) and 6.5% (IQR: 4.7–12.7) for
CRC-isolated Treg, Tconv and CD8þ cells, respectively. The
difference in Foxp3 expression between Treg and Tconv was
statistically significant (Po0.01, Wilcoxon-signed rank).

Factors associated with the CRC Treg proportion. Patient
factors (age at operation, gender, mortality, local and distant
recurrence) and CRC factors (position, grade, stage, extramural
vascular invasion, tumour volume, MSI status) were tested for
association with the tumour Treg proportion, measured in 70
separate CRC samples. There was no significant association
between the tumour Treg proportion and any of these factors.

Treg express different chemokine receptors compared with
conventional T cells. The expression of different chemokine
receptors, integrins and various Treg markers was compared by
flow cytometry between CRC-isolated Treg and CRC-isolated
Tconv and CD8þ cells. Both differences in percentage expression
and MFI were compared. The expression of the same markers was
then compared between CRC-isolated Treg and Treg isolated from
other compartments. Positive expression was defined relative to a
FMO control containing an IMC of the same isotype as the
antibody against the antigen of interest. Summary of data from 64
separate flow cytometry experiments is presented in the
Supplementary Tables. Statistical significance was assessed by
Wilcoxon ranked-sign test, adjusted for multiple comparisons
using the Bonferroni method. CCR4 and CCR5 were significantly
overexpressed by CRC-isolated Treg compared with Tconv, both
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by percentage expression and MFI. Significantly, more CRC-
isolated Treg expressed CCR5 compared with Treg isolated from
distal colon. Representative flow cytometry data are shown in
Figure 1A. The mean fold change in Foxp3 mRNA expression by
cell-sorted CRC Treg relative to Tconv was 6.5 (s.d.¼ 3.1), serving
as an internal control for expected differences in gene expression
between the two cell types. The mean fold change in CCR5 mRNA
expression was 2.6 (s.d.¼ 1.0), suggesting that the increased cell-
surface expression of CCR5 by Treg compared with Tconv may, at
least in part, be explained by greater CCR5 gene expression (see
Figure 1B). Transcription factors involved in the regulation of
CCR5 transcription, KLF2 and CREB1 were also significantly
upregulated by Treg compared with Tconv. Double immunohis-
tochemistry identified cells within the tumour stroma, expressing
both CCR5 and Foxp3 (see Figure 1C).

CCR5 ligands are expressed by human CRC. The mRNA
expression of a panel of 10 housekeeping genes was measured in
eight samples of CRC with matched distal colon, of standardised
RNA concentration, by absolute quantification real-time PCR.
IPO8 and GUS were found to be the most stable housekeeping
genes by GeNORM and Bestkeeper algorithms (data not shown).

The gene expression of cognate chemokines to receptors of interest
were profiled in CRC and matched distal colon, relative to IPO8
and GUS. There was no significant difference in the expression of
CCR4 ligands (CCL17, CCL22), CCR7 ligands (CCL19, CCL21),
CXCR3 ligands (CXCL9, CXCL10, CXCL11) or the CCR6 ligand
(CCL20). CCL3 and CCL4, but not CCL5, were significantly
overexpressed by CRC compared with distal colon (see Figure 2A).
These findings were corroborated at the protein level by both
western blotting and ELISA (Mix-N-Match ELISArray Kit 336111,
Qiagen GmBH) using tissue protein lysates (see Figure 2B and C).
The ELISArray kit gives absorbance as the readout because no
standard curves are generated. However, the absorbances lie on the
linear part of the standard curve provided the values are between
the negative and positive control values, as was the case for all
samples. Immunohistochemistry of CRC sections for CCL3, CCL4
and CCL5 all showed staining in the epithelial cell cytoplasm and
within the stroma. Additionally, CCL4 staining was noted on the
endothelium (see Figure 2D).

CCL4 correlates with Foxp3 and Treg CCR5 expression. Expo-
sure to cognate chemokine leads to CCR5 internalisation (Mueller
and Strange, 2004). It may therefore be expected that CCR5þ cells
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Figure 1. (A) Representative flow cytometry data of surface CCR5 expression by Tconv (blue) and Treg (red), isolated from CRC, compared with
isotype-matched control antibody (grey, IMC). (B) Mean fold change in relative quantification of mRNA expression of Foxp3, CCR5, KLF2 and
CREB1 to GAPDH by Treg relative to Tconv, isolated from CRC (n¼5). Error bars represent the standard error of the mean. Asterisks indicate
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would internalise CCR5 after migration along a chemokine
concentration gradient. CRC CCL3 and CCL4 mRNA expression
correlated with CRC-Treg CCR5 expression (CCL3: n¼ 12,
r2¼ 0.61, P¼ 0.036; CCL4: n¼ 12; r2¼ 0.8, P¼ 0.002). There
was no correlation between CRC CCL3, CCL4 and CCL5 mRNA
expression and the tumour Treg proportion although there was a
significant correlation between CRC CCL4 mRNA and Foxp3
mRNA(n¼ 18, r2¼ 0.61, P¼ 0.0078). These correlations support
the notion that CCR5þ Treg are recruited to CRC via cognate
chemokines, particularly CCL3 and CCL4.

CRC-isolated Treg are nTreg. We studied Helios expression and
unmethylated DNA at the TSDR in the CRC Treg because both
had been associated with natural Treg. Median (IQR) percentage
Helios expression by CRC-isolated Treg was 75.2% (70.6–80.8)
compared with 11.2% (9.2–14.9) for Tconv (P¼ 0.04). DNA was
extracted from cell-sorted CRC-isolated CCR5high Treg, CCR5low

Treg and Tconv and TSDR analysis confirmed significantly more
CCR5- and CCR5þ Treg had unmethylated DNA at the TSDR
compared with Tconv (P¼ 0.018), see Figure 3A.

CCR5high Treg are more suppressive than CCR5low Treg. There
was a trend for increased expression of Foxp3, CTLA-4 and CD39 by
CRC-isolated CCR5high Treg compared with CCR5low Treg, although
these differences did not reach statistical significance (data not
shown). CRC-isolated Treg suppressed allogeneic T-cell proliferation
whereas CRC-isolated Tconv did not (see Figure 3B), and CCR5high

Treg were more potent in vitro than CCR5low Treg (P¼ 0.018).

CRC-isolated Treg migrate towards CCL4 in vitro. CRC-isolated
lymphocytes were allowed to migrate towards 20 ng ml� 1 CCL4
across a transwell membrane, over five separate experiments. The
mean proportion of isolated Treg that migrated across the
transwell was 21% and 28% in response to media alone and
CCL4, respectively (P¼ 0.043). The difference in the chemotactic

index between Treg migrating in response to CCL4 and in
response to media alone reaching statistical significance
(P¼ 0.043). Pre-treatment of lymphocytes with Maraviroc abol-
ished the migration (P¼ 0.042). There was a reciprocal, significant
reduction in the chemotactic index of the number of Treg
remaining in the upper INPUT chamber with CCL4 compared
with media alone (P¼ 0.028) (see Figure 3C). The Treg proportion
of migrated cells was significantly increased in response to
chemokine compared with media alone, P¼ 0.043 (see Figure 3D).

Treg exhibit enhanced proliferation compared with Tconv
in vivo. Although tumour-isolated Treg did not proliferate
in vitro (data not shown) as has been reported by others (Ling
et al, 2007; Chaput et al, 2009), they expressed higher levels of the
proliferation marker, Ki67, compared with Tconv, suggesting that
they are highly proliferative in vivo (42% IQR: 20–63 vs 7.0% IQR:
3.6–15, P¼ 0.032).

CCR5 inhibition does not reduce Treg infiltration in murine
tumour models. The above findings implicate CCR5 in Treg
recruitment and function in human CRC and support the
hypothesis that inhibiting CCR5 will reduce Treg function in
CRC thereby enhancing anti-tumour immunity. We therefore
sought to test this hypothesis by inhibiting CCR5 in murine
tumour models. In vitro proliferation of CT26 and B16-F10 cells
were not affected by increasing doses of met-RANTES and UK-
484900 (see Figure 4A). However, TAK-779 significantly inhibited
CT26 proliferation, consistent with a previous study demonstrating
TAK-779-induced CT26 cytotoxicity (Cambien et al, 2011). CT26
and B16-F10 tumours were grown in BALB/c and hCCR5KI mice,
respectively. Tumour Treg in both of these mice expressed
significantly more CCR5 than Tconv and in the case of B16-F10
tumours, Treg expressed significantly more CCR5 than CD8þ cells
(see Figure 4B).
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� 200 (top) and � 400 (bottom). Asterisks indicate positive CCL4 staining of the tumour endothelium. Abbreviations: CRC¼ colorectal cancer;
GUS¼ �-glucuronidase; IPO8¼ Importin-8; DC¼distal colon; BSA¼bovine serum albumin.
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CCR5 inhibition via met-RANTES and TAK-779 in BALB/c
mice or UK-484900 in hCCR5KI mice led to delayed tumour
growth at multiple time-points, by BLI and calliper measure-
ments (see Figure 5). The mean tumour weight was significantly
less for all treatments compared with control injections (see
Figure 5C and F). There was no difference in the tumour Treg
proportion for any of the drug treatments compared with control

injections (see Figure 6A and B). There was a trend for increased
CCR5 ligand levels in the tumours of UK-484900-treated
hCCR5KI mice compared with controls, this difference reaching
statistical significance in the case of CCL5. There was also
a trend for reduced tumour and tissue VEGF levels in UK-
484900-treated hCCR5KI mice compared with controls (see
Figure 6C).
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DISCUSSION

The Treg proportion was significantly increased in human CRC
compared with distal colon, consistent with published data (Ling
et al, 2007; Sinicrope et al, 2009; Frey et al, 2010; Yoon et al, 2012).

The reported association between tumour Treg enrichment and
cancer stage in CRC is inconsistent. We calculated CRC-Treg
infiltration as a proportion of CD4þ cells by flow cytometry and
found no demonstrable association between the Treg proportion
and disease stage, findings that are consistent with previous studies
taking the same approach (Deng et al, 2010). We found that
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significantly more tumour-isolated Treg expressed CCR5 than
Tconv and that levels of CCR5 were higher on the Treg than
Tconv. Furthermore, Treg isolated from tumour expressed
significantly more CCR5 than Treg isolated from distal colon.
Two of the ligands for CCR5 (CCL3 and CCL4) were significantly
overexpressed by CRC compared with distal colon, both at the
mRNA and protein levels. CCL4 localised to the tumour
endothelium, and CRC-ioslated Treg migrated to CCL4 in vitro
suggesting that this chemokine may play a key role in the
recruitment of CCR5þ lymphocytes to the tumour. Several
characteristics of the CRC-isolated T cells suggest they were nTreg
including expression of Helios and had unmethylated DNA at the
TSDR. We sorted CRC Treg based on levels of CCR5 expression
and found that, CRChigh Treg were more potent suppressors of
allogeneic T-cell proliferation in vitro, suggesting that CCR5
expression not only recruits Treg to the tumour but also defines a
more potent suppressive function. These findings implicate CCR5
in Treg recruitment and function in human CRC and support the
hypothesis that inhibiting CCR5 will reduce Treg function in CRC
thereby enhancing anti-tumour immunity. To test this hypothesis
we, used three different CCR5 antagonists to disrupt CCR5-
dependent responses in murine models of CRC. Consistent with
the findings from human CRC, Treg isolated from murine tumours
expressed significantly more CCR5 than Tconv. CCR5 inhibition
by RANTES, TAK-779 or UK 484900 resulted in a significant delay
in tumour growth in two different CRC models. However,
surprisingly, this was not associated with a reduction in tumour
Treg infiltration compared with vehicle-treated mice. This suggests
that Treg are not recruited to tumours, to any significant degree,
via the CCR5 axis.

We did find that a significant proportion of Tconv and CD8þ

cells also expressed CCR5, albeit less so than Treg, and therefore
the recruitment of all T cells may have been similarly inhibited. It is
possible that CCR5 expression may be a marker for the expression
of other receptors involved in the recruitment process or that Treg

are recruited by chemokine-independent mechanisms. Selective
proliferation of Treg within the tumour tissue, enhanced Treg
survival and reduced Treg egress could all explain Treg enrichment
in CRC. Significantly more human CRC-Treg were proliferating, as
demonstrated by Ki67 expression compared with Tconv consistent
with findings in other cancer models (Gobert et al, 2009;
Wainwright et al, 2011). Others have suggested that Treg may be
induced in situ in tumours from other T cells (Liu et al, 2007), but
our finding that tumour Treg TSDR locus was unmethylated
makes this unlikely to be the sole mechanism for Treg enrichment
in human CRC.

CCR5 expression is associated with T-cell activation and
proliferation (Richardson et al, 2012; Wierda et al, 2012). The
factors leading to the expression of surface CCR5 are complex and
involve receptor internalisation, recycling and gene transcription
(Tan et al, 2009; Chang et al, 2012; Schlecker et al, 2012). Greater
surface CCR5 expression by Treg compared with Tconv may
therefore represent differences in activation status rather than
preferential recruitment via the CCR5 axis. In support of this, the
gene expression of the transcription factors regulating CCR5
expression, KLF-2 and CREB-1, were significantly upregulated by
CRC-isolated Treg compared with Tconv.

Several previous studies have reported that lines of evidence that
CCR5 inhibition leads to a reduction in Treg infiltration in murine
tumours. Firstly, CCL5 knockdown in tumour cell lines leads to
delayed tumour growth with reduced Treg infiltration compared
with wild-type cell lines (Tan et al, 2009; Chang et al, 2012).
Secondly, tumour growth in CCR5� /� mice is delayed with
associated reduced Treg infiltration compared with wild-type mice
(Chang et al, 2012; Schlecker et al, 2012). Thirdly, inhibition of
CCR5 by TAK-779 reduces tumour Treg infiltration compared
with vehicle control in a pancreatic cancer model (Tan et al, 2009).
It was therefore surprising that pharmacological CCR5 inhibition
did not lead to a detectable reduction in tumour Treg infiltration in
our models. CCR5 inhibition did, however, lead to a delay in
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tumour growth in keeping with previously published findings (Tan
et al, 2009; Cambien et al, 2011; Chang et al, 2012).

How did CCR5 inhibition lead to a delay in tumour growth but
no associated reduction in tumour Treg infiltration? CCR5
antagonism by met-RANTES and TAK-779 is not specific. It is
possible that co-inhibition of CCR1 (met-RANTES) or CXCR3
(TAK-779) affected the recruitment of other T-cell subsets so that
the Treg proportion effectively remained unchanged. However, this
does not explain the delayed tumour growth observed in UK-
484900-treated hCCR5KI mice. This drug does not affect tumour
proliferation in vitro consistent with a specific antagonism of
human and not murine CCR5. This suggests that anti-tumour
activity is due to the effects on host CCR5 and thus mediated via
immune cells and not a direct effect on tumour cells. Inhibition of
CCR5 could reduce the migration of other cells into the tumour or
lead to increased recruitment via other chemokine receptors.
Inhibition of CCR5 by UK-484900 led to increased tumour and
serum levels of CCL5, which could promote recruitment via CCR1
as has been shown for NK cells in a model of hepatitis (Ajuebor
et al, 2007). There is a significant increase in CD4þ , CD8þ and
NK cell tissue infiltration and a decrease in macrophage tissue
infiltration in CCR5 � /� mice compared to wild-type mice
(Kuziel et al, 2003; Song et al, 2012). Because macrophages can
promote tumour growth, it is possible that the CCR5 effect is
mediated via changes in macrophage recruitment. Such changes
could delay tumour growth while having no effect on the Treg
proportion. CCR5 also mediates recruitment of endothelial cells.
Neovascularisation is inhibited in CCR5� /� mice compared
with wild-type mice, associated with lower levels of tissue VEGF
(Ambati et al, 2003; Ishida et al, 2012). Endothelial progenitor cells
are recruited to tumours from the bone marrow in a CCR5-
dependent manner, where they lead to the formation of neovessels
(Spring et al, 2005). By reducing tumour neovessel formation
through blockade of endothelial cell recruitment, CCR5 inhibition
could delay tumour growth, independent of effects on Treg
recruitment. In support of this, we observed a trend for lower levels
of tumour and serum VEGF in UK-484900-treated mice although
this did not reach significance.

A previous study reported reduced tumour Treg infiltration of
pancreatic cancer in mice treated with TAK-779 (Tan et al, 2009).
This is very different from our findings and could be due to a
difference in the tumour models. In the pancreatic cancer paper,
tumour Treg proportion in control mice was 74% compared with
49% in TAK-779-treated mice. This is a very high tumour Treg
proportion in control mice and the reduction to 49% in treated
mice is still higher than the tumour Treg proportion in control
mice from other experiments.

Potential explanations for a low tumour Treg infiltration in
CCR5� /� mice include: (i) Treg accumulate in the thymus in
CCR5� /� mice, associated with a reduction in S1PR1
expression compared with wild-type mice (Kroetz and Deepe,
2011) resulting in a failure of egress; (ii) T cells from CCR5� /�
mice secrete lower levels of IL-2 and NFAT following activation
compared with T cells from wild-type mice (Camargo et al, 2009)
and CCR5þ T cells are more proliferative than their CCR5�

counterparts. Accordingly, tumour-resident Treg in CCR5� /�
mice may be relatively anergic. (iii) Lower VEGF levels have been
reported in CCR5� /� mice compared to wild-type mice
(Ambati et al, 2003; Ishida et al, 2012) and some Treg express
the VEGF receptor and proliferate in response to VEGF (Terme
et al, 2013).

In conclusion, although conditions in human CRC exist to
support active recruitment of Treg via the CCR5 axis, pharmaco-
logical inhibition of CCR5 in murine tumour models fail to
demonstrate any reduction in tumour Treg infiltration despite
reducing tumour growth. This suggests that the effect of CCR5
antagonism in CRC is not through Treg depletion, but must

involve other immune pathways. Caution should be
exercised before moving into clinical trials of CCR5 inhibition in
CRC.
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