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Abstract
The transient receptor potential vanilloid 1 (TRPV1) is densely expressed in
spinal sensory neurons as well as in cranial sensory neurons, including their
central terminal endings. Recent work in the less familiar cranial sensory
neurons, despite their many similarities with spinal sensory neurons,
suggest that TRPV1 acts as a calcium channel to release a discrete
population of synaptic vesicles. The modular and independent regulation of
release offers new questions about nanodomain organization of release
and selective actions of G protein–coupled receptors.
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That burning sensation in our mouth and throat on tasting a 
piquant food containing capsaicin introduces us to the tran-
sient receptor potential vanilloid 1 (TRPV1). This burning  
sensation relies on activation of TRPV1 channels expressed in 
local primary sensory neurons and, when that message arrives  
in the cortex, it is perceived as irritation or pain. Capsaicin has 
had a long culinary and experimental history, but the cloning of 
TRPV1 defined a major breakthrough by shifting the focus to its 
mechanism of action1. TRPV1 is a homotetrameric membrane 
protein combining a transmembrane pore with domains devoted 
to vanilloid, thermal, and proton stimuli—each capable of trig-
gering channel gating2. This single protein provides integral, pol-
ymodal transduction via ion channel activation. Discovery of 
TRPV1 gave structure and focus to a varied and often confus-
ing experimentation history with natural substances such as cap-
saicin, which showed a mix of response activation with response  
inhibition3,4 plus a rich cultural history reaching to pre-Colum-
bian times5. TRPV1 has come to be intimately linked to pain 
and the molecular basis of nociceptor signaling6. TRPV1 acti-
vates a subset of slowly conducting thinly myelinated and 
unmyelinated somatosensory primary afferent neurons of the  
dorsal root ganglia (DRG) of the spinal cord. Our task here 
will be to briefly outline some of the major characteristics of 
TRPV1 activation established largely in DRG neurons and con-
trast these with recent developments in an entirely different set 
of TRPV1-expressing sensory afferents embedded deep within 
the body. In this article, I will focus on TRPV1 as a sensory  
transduction molecule and emphasize recent complementary 
work that suggests several new aspects of TRPV1 signaling 
in non-somatosensory primary afferents linked to innocuous  
neural functions.

Key attributes of TRPV1
The first key intrinsic properties of TRPV1 as an ion channel 
to appreciate are inseparable: calcium and depolarization. The  
strong calcium preference means that TRPV1 essentially serves 
as a calcium channel. TRPV1 conducts nearly 10-fold more  
calcium ions than other cations, so that measures of intracellular 
calcium levels often substitute as a metric for TRPV1 activity1. 
However, the inward current flow depolarizes and recruits  
voltage-activated channels exciting the neurons. A second  
important aspect of TRPV1 is gating, where three distinct  
stimuli are represented in separate sequences within the TRPV1  
structure7,8. The three stimuli presumably produce conformation 
changes to the TRPV1 protein, resulting in gating the channel 
open, namely vanilloid binding to one site, protons binding to 
an additional acidic site, and raised temperature critically chang-
ing a third site9–12. Remarkably, these three distinct stimuli gate 
open TRPV1 channels singularly but can act cooperatively in  
combination to facilitate gating so that threshold temperatures 
are lower in the presence of vanilloid—a property of this single 
protein which makes it a multimodal integrator13,14. Singly,  
however, the minimum gating stimuli are notable for their  
extreme, supraphysiological intensities even at threshold: high 
temperature (>42 °C), low pH (~6), and vanilloid ligands such 
as capsaicin, a substance foreign to the mammalian body15,16.  
Physiologically, such stimulus levels are reached only under 
extraordinary circumstances most often associated with frank  
tissue damage. The high affinity of plant-derived substances for  

TRPV1 such as capsaicin and the picomolar affinity resinif-
eratoxin (RTX) raised the question of whether these compounds 
mimic endogenous vanilloid substances in vertebrate animals 
and humans17,18. Certainly, on the basis of comparative chemical 
similarities, vanilloid moieties have been suggested as endog-
enous agonists (endovanilloids) to TRPV119,20. The complex 
interrelationship of anandamide and arachidonate metabolites 
and their highly varied fates offers a wide range of agonistic  
possibilities as well as uncertainties in the natural context21–23. 
These properties of TRPV1 gating, ion selectivity, and modula-
tion were remarkably conserved across a wide variety of experi-
mental contexts, including heterologous expression systems 
such as transfected HEK293 cells and dispersed cultured DRG  
neurons to brain slices and in vivo. A third aspect of TRPV1 is 
the loss of responsiveness with continued activation. Prolonged 
or repeated exposure to high agonist concentrations substan-
tially desensitizes TRPV1 function and depends on calcium 
entry and dephosphorylation24–26. In the extreme with neonatal  
animals, TRPV1 agonists selectively kill TRPV1-expressing  
sensory neurons likely due to calcium overload, whereas in adult 
animals, such treatments deplete neurotransmitter and damage  
primary sensory neurons reducing or eliminating function3,27. 
Intrathecal RTX produced analgesia as well as increases in blood 
pressure and heart rate28. TRPV1 expression makes central axons 
vulnerable to damage by intrathecal RTX29. Desensitization and 
competitive antagonism were exploited in attempts to design  
effective clinical analgesics30. Whereas preclinical results were 
promising, the trial results were confounded by hyperther-
mia. Selective TRPV1 antagonists triggered a perplexing rise in 
body temperature largely through what appears to be block of a 
tonically activated peripheral TRPV1 site and this side effect  
curtailed clinical deployment as an analgesic31. Note that these  
trials focused solely on addressing somatosensory nociceptors 
but simultaneous visceral afferent contributions to temperature  
regulation foiled these efforts. This remains a controversial topic 
and TRPV1 vagal afferents are implicated32.

TRPV1 in the broader context of primary afferents
The link between TRPV1 and nociception is clear and  
compelling. What often is overlooked is the presence of TRPV1+ 
non-somatosensory neurons. Extensive work links capsaicin 
with subpopulations of somatosensory afferents with slower- 
conducting axons (Aδ and C) beyond DRG neurons3,6.  
Peripheral TRPV1 and capsaicin actions extend to unmyeli-
nated cranial viscerosensory neurons to activate neural pathways  
controlling innocuous but vital functions like gastrointestinal 
control33, blood pressure34,35, and respiratory control36. TRPV1  
activation strongly excites cranial visceral afferents and acti-
vates pathways not involved in conscious perception but rather 
more in reflex alteration of autonomic functions, for example. 
These actions of capsaicin were described initially over 50 years  
ago3 but depended on the activation of specific subsets of  
visceral or interoceptive sensory neurons that included strong  
cardiorespiratory37,38 and thermoregulatory39 responses.

Immunostaining and blots revealed dense staining for TRPV1 in 
nodose ganglion but extended into the brainstem at the nucleus of 
the solitary tract (NTS) and implicated TRPV1 in vagal primary 
afferents and their central transmission in the TRPV1-expressing 
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cohort of primary afferents40. Interestingly, activation of these 
vagal central pathways inhibits nociceptive reflexes; that is, 
they are anti-nociceptive in consequence41. The frequency 
and intensity response profiles for vagal nerve stimulation are  
consistent with C-fiber activation and inhibited dorsal horn noci-
ceptive responses; thus, craniovisceral C-fiber activation inhib-
its the somatosensory nociceptive process in the spinal cord42. 
Clearly, as both cranial and somatosensory afferents express 
TRPV1, this fact represents potential confounders in pain  
therapeutic strategies using vanilloid-based drugs. The relatively 
protected internal locations of visceral afferent TRPV1 limits 
heat and acid deviations to those compatible with life and thus 
are unlikely to reach canonical threshold levels in normal tissue. 
Such constraints raise interesting questions about the adequate  
stimulus for visceral and central TRPV1 endogenous activation.

Localization of TRPV1+ neurons
Early tritiated RTX binding assays identified extensive central  
structures, some directly linked to primary sensory afferents but 
others not (olfactory nuclei, the cerebral cortex, dentate gyrus,  
thalamus, hypothalamus, periaqueductal grey, superior colliculus, 
locus coeruleus, and cerebellar cortex)35. Recently, however, 
new investigations featuring highly sensitive genetic tracing 
approaches43–46 found a much more restricted distribution of  
TRPV1 markers limited chiefly to primary afferent neurons in 
the spinal cord DRG, the cranial nerve cervical ganglia, and the  
trigeminal ganglia. The highest density of TRPV1 expression 
included central primary afferent synaptic terminal fields. 
TRPV1 expression was limited to a few discrete brain regions,  
including near the caudal hypothalamus, but was absent in regions 
previously linked to TRPV1 pharmacologically such as the  
hippocampus46. TRPV1 within primary afferents was limited 
largely to peptidergic, primary afferent neurons43. Expression 
of TRPV1 is present throughout these neurons – peripheral sen-
sory endings, axonally as well as the cell body and is not limited 
to specific locations within neurons such as proteins limited to  
synaptic regions or the spike initiation zone40. However, we 
have only a limited understanding of the details of trafficking  
control. TRPV1 expression is increased during inflammation 
and the pro-inflammatory cytokine tumor necrosis factor-alpha  
promoted increased TRPV1 insertion into plasmalemma of  
cultured trigeminal primary afferent neurons in a process  
associated with co-expression of other synaptic proteins, 
including Munc18-1, syntaxin1, and SNAP-2547. It remains  
uncertain whether this scheme is generalizable and especially 
whether it differs between somatosensory and visceral primary 
afferents.

TRPV1 in brainstem synaptic signaling
Craniovisceral primary afferent neurons (nodose, jugular, and  
petrosal) send axons centrally via the solitary tract (ST) to  
synapse predominantly within caudal portions of the NTS48,49.  
Most ST afferents have unmyelinated axons which overwhelm-
ingly are TRPV1+, whereas the faster-conducting Aδ lack  
TRPV150. Despite such expression, endogenous TRPV1 activity 
is difficult to discern in a largely homeostatically controlled  
internal milieu. In vivo evidence of endogenous TRPV1 activa-
tion in cranial afferents is indirect and controversial30,32,51,52 and  
suggests that tonic TRPV1 activation of vagal afferents  

contributes to thermoregulation. Similarly, the activation of 
TRPV1 on central sensory terminals seems unlikely given the high  
canonical threshold requirements2. ST afferent transmission 
to second-order NTS neurons is relatively conventional with  
significant deviations from central glutamate transmission expec-
tations. ST axons release glutamate to generate large excitatory  
postsynaptic currents (EPSCs) primarily through non-NMDA 
receptors as well as modulation via metabotropic glutamate  
receptors (mGluRs)53–55. The base, uniformly high probabil-
ity of glutamate release56–58 means that frequency-dependent 
depression dominates afferent transmission. Stimuli delivered 
to the visible ST activate tract axons generating all-or-nothing 
EPSCs consistent with unitary responses with high likelihood 
of triggering postsynaptic action potentials. Such ST-evoked  
transmission relies on the synchronous release of glutamate  
vesicles. ST input is most often limited to a single afferent,  
suggesting that convergence is quite limited58 as observed  
in vivo59. Remarkably, even when multiple ST inputs do  
converge on a single neuron, ST inputs either are TRPV1+ or 
lack TRPV1—a segregation of afferents by TRPV1 expression  
regardless of sensory modality60–62.

Synaptic responses suggest that presynaptic glutamate release 
mechanisms within TRPV1+ ST terminals differ from TRPV1−  
terminals not by synchronous release58 but by two additional  
modes of glutamate release. Rates of “spontaneous” EPSCs  
(that is, action potential–independent release) are 10-fold higher 
than TRPV1− afferents even in tetrodotoxin (TTX)63,64. The  
second added mode of release is the appearance of “asynchronous” 
spontaneous EPSCs (sEPSCs) following bursts of ST stimuli. 
Asynchronous release was elevated for seconds following the  
cessation of ST-evoked release. With sustained high frequencies 
of ST activation, synchronous EPSC amplitudes declined to less  
than 15% of control, but paradoxically the asynchronous rate  
simultaneously rose nearly fourfold64. Thus, the probability 
of evoked release declined while asynchronous release rose,  
indicating that separate mechanisms controlled distinct pools 
of glutamate vesicles64. Synchronous and asynchronous release 
required calcium entry through voltage-activated calcium  
channels (VACCs), but sEPSCs were unaffected by block of  
N-type VACCs65. Thus, two modes of glutamate release  
depended on VACC calcium entry but spontaneous release did 
not. ST transmission depended on multiple, non-overlapping  
pools of vesicles. But how was calcium being separated within 
these terminals and where was calcium for sEPSCs coming  
from?

TRPV1 expression was clearly limited to ST central terminals 
within the NTS and predicted elevated sEPSC rates46,66,67.  
Capsaicin (50 to 100 nM) had two effects on ST transmission: 
it robustly increased “spontaneous” glutamate vesicle release  
(sEPSCs), but within 1 to 5 minutes of exposure, ST shocks fail 
to activate the synchronized vesicle release for evoked EPSCs  
despite the continued high rate of sEPSCs. This puzzling pairing 
of facilitating one release while inhibiting the other reflects the 
dual nature of TRPV1 activation: depolarization and calcium  
entry, respectively. ST-evoked transmission required intact  
excitability to convey the ST shocks and excitation from axon 
site to terminal. We attribute the blockade of ST-evoked release 
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during TRPV1 to sustained depolarizing inward currents  
remote from the terminals which inactivate voltage-dependent 
excitability as reflected in gradual increases in conduction time 
(ST-EPSC latency) preceding synaptic failure68–70. Calcium entry 
via TRPV1 selectively increases sEPSC rate.

Neurotransmission depends most directly on calcium71. We  
anticipated that, since TRPV1 is highly calcium-selective, TRPV1 
activation would augment glutamate release. Certainly, reducing 
external calcium concentration decreased the sEPSC rate70, so 
calcium entry is required. In TTX, cadmium, a broad-spectrum 
VACC blocker, blocked evoked release without altering sEPSCs 
in TRPV1+ neurons—findings that collectively indicate that  
VACCs do not contribute to spontaneous release of glutamate. 
However, for NTS neurons, lowering the bath temperature to 
room temperature reduced sEPSCs and raising the temperature  
elevated sEPSC rate only in TRPV1+ neurons but neurons with ST 
inputs lacking TRPV1 were unaffected by such temperatures63–65. 
Thus, physiological temperatures were gating presynapti-
cally expressed TRPV1 to allow calcium entry and produced a 
basal, stochastic vesicle release onto NTS second-order neurons.  
Vanilloid and temperature act cooperatively at ST TRPV1 to  
sensitize basal glutamate release69. Temperature affected ST  
conduction times irrespective of TRPV1 expression but did not  
alter ST-EPSC amplitudes (that is, release)69. Interestingly, 
this also indicated that TRPV1-related calcium influx into the  
synaptic terminals did not contribute to synchronous release. 
Together, the evidence suggested that TRPV1 controlled a  
distinct pool of glutamate vesicles that were not affected by  
action potentials. The independence of ST-EPSCs from TRPV1 
activity may mean that the vesicles released by each stimulus are 
somehow effectively isolated from each other.

Multiple potential sources of calcium entry exist in ST  
terminals and include a diverse VACC family72 plus TRPV1 and 
serotonin 3 receptors (5-HT

3
Rs)71. Logically, calcium entering 

ST terminals might mix to augment multiple forms of glutamate 
release. Already, augmented TRPV1 activity did not boost  
ST-evoked EPSCs as would be expected. We decided to intro-
duce calcium buffers to intercept calcium entering via different  
calcium entry sources simultaneously73,74. Our advantage 
with ST transmission is that we can assay multiple modes of  
synaptic release (evoked, spontaneous, and asynchronous)  
simultaneously within individual neurons. Depending on affinity 
and concentration, calcium buffers will intercept calcium  
diffusing from the entry pore to the vesicle so that differences in  
buffering magnitude and timing will reflect positioning of  
calcium source relative to released vesicles. The introduction of 
calcium buffer first reduced asynchronous EPSC rates, suggest-
ing that asynchronous vesicle release required the greatest diffu-
sion distances compared with synchronously released vesicles 
making up the evoked ST-EPSCs amplitudes65. Interestingly,  
sEPSCs or thermal responses were unaltered by buffering,  
suggesting a close association of TRPV1 with its vesicles within 
a nanodomain. Buffering therefore distinguishes asynchronous  
vesicles as possessing a highly sensitive calcium sensor 
located perhaps more distant from VACCs than synchro-
nous vesicles. Taken as a whole, our findings suggest distinct 
mechanisms of release for synchronous, asynchronous, and  

spontaneous vesicles that are likely to reside in unique, spatially 
separated vesicle domains. Collectively, these studies support 
a critical topology within the terminal that isolates a TRPV1  
mechanism of release separate from a VACC release  
mechanism71. Such a nanostructuring of the synaptic terminals 
offers a scaffold for differential release, modulation, and  
integration.

Modulation of release modules
G protein–coupled receptors (GPCRs) encompass a wide 
swath of signaling molecules and a substantial genomic  
proportion75,76. NTS and specifically the presynaptic afferent  
terminals are richly endowed with more than a score of different 
GPCRs often devoted to peptides48,49. Given the distinct release  
patterns centered on calcium entry sources and release modules,  
ST-NTS transmission offers diverse examples of both highly 
focused and broad-based GPCR targeting. Perhaps the most 
discrete example to date is CB1. The majority of ST inputs  
expressed CB1 regardless of TRPV1 responsiveness. Activation 
of CB1 selectively inhibits evoked synchronous glutamate  
release without altering basal or thermally activated TRPV1- 
mediated release of glutamate77. The bifunctional, endogenous 
arachidonate metabolite N-arachidonyldopamine (NADA)  
activated both CB1 and TRPV1 and appropriately inhibited  
evoked ST-EPSCs while augmenting sEPSCs with each effect 
blocked by highly selective, competitive antagonists targeted to 
either CB1 or TRPV177. Activation of vasopressin 1a receptors 
(V1aR), depressed both spontaneous and ST-evoked synchro-
nous release of glutamate and independently blocked conduction 
into ST terminals56. Activation of oxytocin receptors (OTRs)  
increased both spontaneous and ST-evoked synchronous release 
of glutamate57. Thus, V1aR and OTR are expressed in small 
subsets of ST afferent terminals and likely represent highly  
discrete modulation of specific afferent pathways through NTS 
and beyond. Given the block of both spontaneous and evoked  
release, these GPCRs must be expressed at both release  
nanodomains controlling those subsets of vesicles. One of the 
most ubiquitous GPCRs in NTS is ST presynaptic gamma amino  
butyric acid type B receptor (GABA

B
R). GABA

B
Rs depressed 

all forms of glutamate release in NTS: synchronous, asynchro-
nous, and spontaneous, including thermal gating of TRPV178.  
We speculate that the patterns suggest that GPCRs will be  
localized within specific release module nanodomains within 
ST terminals. The implication is that highly discrete modulation  
relies on physical distribution whereas broad GPCR modulation 
reflects multiple placements of GPCRs within or across signaling 
domains. Surprising genetic-proteomic evidence suggests that, in 
some peripheral somatic sensory neurons, GABA

B
R 1 subunits 

are positioned with TRPV1 and can switch the sensitized state 
of TRPV1 and this non-canonical, direct coupled mechanism  
requires a critical proximity79. Suffice it to say, the nanoscale  
landscape regarding TRPV1 will require improved tools and  
more refined spatially discrete approaches to verify the key  
aspects of nanoscale signaling and appropriate trafficking to  
support such mechanisms.

Out-of-canon TRPV1
The experimental results in NTS and brainstem to date are  
importantly discrepant with multiple canonical assumptions. 
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First and foremost, the basal thermal threshold for TRPV1 lies 
in the mid-range of physiological temperatures existing at the  
expression site. In vivo, introduction of capsazepine alone  
systemically or into NTS had no effect on respiration, blood  
pressure, or heart rate80,81. Although temperature is set at  
artificially low temperatures for slice recordings, the sEPSC 
rates average over 20 Hz at normal brain temperatures and  
generate substantial autonomous action potential firing without 
ST stimulation63,64. Clearly, such autonomous firing and the  
signals arriving at distant projection sites could be modulated 
by GPCRs without the necessity for peripheral afferent activity.  
The sustained activation of ST TRPV1 by vanilloids or  
temperature suggests that vesicle depletion or desensitization 
is moderate to none over extended time frames64,69. Vanilloid  
competitive antagonists are effective in blocking agonist  
(capsaicin or RTX) responses at ST TRPV1 but not other modes 
of TRPV1 activation, including heat in NTS69, in contrast to 
capsazepine block of heat responses in transfected HEK293  
cells40. Externally applied QX-314 has attracted considerable 
attention in blocking nociception when coupled to TRPV1  
activation in somatosensory neurons82,83, but QX-314 non- 
selectively blocks ST-NTS transmission regardless of TRPV1 
expression68. Collectively, such contrasting results raise the  
question of whether somatosensory TRPV1 is fundamentally  
different from craniovisceral TRPV1. Developmentally, DRG 
and nodose neurons derive from neural crest and placode cells,  
respectively, and these embryological origins are associated 
with a number of distinctions regarding ion channel, GPCR, and  
neurotransmitter expression84–86. Although the origins of these 
functional differences remain unclear, the evidence of differences 
is substantial.

Endogenous activation
The origin of the sensitized or physiological range of thermal 
sensitivity of cranial visceral TRPV1 afferents is unclear. In ST  
afferents, sEPSC release is insensitive to competitive vanilloid 
antagonists, suggesting that, in vitro, an endogenous agonist 

(for example, inflammatory mediator) is not responsible69.  
Suggested endogenous ligands for TRPV1 include anandamide 
and other bioactive lipids like lysophosphatidic acid87, but  
functional cases are limited88. Oleoylethanolamide (OEA) is 
an endogenous fatty acid ethanolamine that is produced in the  
intestinal mucosa in the fed state. High concentrations of OEA  
activate vagal afferents89, but it is unclear whether endogenous 
levels are sufficient. Oleic acid inhibits DRG TRPV190, as 
does anandamide91, but neither is effective in ST TRPV192  
(unpublished results). Thus, the role of endogenous lipid  
metabolites in TRPV1 activation or sensitization remains largely 
unresolved.

Future directions
TRPV1 is long recognized as an impactful physiological and  
pathophysiological molecule. The bluntness and imprecision 
of many of the available tools have been remarkably frustrating.  
Drug development has been stymied by targeted purpose  
programs that were stopped by unintended TRPV1 actions off 
target. Clearly, newer and perhaps more discrete approaches 
and tools might be helpful in all respects. The complicated 
fate of membrane lipid metabolites and their spatial con-
trol make the pursuit of endogenous TRPV1 actors daunting.  
Biology-informed synthetic chemistry may hold promise22. 
For example, synthesis of appropriately spatially constrained,  
photoactivated tools might offer better insights into discrete  
localization of TRPV1 in appropriate biological models93.

Abbreviations 
DRG, dorsal root ganglia; EPSC, excitatory postsynaptic current; 
GABA
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R, gamma amino butyric acid type B receptor; GPCR, 

G protein–coupled receptor; NTS, nucleus of the solitary tract; 
OEA, oleoylethanolamide; OTR, oxytocin receptor; RTX,  
resiniferatoxin; sEPSC, spontaneous excitatory postsynaptic 
current; ST, solitary tract; TRPV1, transient receptor potential  
vanilloid 1; TTX, tetrodotoxin; V1aR, vasopressin 1a receptor; 
VACC, voltage-activated calcium channel
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