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Abstract

Improving the Intensive Care Unit (ICU) management network and building cost-effective

and well-managed healthcare systems are high priorities for healthcare units. Creating

accurate and explainable mortality prediction models helps identify the most critical risk fac-

tors in the patients’ survival/death status and early detect the most in-need patients. This

study proposes a highly accurate and efficient machine learning model for predicting ICU

mortality status upon discharge using the information available during the first 24 hours of

admission. The most important features in mortality prediction are identified, and the effects

of changing each feature on the prediction are studied. We used supervised machine learn-

ing models and illness severity scoring systems to benchmark the mortality prediction. We

also implemented a combination of SHAP, LIME, partial dependence, and individual condi-

tional expectation plots to explain the predictions made by the best-performing model (Cat-

Boost). We proposed E-CatBoost, an optimized and efficient patient mortality prediction

model, which can accurately predict the patients’ discharge status using only ten input fea-

tures. We used eICU-CRD v2.0 to train and validate the models; the dataset contains infor-

mation on over 200,000 ICU admissions. The patients were divided into twelve disease

groups, and models were fitted and tuned for each group. The models’ predictive perfor-

mance was evaluated using the area under a receiver operating curve (AUROC). The

AUROC scores were 0.86 [std:0.02] to 0.92 [std:0.02] for CatBoost and 0.83 [std:0.02] to

0.91 [std:0.03] for E-CatBoost models across the defined disease groups; if measured over

the entire patient population, their AUROC scores were 7 to 18 and 2 to 12 percent higher

than the baseline models, respectively. Based on SHAP explanations, we found age, heart

rate, respiratory rate, blood urine nitrogen, and creatinine level as the most critical cross-dis-

ease features in mortality predictions.
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1. Introduction

With the advent of the big data era, clinical practices have profoundly benefitted from data

analytical techniques. Clinical analytics has helped in efficiently extracting and storing medical

data, revealing hidden relationships and patterns, and providing invaluable insights into the

diagnosis and treatment of diseases. Medical analytics has improved illness prediction accu-

racy, helped diagnose diseases at an early age, and enhanced the cure rate of infections [1]. The

intensive care unit (ICU) is one of the primary clinical units in hospitals that has been remark-

ably affected by data analytics applications in recent years [2]. Patients in ICUs suffer from

severe life-threatening injuries and illnesses which require intensive life-saving care and inter-

ventions. Accordingly, patients are strictly monitored in ICUs to detect deteriorating physio-

logical changes, which continually generates enormous amounts of medical records, including

vital sign measurements, care plan documentation, illness severity measures, and diagnosis

and treatment information [3]. By applying various data-driven models to this big data moni-

toring, invaluable medical perspectives can be gained to enhance critical care services [4].

Predicting ICU mortality and estimating the length of hospitalization have tremendous sig-

nificance in healthcare analytics. These analytical studies contribute significantly to enhancing

patient outcomes, optimizing ICU resource utilization, and improving the financial perfor-

mance of ICU management systems [5]. To accomplish these clinical analytics’ goals, several

previous studies (e.g., [6, 7]) have applied the already developed models on their dataset. These

studies have mainly utilized ICU scoring systems, often multivariate regression models, that

merely combine predictive variables present at the time of ICU admissions to make predic-

tions [8, 9]. The most commonly used illness severity scoring systems include Acute Physiol-

ogy and Chronic Health Evaluation (e.g., APACHE IV/IVa [10]), Simplified Acute Physiology

Score (e.g., SAPS III [11]), and Mortality Probability Model (e.g., MPM0III [12–14]). Also, sev-

eral previous studies (e.g., [6, 15]) have considered a subset of patients with a specific disease

type to investigate predictive factors among these patients. The main reason for such consider-

ation is that identifying the prognostic factors of patients with particular diseases is insightful

for evaluating medical intensive care and clinical decision-making [6].

Although the already proposed ICU scoring systems are acceptable standards for quantify-

ing the ICU patients’ severity of illness and predicting their mortality status, researchers have

recently argued about their limitations and weaknesses [16]. In this regard, researchers have

strongly claimed that the current ICU scoring frameworks are not optimal, and they generalize

sub-optimally [17]. Accordingly, an increasing interest has recently appeared in implementing

machine learning (ML)-based approaches for ICU predictive analytics. However, these

approaches often cannot provide explicit interpretable models [8]. "A model can be defined as

interpretable if the behavior of the model can be explained verbally and that the model can be

used for reasoning" [18]. Such models can describe why the framework results in a particular

prediction [19], so medical staff can gain insights and derive rules over the roots of a specific

risk or outcome (survival/death) [17]. Also, patients about whom algorithms make decisions

can know the basis of the decisions and the factors influencing them [20]. Without any doubt,

for clinical applications, model interpretability is a significant boon due to the complexity of

the phenomena being analyzed and the potential repercussions of wrong decisions [18]. Most

state-of-the-art ML-based mortality prediction models, which often propose highly accurate

results, are black-box models and do not offer explainable frameworks. As such, these frame-

works do not present actionable insights, and they might not be used within the relevant deci-

sion support systems in hospitals [19, 22]. Thus, it is essential to develop mortality prediction

models that are both accurate and interpretable. Model interpretability can either be pursued

by developing intrinsically interpretable models (e.g., Logistic Regression and Decision Tree)
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or by using interpretable surrogate models as post-hoc explanation tools (e.g., SHapley Addi-

tive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME)) to

explain the black box models.

Towards addressing this vital need, the current study proposes an accurate and explainable

machine learning framework to predict the mortality of critically ill patients admitted to the

ICU at the time of discharge. The authors investigate how the created models work for patients

with different categories of diagnosed diseases. In summary, our study has five notable contri-

butions to the literature, which is noteworthy considering the current needs in this area:

• We have proposed highly accurate and efficient mortality prediction models with superior

performance to the widely used ICU scoring systems and state-of-the-art mortality predic-

tion models. We have also provided extensive baseline performance evaluations and com-

pared the results with our proposed model. Using post-hoc explanation tools, our proposed

model (E-CatBoost) achieves comparable transparency to the clinical illness severity scoring

systems while having similar performance to sophisticated black-box models in terms of

accuracy. Additionally, our proposed model requires a significantly lower number of input

features than most of the compared baselines.

• We have developed, tuned, and validated our models using the recently released eICU Col-

laborative Research Database v2.0, a multi-center extensive electronic database containing

the data for over 200,000 ICU admissions at 208 hospitals throughout the United States.

• Most previous studies [21–24] have relied on proposing a single mortality prediction model

for their entire patient population or have solely focused on a specific patient group. How-

ever, in this paper, we have meticulously divided the patient population into twelve represen-

tative groups based on their root hospitalization diseases and have proposed and tuned the

mortality prediction models for each disease category. Thus, we have proposed optimal mor-

tality prediction models for various disease types while covering almost the entire patient

population.

• We have identified the most critical risk factors in increasing the patient mortality probabil-

ity in ICUs across the defined disease groups. Moreover, we have analyzed how changing

each underlying factor increases/decreases the mortality probability in each group. We have

also revealed the critical ranges of values in each feature domain and the corresponding con-

tribution of each feature to the patient mortality risk. Also, in addition to making inferences

from group-level analyses, we have studied the important factors and their critical ranges of

values associated with heightened mortality probability in individual patients. This helps

medical specialists to have a clear understanding of the decision-making process of our pro-

posed model.

• We performed feature selection on the entire set of biological, physiological, and medical

variables and used the top ten most informative features for mortality prediction. In this

way, we proposed E-CatBoost, a highly optimized and efficient CatBoost-based model with

disease-specific features to predict patient mortality. Limiting the input information and

tuning the models to make optimum predictions facilitated the mortality prediction without

sacrificing accuracy.

This study is organized into five main sections. Section 2 briefly discusses the recent

advancements in developing interpretable ML-based mortality prediction models. Section 3

discusses the methodology and briefly describes the data, the baseline models, and the explana-

tion tools used in the study. Section 4 reports on the results of the analyses and provides a
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comprehensive description of the observations. Section 5 provides a conclusion about our

findings and delineates the future goals of this research.

2. Related work

In the pertinent literature, previous studies have proposed interpretable machine learning

models for predicting the mortality of ICU patients. Some of the recent studies related to the

goals of this paper are described in this section.

Davoodi and Moradi [25] developed a Deep Rule-Based Fuzzy System (DRBFS) to propose

a robust mortality prediction of ICU patients by employing fuzzy systems, deep learning, and

mixed variable clustering. They used a modified supervised fuzzy k-prototype clustering to

produce fuzzy rules and developed their model using the Medical Information Mart for Inten-

sive Care (MIMIC-III) dataset. In DRBFS, the hidden layer in each unit was demonstrated by

explainable fuzzy rules. The performance of the proposed method was compared with several

baseline classifiers, including Naïve Bayes (NB), Decision Trees (DT), Gradient Boosting (GB),

Deep Belief Networks (DBN), and Deep Takagi-Sugeno-Kang fuzzy classifier (D-TSK-FC).

The results showed that DRBFS has superior performance to these classifiers despite being

interpretable.

Nanayakkara et al. [22] developed accurate mortality prediction models for patients with

records of cardiac arrest 24 hours before ICU admission. The models were developed based on

Logistic Regression (LR) and other machine learning models, including Gradient Boosting

Machine (GBM), Support Vector Classifier (SVC), Artificial Neural Network (ANN), and

tree-based ensembles. They extracted the data from the Australian and New Zealand Intensive

Care Society (ANZICS) Adult Patient Database. The outcomes of ML models were compared

with the APACHE III and Australian and New Zealand Risk of Death (ANZROD) models.

Also, explainable models were devised to recognize the most crucial physiologic attributes for

a patient’s survival. The results indicated that nonlinear ML models improved mortality pre-

diction following cardiac arrest and had better performance than LR and illness severity scor-

ing frameworks.

Caicedo-Torres and Gutierrez [17] devised a visually interpretable deep learning frame-

work to predict ICU mortality using Convolutional Neural Networks (CNNs) and Shapley val-

ues. They trained their deep multi-scale convolutional architecture using the MIMIC-III

dataset. They designed their algorithm based on the notions from coalitional game theory. The

results confirmed that the proposed model is competitive compared to the state-of-the-art

deep learning mortality prediction models while remaining interpretable.

Chen et al. [26] introduced a new interpretable analysis framework that concurrently ana-

lyzes organ systems to predict the illness severity of ICU patients and their mortality risk. They

developed an interpretable deep learning model (AMRNN) using Recurrent Neural Networks

(RNNs) and the attention mechanism. They used a single Long-Short Term Memory (LSTM)

unit to learn physiological attributes of each organ system in multivariate time series. The

researchers also exploited a shared LSTM to use relationships across various learning tasks to

enhance the prediction performance. They used the MIMIC-III dataset to conduct experi-

ments and compared their results with the state-of-the-art baseline classifiers.

Huang et al. [27] developed a community-based federated machine learning (CBFL) algo-

rithm. They assessed the performance of their method on non-identically independently dis-

tributed (non-IID) ICU electronic medical records (EMRs) to predict ICU mortality and

length of stay. CBFL was built using the eICU-CRD. Their proposed method clustered the data

into clinically significant groups based on diagnosis results and regional locations. The data

was stored at hospitals throughout the learning process, while locally measured outcomes were
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put on a server. Assessment results indicated that CBFL was superior to the baseline federated

machine learning (FL) algorithm.

Shickel et al. [28] proposed a novel real-time illness acuity scoring system (DeepSOFA)

based on interpretable deep learning models and temporal measurements during the ICU stay.

Researchers used a modified RNN with gated recurrent units (GRU). They trained their model

using UFHealth and MIMIC datasets. They compared the performance of DeepSOFA with

SOFA (Sequential Organ Failure Assessment) and found notably more accurate mortality pre-

dictions than the baseline model.

Deshmukh et al. [23] proposed an explainable machine learning model to predict the asso-

ciated mortality with acute gastrointestinal (GI) bleeding. They used the eICU Collaborative

Research Database to extract the data for patients admitted with GI bleed. They used a gradient

boosting model (XGBoost) for mortality prediction and compared its predictive performance

with APACHE IVa using AUROC scores. They used machine learning interpretability tools

(SHAP) to explain the model’s prediction results. Their model showed superior performance

in predicting the mortality of patients with GI bleed compared to the existing scoring systems.

Hu et al. [29] proposed an explainable machine learning model to predict mortality in influ-

enza patients using the records of 336 patients at eight medical centers in Taiwan. They used

XGBoost to construct the prediction model and evaluated its performance compared to Logis-

tic Regression and Random Forest models. Moreover, the researchers measured the feature

importance values and used SHAP plots to visualize the interpretation. According to the

results, XGBoost outperformed the tested baseline models.

Pan et al. [24] constructed an ML-based model to analyze risk factors and predict mortality

of ICU patients diagnosed with COVID-19. They used hypothesis testing, correlation, and fac-

tor analysis on 123 patients with COVID-19 to identify potential ICU risk factors. Then, they

employed conventional logistic regression methods and four machine learning algorithms,

including Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree (GBDT), eXtreme

Gradient Boosting (XGBoost), and CatBoost to develop the risk prediction models. They used

AUROC scores to measure the performance of these machine learning models. They also used

calibration curves, SHAP, and LIME to explain and evaluate the risk prediction models. As a

result, eight crucial risk factors were detected and included in the prediction model. Finally,

they reported that the XGBoost model created using the eight important risk factors has the

best performance in predicting the risk of death in ICU patients with COVID-19.

Jiang et al. [30] developed an explainable ML algorithm using the MIMIC-III database to

predict mortality in sepsis survivors readmitted to the ICU within one year. The model could

identify the indicative features correlated with mortality risk in the target group. Moreover,

they visualized the association between the risk features and predicted mortality using Shapley

values.

A methodological summary of the related works is provided in Table 1.

3. Materials and methods

3.1. Data description

We extracted the data for this study from the eICU Collaborative Research Database v2.0

(eICU-CRD v2.0). This database was created through the work of Philips eICU Research Insti-

tute (eRI) in a telehealth program to assist healthcare providers and researchers by facilitating

their access to the patients’ medical records. The database includes medical information about

200,000 ICU admissions across 208 U.S. hospitals in 2014 and 2015. The original database is a

collection of 31 tables, 6 of which are used in this study. We merged the selected tables using

patient unit stay IDs. S1 Table provides the list and a brief description of these tables.
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Notably, this study focuses on the patient data recorded before and up to 24 hours after

admission to the ICUs. There are 26 categorical and 39 numerical features in this dataset. Due

to the disparate pathophysiology of diseases and different medical characteristics of admitted

patients based on their diagnosed conditions, we divided the dataset into twelve disease catego-

ries to analyze each group separately (Fig 1). The categories were identified by considering the

patients’ diagnosis and diagnosis priority types; only the "major" and "primary" diagnosis

groups were used in the analysis. In cases where multiple disease types were recorded for a

patient, only the most recent diagnosis and the one with the highest priority (i.e., "primary")

were considered for each diagnosis category. Thus, a patient can be categorized into multiple

diagnosis groups. Disease categories with less than 500 patients were excluded from the study.

While preparing the dataset, we made significant efforts to clean and preprocess the data.

In this regard, the valid and possible ranges for each column (e.g., lab test features) were

extracted from medical resources and used to identify outliers and errors in data. For instance,

the data points with irrational values were counted as errors. Null and misrecorded data were

Table 1. A methodological overview of the related works.

Ref. Algorithm(s) A brief overview of the algorithm(s) Limitations of the research methodology

[17] ISeeU A visually interpretable deep learning

framework based on CNNs, Shapley values,

and coalitional game theory

Using a high number of input features in developing the

models; considering the same performance for the models

across various disease groups; using a limited number of

baselines for assessing the performance of the models

[22] Logistic Regression; Gradient Boosting Machine;

Support Vector Classifier; Artificial Neural

Network; and tree-based ensembles

A set of machine learning models Using a high number of input features in developing the

models; using a limited number of baselines for assessing the

performance of the models

[23] XGBoost A gradient boosting machine learning model Using a high number of input features in developing the

models; using a limited number of baselines for assessing the

performance of the models

[24] Logistic Regression; AdaBoost; GB trees;

XGBoost; and CatBoost

A set of machine learning models Using a limited number of baselines for assessing the

performance of the models; using a small data sample for

developing the models

[25] A deep rule-based fuzzy system A modified supervised fuzzy k-prototype

clustering model

Developing explainable but not highly accurate models; using

a high number of input features in developing the models;

considering the same performance for the models across

various disease groups; using a limited number of baselines

for assessing the performance of the models

[26] Attended multi-task recurrent neural networks An interpretable deep learning model based

on RNNs and the attention mechanism

Using a high number of input features in developing the

models; considering the same performance for the models

across various disease groups

[27] A community-based federated machine learning

algorithm

A method for clustering the data into

clinically significant groups based on

diagnosis results and regional locations

Using a limited number of baselines for assessing the

performance of the models

[28] DeepSOFA A modified RNN with GRU units and

temporal measurements

Using a high number of input features in developing the

models; considering the same performance for the models

across various disease groups; using a limited number of

baselines for assessing the performance of the models

[29] XGBoost A gradient boosting machine learning model Using a high number of input features in developing the

models; using a limited number of baselines for assessing the

performance of the models; using a small data sample for

developing the models

[30] LightGBM A gradient boosting tree algorithm Using a high number of input features in developing the

models; using a limited number of baselines for assessing the

performance of the models; using a small data sample for

developing the models

Source: elaborated by the authors.

https://doi.org/10.1371/journal.pone.0262895.t001
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Fig 1. The relative frequency of twelve diagnosed disease groups in the eICU-CRD v2.0.

https://doi.org/10.1371/journal.pone.0262895.g001
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considered as missing information. Then, features with over 30 percent missing values were

excluded from the analysis; this resulted in 29 numerical and 26 categorical features (including

mortality status). To access a complete list of features used in this study, refer to S2 Table.

Missing values for numerical features were imputed with the mean value in each disease

group. In addition, missing values for categorical features were imputed as a separate “miss-

ing” category. Finally, the cleaned tables were merged into a master database for the subse-

quent analysis. The descriptive statistics summaries of the numerical and categorical features

across different diagnosis groups are provided in S3–S26 Tables (For brevity purposes, the

diagnosis string feature, which contains a full path string of about 3,000 diagnosed conditions

in eCareManager, is not shown in the descriptive statistics tables).

3.2. Benchmarking mortality prediction using machine learning models

and illness severity scoring systems

Twelve machine learning models and six most used illness severity scoring systems were

trained and tested using 10-fold cross-validation to predict patient mortality in each defined

disease group. This helped us conduct a comprehensive comparative analysis to predict patient

mortality and find the best model based on accuracy. This also enabled us to benchmark the

mortality prediction models and compare the performance of the proposed model with them.

The baseline models were divided into non-gradient boosting baseline models, gradient boost-

ing ensemble models, and illness severity scoring systems.

3.2.1. Non-gradient boosting baseline models. The baseline models discussed in this

part are typical non-gradient boosting machine learning algorithms with various complexity

and interpretability levels. They provide a suitable foundation for gauging the strength of more

advanced models against them. We used the Weka data mining software to train and test these

baseline classifiers [31]. The baseline models used in this part are:

1. Naive Bayes (NB):

Naive Bayes is among the simplest Bayesian network models. It applies the Bayes theorem

and assumes strong independence among the features. NB quantifies uncertainty in predic-

tions by providing posterior probability estimates [32].

2. Logistic Regression (LR):

Logistic Regression is a discriminative classification model that calculates the posterior

probability estimates without making any assumptions regarding class conditional proba-

bility. In this study, we used LogitBoost with a simple regression function as a base learner

to fit the logistic model. The automatic attribute selection is performed by cross-validation

and using the optimal number of LogitBoost iterations [33].

3. Support Vector Machine (SVM):

Support Vector Machine is a linear classifier that can solve linear and nonlinear problems.

SVM can be formulated as a convex quadratic optimization function subject to linear con-

straints. In this study, we used a one-class SVM from the Libsvm library. The kernel type

and complexity parameters were optimized using cross-validation. Based on the hyperpara-

meter tuning results, we chose the radial-based function as the kernel type for the SVM

model [34].

4. Artificial Neural Network (ANN):

Artificial Neural Networks consist of stacks of neurons that provide a hierarchy of features

at multiple abstraction levels. This study used a neural network classifier with backpropaga-

tion to learn a multi-layer perceptron (neural network). The optimum architecture
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consisted of a one-layer ANN architecture with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
# of features

p
hidden nodes. Sigmoid was

chosen as the activation function with optimized hyperparameters (learning rate = 0.3,

momentum = 0.2). A decay mechanism was used to reduce the learning rate during each

learning iteration. Using a decay mechanism helps stop the network’s diversion from the

target output and improve the network’s general performance [35].

5. K-nearest Neighbor (KNN):

K-nearest Neighbor is a model-free non-parametric instance-based learning algorithm that

makes decisions based on the proximity of the test point to the training data. The KNN clas-

sifier used in this study selects the appropriate value of K based on cross-validation. The

brute force search algorithm was used for the nearest neighbor search and a distance weight

of 1

distance was implemented for distance weighting [36].

6. Decision Tree (DT):

Decision Tree is a non-parametric classification algorithm that does not make any prior

assumptions regarding the probability distribution of class labels and attributes; thus, it

applies to a wide range of classification problems. DT is created by splitting the root node

into various child nodes through a process known as recursive partitioning. A pruned C4.5

Decision Tree which is robust against noise and outliers was used in this study to predict

the target class without overfitting [37].

7. AdaBoost:

Boosting is an ensemble method that uses bootstrap samples created based on one another

in a sequential manner. It has an iterative learning process that adaptively changes the dis-

tribution of hard-to-classify data points. The algorithm uses majority voting to make the

final classification decision. In this study, the AdaBoost M1 method was used as an effective

and efficient boosting technique to boost a nominal classifier of a pruned C4.5 decision tree

[38].

8. Bagging:

Bagging is an ensemble method that uses bootstrap samples generated independently in a

parallel manner using a uniform distribution. In this study, a bagging method was used for

bagging a nominal class classifier of a pruned C4.5 decision tree [39].

9. Random Forest (RF):

Random Forest is an ensemble method that uses decorrelated unpruned decision trees to

make the final classification decision. The algorithm manipulates both training instances

(Bagging) and input attributes (using different features at each node). In this study, an RF

with 500 trees was used to randomly select partitioning features out of 25 features available

in the dataset at every node and construct an ensemble (forest) of random trees [40].

3.2.2. Gradient boosting ensemble models. Gradient boosting trees (GBTs) have become

popular algorithms for processing structured data. GBT algorithms differ based on the imple-

mentation of boosted tree algorithms, compatibilities, and limitations. This section describes

the three most famous variations of GBTs for predicting ICU patient mortality: XGBoost,

LightGBM, and CatBoost.

XGBoost stands for extreme gradient boosting. It started as a research project by Tianqi

Chen in 2014 [41] and became famous in 2016. XGBoost is an ensemble of decision trees; it

sequentially builds short and simple decision trees as each tree tries to improve the performance

of the previous one. XGBoost implements gradient boosting machines with significant improve-

ments; it also parallelizes each tree’s training and speeds up the process. XGBoost has been
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widely used to solve machine learning problems in health care. It has successfully been used to

predict hypertension outcomes [42], diabetes, cardiovascular [43], and coronary heart diseases

[44]. It has also recently been used for mortality prediction of patients diagnosed with COVID-

19 [45], acute influenza [29], cardiopulmonary arrest [46], and Sepsis [47] in ICUs [48].

LightGBM is a tree-based gradient boosting model with fast training speed and high accu-

racy [49]. Recently, researchers have successfully implemented LightGBM on various medical

analyses, such as driver mental state classification [50], blood glucose prediction [51], and

chemical toxicity identification [52]. Like other tree-based gradient boosting methods,

LightGBM makes inferences by adding up the outputs of multiple decision trees. For example,

the predicted probability of patient expiration equals the summation of probabilities of multiple

decision trees. The LightGBM algorithm is optimized by iteratively creating a new decision tree

on the gradient of the trained trees. LightGBM adopts two exclusive techniques: Gradient-based

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to speed up the training pro-

cess. Through GOSS, instances of the data with small gradients are excluded during the training

of LightGBM. In 2017, Ke et al. [49] proved that GOSS achieves appropriate model accuracy

because data instances with larger gradients are more important than those with smaller gradi-

ents. EFB bundles features that rarely take non-zero values simultaneously into a single feature

without losing much information. In general, GOSS and EFB speed up the training process of

LightGBM by reducing the amount of data and the number of features, respectively.

CatBoost, or categorical boosting, is a relatively new open-source machine learning tool

developed by the Russian internet service company named Yandex in mid-2017 [53]. It is a

robust algorithm among gradient boosted decision trees (GBDT) and has yielded beneficial

results in standard ML-related problems. The CatBoost model was developed to address the

downsides of the standard gradient boosting algorithms, such as target leakage and prediction

shift. The CatBoost model alters the classical gradient boosting algorithm through ordered

boosting and flexible handling of categorical features during the training phase; this is consid-

ered one of the boldest advancements of CatBoost compared to regular GBTs [53]. While

incorporating different data sources and dealing with non-numerical or categorical features,

CatBoost has proven to operate better than other gradient boosting algorithms such as

XGBoost and LightGBM [53, 54]. Unlike deep learning models, CatBoost provides valuable

results even with limited training data and computational power.

The easy-to-use and innovative format of CatBoost reduced the consumed time, chances of

overfitting, and the burden of detailed hyper-parameter tuning [55]. Since the inception of the

CatBoost model, researchers have used it in a diverse set of medical studies, the results of

which have demonstrated the exemplary performance of this model. In a study performed by

Postnikov et al. [56], the CatBoost algorithm was applied and trained on clinical data to predict

drug resistance in patients diagnosed with pulmonary tuberculosis. The study results showed

the algorithm’s high utility when dealing with highly scattered medical data. CatBoost is an

excellent choice for clinical data since categorical features are prevalent in these datasets [57].

Shuwen et al. [58] used six algorithms, including Logistic Regression, Random Forest, SVM,

GBDT, ANNs, and CatBoost, to detect liver metastasis in the early stages of colorectal cancer

(CRC). Their analysis demonstrated the optimal performance of the CatBoost model for the

early diagnosis of patients with liver metastasis. These findings are in line with other medical

studies that have observed the satisfying performance of the CatBoost model while operating

on clinical data [59, 60]. Since the eICU-CRD dataset has many non-numerical features, the

CatBoost model is suitable for predicting mortality probabilities using this dataset.

3.2.3. Illness severity scoring systems used in ICUs. Since 1980, numerous illness sever-

ity scoring systems have been tailored for the ICUs to predict survival/mortality risks, deter-

mine the severity of diseases and degree of organ dysfunction, optimize resource use and
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enhance patient outcomes. The proposed illness severity scoring systems that are frequently

used to evaluate the conditions of critically ill patients are categorized into two major groups:

1- Methods that predict mortality at the time of ICU admissions, such as Acute Physiology

and Chronic Health Evaluation (APACHE), Simplified Acute Physiology Score (SAPS), and

Oxford Acute Severity of Illness Score (OASIS). 2- Methods that evaluate organ dysfunction

degrees in admitted patients, such as Multiple Organ Dysfunction Score (MODS), Sequential

Organ Failure Assessment (SOFA), and Logistic Organ Dysfunction System (LODS). This sec-

tion briefly discusses these systems.

1. Acute Physiology and Chronic Health Evaluation (APACHE): The original APACHE was

developed in 1981 to assess the illness degree and categorize patients based on their illness

severity [61]. So far, the statistical methodology and the physiological variables APACHE

uses have been revised multiple times. This has resulted in the release of APACHE IV/IVa

as the most recent version of APACHE and one of the world’s most widely used ICU scor-

ing systems. APACHE IV was developed using the information on 100,000 patients from

104 ICUs in 45 US hospitals. It uses 142 patient variables, and for each physiological vari-

able, it uses the worst value during 24 hours of admission [10].

2. Simplified Acute Physiology Score (SAPS): The original SAPS was developed in 1984 and

used age and thirteen other physiological variables to predict patient mortality [62]. SAPS II

is a modified version of SAPS that uses a logistic regression analysis using 17 patient vari-

ables (twelve physiological variables, three disease variables, age, and admission). SAPS II

was developed using patient information from 137 ICUs in 12 countries [63]. A more

recent version, SAPS III, was created using a sophisticated statistical technique with the

data gathered from 303 ICUs over 35 countries [11].

3. Oxford Acute Severity of Illness Score (OASIS): With an attempt to simplify the mortality

predictions of illness severity scoring indices, OASIS was developed in 2013, which only

requires ten variables routinely collected in ICUs (e.g., no laboratory test results required)

to accelerate the mortality prediction [64].

4. Multiple Organ Dysfunction Score (MODS): Using the results of more than 30 published

reports and a comprehensive literature review on organ dysfunction between 1969 and

1993, MODS was proposed to measure the severity of multiple organ failure syndromes

including five organs (respiratory, renal, hepatic, hematologic, and central nervous systems)

[65]. Due to the high correlation between the dysfunction of multiple organs with mortality

probability, MODS is widely used for illness severity scoring and ICU mortality prediction.

5. Sequential Organ Failure Assessment (SOFA): The European Society of Intensive Care and

Emergency Medicine developed SOFA at a consensus conference in 1994. Like MODS,

SOFA measures the severity of six failed organs (cardiovascular, hepatic, renal, respiratory,

coagulation, and central nervous system), which is highly predictive of the patients’ dis-

charge status [66].

6. Logistic Organ Dysfunction System (LODS): Using the physiological data of 13,520

admission records from 137 adult patients across 12 countries, LODS assesses the sever-

ity level of six organ failures by conducting a logistic regression analysis. The system con-

siders renal, neurologic, and cardiovascular failures as the most severe organ failure

types and pulmonary, hematologic, and hepatic failures as the least severe organ failures.

In this way, LODS considers the relative severity of organ failure in addition to the failure

severity degrees in an individual organ to calculate the illness severity score and mortal-

ity probability [67].
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The illness severity scoring systems proposed in this section are used as baselines to com-

pare the performance of the proposed mortality prediction model with them. Although most

of these clinical scoring systems have simple methodologies, they are still widely used in ICUs

to evaluate patients’ illness severity and survival chances due to their high degrees of explain-

ability to physicians and medical experts. Proposing a model that can effectively learn complex

relationships between patient features using a significantly smaller amount of input informa-

tion is a promising objective this paper pursues.

3.3. Explaining the ICU mortality risk factors using SHAP and LIME

In recent years, there has been massive interest in applying interpretation tools on tree-based

ensemble models (such as Random Forest and Gradient Boosting Trees) used for ICU mortal-

ity prediction [68, 69]. Ensemble tree-based models generally result in more accurate predic-

tions than simpler models like Logistic Regression. However, the black-box nature of these

models does not disclose the decisive factors in determining the patient’s discharge status (sur-

vival or expiration), whether these factors are protective or dangerous, and what ranges of val-

ues in each factor affect the mortality probability the most. Thus, these models are not in favor

of clinicians. Consequently, in this research, we applied SHapley Additive exPlanations

(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) as surrogate explana-

tion tools to our best-performing mortality prediction model to improve the model’s explain-

ability. Using these post-hoc explanation tools enabled our model to maintain its high

accuracy while providing decent explanations about the model. A detailed description of the

results is provided in the results and discussion section (Section 4).

Shapley values are based on cooperative game theory and were introduced by Shapley in

1953. These values demonstrate the contribution of each feature in the outcomes of both

classification and regression models. While calculating the Shapley values, all permutations

of feature values are evaluated to calculate the average marginal impact of a feature value on

prediction results. This process is repeated for all features to calculate their Shapley values.

Features with higher Shapley values are identified as more important features because they

make a higher contribution to the model’s prediction results. There are numerous methods

in the literature for interpreting model predictions and estimating Shapley values; however,

finding the most efficient method for various scenarios has been open to scientific debates.

In 2016, Lundberg and Lee introduced SHAP (Shapley Additive exPlanations) values as a

unified “measure for feature importance” and proposed several efficient and consistent

methods for estimating them. SHAP values “are the Shapley values of a conditional expecta-

tion function of the original model” [70]. This paper uses TreeSHAP [71], a fast estimation

technique suitable to compute Shapley values in tree-based models such as Gradient Boost-

ing Trees and Random Forests.

Local Interpretable Model-Agnostic Explanations (LIME) is a general framework that can

locally interpret any black-box machine learning model. LIME has been widely used in various

medical applications, such as explaining machine learning models to predict hypertension

[72], mortality risk following cardiac arrest [22], and mortality of influenza patients in ICUs

[29]. LIME explains which variables make the prediction decision and reveals the contribution

of each feature for local instances. LIME is implemented in five steps: 1- Based on a particular

instance that we will explain later in this paper, LIME generates similar samples by tweaking

some feature values. 2- It predicts class labels of the new samples with the trained black-

box model. 3- It weighs the new samples and their class labels by proximity to the target

instance. 4- It trains an interpretable model, such as Logistic Regression, on the weighted sam-

ples and labels. 5- It explains the feature importance using the interpretable model.
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3.4. Partial dependence (PD) and individual conditional expectation (ICE)

plots

Partial dependence (PD) and individual conditional expectation (ICE) plots are famous for

gaining insight into the black box models. We use these plots to study the mortality predic-

tion’s sensitivity to the monotonic changes in the underlying feature values. PD plots map the

marginal effect of the selected variables to uncover the linear, nonlinear, or monotonic rela-

tionship between the response variable and the individual feature variables [73]. PD accounts

for the nonlinearity of the data, and by averaging out the effect of other features, represents the

global average prediction of the monotonic model as a function of different values of a specific

feature. PD plots improve the transparency of the black-box model and enable debugging and

validation across the feature domains. On the other hand, ICE plots are used to disaggregate

the average prediction of monotonic models; they perform nonlinear sensitivity analysis and

show the changes in the model predictions for an individual instance as a result of modifying a

specific feature value in its domain. For each instance (patient), ICE plots represent the func-

tional relationship between an individual feature and the predicted target value. In other

words, PD plots average the individual lines of ICE plots [73].

4. Results and discussion

In this section, first, we present cross-validation results of individual mortality prediction

models for the twelve overrepresented disease groups and also for the entire population of

admitted patients; in doing so, we focus on answering the following question: how does the

performance of the best model compare to the performance of other baseline models (NB, LR,

SVM, ANN, etc.), including ensembles (AdaBoost, Bagging, RF), gradient boosting trees

(LightGBM, XGBoost, etc.), and the illness severity scoring systems (APACHE IVa, SOFA,

SAPS II, etc.). First, we evaluated the performance of the mortality prediction models through

10-fold cross-validation using AUROC as the validation metric. We conducted hyperpara-

meter tuning by holding out 10 percent of the data as the validation set in each cross-validation

fold. Next, a group of explanation tools (SHAP, LIME, etc.) was applied to the best-performing

mortality prediction model to identify the most critical risk factors affecting the mortality

probability of patients in various disease groups. Additionally, a more in-depth analysis of the

feature importance was provided using force plots to study the most critical ranges of feature

values for mortality prediction. Furthermore, for each of the important features identified in

the previous steps, the partial dependence (PD) and individual conditional expectation (ICE)

plots were drawn to show how the monotonic increase of these features affects mortality prob-

ability across the entire patient groups. Finally, the efficiency of the best-performing model

was improved by conducting feature selection and limiting the number of input features to ten

in each of the overrepresented disease groups. This has resulted in the proposal of a highly

optimized and efficient framework to accelerate mortality prediction without sacrificing much

prediction accuracy.

4.1. Prediction of ICU discharge status

Table 2 shows the mean AUROCs using 10-fold cross-validation using the non-GBT baseline

model settings defined in the methodology section. The feature values are normalized only dur-

ing the training and testing of Logistic Regression, KNN, and ANN models. The original feature

scales are maintained during training and testing for the rest of the models in the paper.

Based on the results shown in Table 2, Random Forest outperforms all other non-GBT

baseline models in predicting ICU patient mortality.
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Using the GBT models described in the methodology section, we evaluated the perfor-

mance of XGBoost, LightGBM, and CatBoost via AUROC scores. The results are summarized

in Table 3.

The three introduced GBT models differ in main characteristics, including the splitting

technique, leaf growth, and categorical feature handling. For splitting, XGBoost does not use

any weighted sampling techniques; on the other hand, LightGBM uses GOSS that performs

splitting using all the points with huge gradients and a random sample of points with small

gradients. GOSS reduces the number of instances and balances accuracy and speed. CatBoost

implements a novel splitting technique called Minimal Variance Sampling (MVS). This sam-

pling mechanism occurs at the tree level, maximizing split scoring accuracy. XGBoost

Table 2. Cross-validation results (AUROC) of the non-GBT baseline models using 10-fold cross-validation.

Method

Disease

NB Logistic Regression SVM ANN KNN AdaBoost Bagging Random Forest Decision Tree

burns-trauma 0.88 0.89 0.81 0.89 0.76 0.84 0.88 0.90 0.66

cardiovascular 0.87 0.88 0.79 0.88 0.79 0.84 0.87 0.89 0.74

endocrine 0.88 0.90 0.80 0.86 0.80 0.82 0.86 0.89 0.70

gastrointestinal 0.85 0.86 0.77 0.72 0.76 0.85 0.85 0.88 0.75

hematology 0.85 0.86 0.76 0.74 0.76 0.79 0.75 0.88 0.70

infectious diseases 0.81 0.83 0.73 0.71 0.70 0.76 0.81 0.83 0.69

neurologic 0.87 0.88 0.79 0.78 0.80 0.86 0.83 0.90 0.70

oncology 0.82 0.83 0.73 0.81 0.71 0.79 0.86 0.89 0.70

pulmonary 0.80 0.83 0.74 0.79 0.69 0.77 0.80 0.84 0.69

renal 0.84 0.86 0.75 0.79 0.73 0.79 0.82 0.86 0.70

surgery 0.87 0.76 0.77 0.76 0.81 0.81 0.80 0.88 0.65

toxicology 0.91 0.90 0.79 0.80 0.84 0.79 0.78 0.90 0.53

https://doi.org/10.1371/journal.pone.0262895.t002

Table 3. Cross-validation results (mean AUROC [standard deviation AUROC]) of GBT models using 10-fold cross-validation.

Disease group Model AUROC Disease group Model AUROC

burns-trauma LightGBM 0.91 [0.03] neurologic LightGBM 0.90 [0.04]

XGBoost 0.93 [0.02] XGBoost 0.90 [0.03]

CatBoost 0.92 [0.02] CatBoost 0.91 [0.01]

cardiovascular LightGBM 0.90 [0.04] oncology LightGBM 0.86 [0.04]

XGBoost 0.90 [0.03] XGBoost 0.87 [0.02]

CatBoost 0.91 [0.01] CatBoost 0.87 [0.03]

endocrine LightGBM 0.89 [0.03] pulmonary LightGBM 0.85 [0.03]

XGBoost 0.91 [0.01] XGBoost 0.84 [0.04]

CatBoost 0.90 [0.01] CatBoost 0.86 [0.02]

gastrointestinal LightGBM 0.89 [0.05] renal LightGBM 0.87 [0.02]

XGBoost 0.89 [0.02] XGBoost 0.88 [0.03]

CatBoost 0.89 [0.01] CatBoost 0.88 [0.01]

hematology LightGBM 0.88 [0.04] surgery LightGBM 0.88 [0.05]

XGBoost 0.88 [0.03] XGBoost 0.86 [0.03]

CatBoost 0.89 [0.02] CatBoost 0.89 [0.04]

infectious diseases LightGBM 0.84 [0.05] toxicology LightGBM 0.94 [0.09]

XGBoost 0.85 [0.02] XGBoost 0.92 [0.08]

CatBoost 0.86 [0.02] CatBoost 0.92 [0.07]

https://doi.org/10.1371/journal.pone.0262895.t003
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backwardly prunes the tree for leaf growth and cuts it down with no additional positive gain.

Like XGBoost, LightGBM performs leaf-wise tree growth; this grows the leaf with the mini-

mum loss and leads to an unbalanced tree. CatBoost, on the other hand, grows a balanced tree;

at each tree level, the splitting pair is chosen to result in the minimum loss and then is used in

all nodes of the layer. XGBoost has an internal mechanism for handling categorical features,

and the operator should perform feature encoding. LightGBM divides categorical features into

two subsets. The categories are sorted according to the training objective at each partition.

This technique has not proven to be more effective than one-hot-encoding. CatBoost is more

sophisticated in handling categorical features. It combines one-hot-encoding with advanced

mean encoding and has an auxiliary process for mitigating the overfitting problem. Although

the implemented encoding method has proven to improve the model performance, it slows

down the process.

Based on the validation results (AUROC scores) shown in Tables 2 and 3, CatBoost outper-

forms the other ML-based non-GBT baselines and performs similar to or better than XGBoost

and LightGBM in most of the disease groups. It is also vital to observe and compare the perfor-

mance of the CatBoost model to the most widely used ICU scoring systems; Table 4 compares

the cross-validation results of CatBoost with APACHE IVa, SAPS II, OASIS, MODS, SOFA,

and LODS.

Table 4 shows the superior performance of CatBoost compared to some popular illness

severity scoring systems across the studied disease groups. APACHE IVa, one of the most

widely used illness severity scoring systems in ICUs, has the best performance among other ill-

ness severity scoring systems. The AUROC score of CatBoost is up to 6 percent higher than

the AUROC of the most accurate illness severity scoring system (APACHE IVa) in almost all

the disease groups (except Pulmonary). If evaluated aggregately across the population of entire

patients regardless of their diagnosed diseases, the cross-validation result (mean AUROC) of

the CatBoost model (0.91 [std:0.004]) is 7 to 18 percent higher than the tested illness severity

scoring systems (APACHE IVa = 0.85 [std:0.006], LODS = 0.78 [std:0.008], MODS = 0.77

[std:0.007], OASIS = 0.81 [std:0.006], SAPS II = 0.82 [std:0.006], SOFA = 0.79 [std:0.005]).

Clinical illness scoring models can mostly be viewed as logistic regression analysis; thus, we

can improve their predictive performance by replacing their simple additive nature with more

complex supervised learning models such as CatBoost.

It is important to compare the performance of the CatBoost model with some state-of-the-

art ML-based models proposed for mortality prediction. Due to their complex structures, these

methods are generally more accurate than the ICU scoring systems. However, this increase in

performance is often accompanied by a loss of transparency and explainability to the medical

experts, which hampers their implementation in a comprehensive, practical setting in ICUs.

The cross-validation result (mean AUROC) of the CatBoost model across the entire patient

population (0.91) is higher than or almost equal to the reported validation scores for some state-

of-the-art ML-based models developed and/or validated using the eICU-CRD v2.0 database

(BiLSTM [74] = 0.84, community-based federated learning (CBFL) [27] = 0.70–0.75, Discharge

Readiness Score (DRS) [75] = 0.86–0.94, and two-level attention-based LSTM [76] = 0.89).

In the following subsection, we implement multiple post-hoc explanation tools, including

SHAP, LIME, partial dependence (PD), and individual conditional expectation (ICE) plots

into the best-performing model (CatBoost) to improve its transparency and interpretability.

The results help us perform feature selection and propose an alternative CatBoost-based

model to perform mortality prediction using the most important features.
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4.2. Identifying the most critical features using SHAP

Fig 2 shows the feature importance graph for four of the twelve disease categories based on the cal-

culated Shapley values. Graphs for the rest of the disease groups are provided in S1 and S2 Figs.

Each row in these plots combines a series of points showing the Shapley values. The y-axis

Table 4. Cross-validation results (AUROC) of CatBoost and ICU illness severity scoring systems using 10-fold cross-validation.

Disease group Model AUROC Disease group Model AUROC

burns-trauma APACHE IVa 0.88 [0.04] neurologic APACHE IVa 0.88 [0.02]

SAPS II 0.87 [0.05] SAPS II 0.83 [0.02]

OASIS 0.87 [0.04] OASIS 0.83 [0.03]

MODS 0.80 [0.08] MODS 0.77 [0.03]

SOFA 0.84 [0.07] SOFA 0.81 [0.02]

LODS 0.80 [0.09] LODS 0.78 [0.03]

CatBoost 0.92 [0.02] CatBoost 0.91 [0.01]

cardiovascular APACHE IVa 0.87 [0.03] oncology APACHE IVa 0.83 [0.02]

SAPS II 0.83 [0.06] SAPS II 0.77 [0.03]

OASIS 0.82 [0.06] OASIS 0.78 [0.03]

MODS 0.78 [0.10] MODS 0.75 [0.04]

SOFA 0.80 [0.08] SOFA 0.77 [0.04]

LODS 0.80 [0.07] LODS 0.76 [0.05]

CatBoost 0.91 [0.01] CatBoost 0.87 [0.03]

endocrine APACHE IVa 0.88 [0.02] pulmonary APACHE IVa 0.88 [0.02]

SAPS II 0.84 [0.03] SAPS II 0.78 [0.03]

OASIS 0.84 [0.03] OASIS 0.75 [0.02]

MODS 0.80 [0.04] MODS 0.73 [0.03]

SOFA 0.82 [0.04] SOFA 0.74 [0.03]

LODS 0.80 [0.05] LODS 0.75 [0.04]

CatBoost 0.90 [0.01] CatBoost 0.86 [0.02]

gastrointestinal APACHE IVa 0.85 [0.02] renal APACHE IVa 0.83 [0.01]

SAPS II 0.82 [0.03] SAPS II 0.80 [0.02]

OASIS 0.80 [0.03] OASIS 0.79 [0.01]

MODS 0.78 [0.04] MODS 0.75 [0.02]

SOFA 0.79 [0.04] SOFA 0.77 [0.03]

LODS 0.79 [0.05] LODS 0.77 [0.03]

CatBoost 0.89 [0.01] CatBoost 0.88 [0.01]

hematology APACHE IVa 0.86 [0.03] surgery APACHE IVa 0.88 [0.05]

SAPS II 0.81 [0.04] SAPS II 0.82 [0.05]

OASIS 0.80 [0.05] OASIS 0.82 [0.06]

MODS 0.78 [0.05] MODS 0.76 [0.06]

SOFA 0.80 [0.04] SOFA 0.77 [0.05]

LODS 0.77 [0.06] LODS 0.74 [0.06]

CatBoost 0.89 [0.02] CatBoost 0.89 [0.04]

infectious diseases APACHE IVa 0.82 [0.02] toxicology APACHE IVa 0.92 [0.06]

SAPS II 0.79 [0.04] SAPS II 0.86 [0.08]

OASIS 0.78 [0.03] OASIS 0.87 [0.08]

MODS 0.74 [0.03] MODS 0.82 [0.09]

SOFA 0.76 [0.04] SOFA 0.85 [0.09]

LODS 0.75 [0.05] LODS 0.78 [0.10]

CatBoost 0.86 [0.02] CatBoost 0.92 [0.07]

https://doi.org/10.1371/journal.pone.0262895.t004
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Fig 2. Feature importance plots based on Shapley values for burns/trauma, cardiovascular, neurologic, and oncology disease groups.

https://doi.org/10.1371/journal.pone.0262895.g002
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demonstrates features in an ordered format, with their importance increasing from bottom to

top. In other words, features located higher on the y-axis contribute more to the prediction results.

For instance, for patients in the cardiovascular category, heart rate, age, and BUN (blood urea

nitrogen) have the highest contribution to the model prediction outcomes. The x-axis, on the

other hand, is sorted according to Shapley values, increasing from origin to left or right. The color

bar ranging from blue to red refers to the feature values. Since our prediction target is discharge

status, larger Shapley values relate to higher mortality probability. For example, according to Fig

2, older patients in the burns/trauma category have a higher mortality risk than younger patients.

Similar conclusions can be derived for patients in other disease categories (S1 and S2 Figs).

Table 5 shows the top three most important features for mortality prediction in each disease

category.

The most important features (key risk factors) identified in this study (Table 5) are in line

with the clinical knowledge in the area. Age is the most important factor based on having the

highest frequency among the features in Table 5. It requires no stretch of credulity to imagine

that age is a significant factor in ICU mortality, especially for patients older than 75 [77]. Five

out of twelve disease groups have "age" as the most important feature in predicting the dis-

charge status. Nine out of twelve disease groups have "age" among the top three most impor-

tant features. Based on Table 5, heart rate was the second most important factor. Seven out of

twelve disease groups have heart rate among the top three most important features in predict-

ing mortality. On the first day of ICU admission, elevated heart rate value has a verified associ-

ation with increased mortality probability [78, 79]. Respiratory rate was the third most

important factor. A respiratory rate between 12 and 25 per minute is considered a normal

range for this variable, and abnormal values outside this range have been verified as a critical

factor in increasing mortality probability [80, 81]. Blood urea nitrogen (BUN) was the fourth

most important factor. BUN is not included in most clinical ICU severity scoring systems like

APACHE and SOFA. However, high BUN levels are associated with renal failure [82], conges-

tive heart failure [83], bioenergetic muscle failure, and chronic multi-organ failure [84], which

lead to an increased patient mortality risk [85]. Our study verified the importance of BUN in

the mortality of the patients in the cardiovascular, pulmonary, and oncology disease groups.

Furthermore, to explain the feature importance in a more detailed format, we have created

a series of plots (commonly known as force plots). Two force plots for endocrine and

Table 5. Top three most important features in mortality predictions across various disease categories based on

Shapley values.

Disease group Three most important features

endocrine diabetes, age, respiratoryrate

gastrointestinal meanbp, respiratoryrate, creatinine

hematology platelets × 1000, heartrate, creatinine

infectious diseases age, oobventday1, heartrate

neurologic age, respiratoryrate, heartrate

oncology respiratoryrate, BUN, heartrate

pulmonary age, heartrate, BUN

renal heartrate, age, WBC × 1000

surgery age, admissionweight, verbal

toxicology glucose, hospitaladmitoffset, age

burns-trauma age, verbal, creatinine

cardiovascular heartrate, age, BUN

https://doi.org/10.1371/journal.pone.0262895.t005
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gastrointestinal disease groups are shown in Fig 3; force plots for rest of the disease groups are

shown in S3–S7 Figs.

Fig 3 explains the contribution of the most important numerical feature to model predic-

tions in endocrine and gastrointestinal disease groups. The y-axis shows the model output val-

ues, and the x-axis refers to the values of the selected feature. The origin of the plot on the y-

axis shows the base value for the model results. The base value is the mean of the predicted

mortality probability for all patients in each category. Parts of these plots with blue color show

the range of feature values that negatively affect the mortality risk (i.e., lower chances of

death). Similarly, parts of the plot colored in red are for values that positively influence the

mortality risk. S3–S7 Figs, parts k, a, d, e, g, and i refer to disease categories having age as their

most important feature. According to these plots, the negative and positive impacts of age val-

ues balance each other at 63 to 68 years old. While referring to the burns-trauma category as

an example, it can be understood that the age value in patients older than 68 has a positive con-

tribution to the mortality probability. For patients younger than 68, age negatively contributes

to the mortality probability.

Heart rate was identified as the most important feature in the mortality prediction of

patients in the cardiovascular disease category (Fig 2). Patients with heart rates between 32 and

110 per minute have a lower mortality risk than patients with heart rate values outside this

range (S7 Fig part (l)). Also, if a patient’s heart rate is in the extreme ranges (lower than 32 or

higher than 110 per minute), it will increase the patient’s mortality risk (S7 Fig part (l)). Previ-

ous research found heart rate values higher than 100 per minute during the first day of ICU

admission associated with an increased mortality rate [86].

Based on Fig 3 part (b), blood pressure improves the chance of survival if it is approximately

between 52 and 170 for patients in the gastrointestinal disease group. According to S3 Fig part

(c), platelets count higher than 132,500 in the hematology group decreases the patient mortal-

ity risk. Based on S4 Fig part (f), the effects of respiratory rate, as the most important feature in

the mortality prediction of patients in the oncology disease group, are balanced on the value of

29. This feature increases the mortality risk for patients with a respiratory rate higher than 29

per minute. S5 Fig part (h) shows the effects of different heart rate ranges on the mortality pre-

diction of the patients in the renal disease group. According to this plot, a heart rate value

Fig 3. Force plots of the most important features in mortality prediction of patients in endocrine and

gastrointestinal disease groups.

https://doi.org/10.1371/journal.pone.0262895.g003
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between 35 and 117 per minute reduces the mortality risk of patients in the renal group.

Finally, based on S6 Fig part (j), a blood glucose level higher than 110 has a positive association

with the mortality probability of the patients in the toxicology group.

4.3. Detailed feature importance explanation for individual patients in each

disease category using SHAP and LIME

In this section, patients with the highest mortality risk in each disease category were chosen as

samples to assess their features’ attribution to mortality probability using Shapley values. The

evaluation results are shown as force plots in Fig 4 for the endocrine and gastrointestinal dis-

ease groups and S8 and S9 Figs for the rest of the disease groups. Each feature’s contribution to

the mortality prediction is shown in the form of an arrow. Each feature’s Shapley value either

increases or decreases the mortality prediction results. Red arrows show features increasing

the prediction results (i.e., mortality risk), and blue arrows show those decreasing the predic-

tion values. These arrows balance each other on a point that is the prediction outcome for the

chosen patient. The plots also show the base value, the mean mortality probability for the

patients inside each related disease category.

S9 Fig part (l) shows a patient with a 98 percent mortality probability in the cardiovascular

category. For this patient, the blood bicarbonate value of 9.4 mmol/L has the highest contribu-

tion to mortality. Other factors raising the patient’s mortality risk are mean blood pressure of

41 mmHg, the motor score of 1 (i.e., no movements in response to stimulus), platelets of

29.4 × 1000 (K/mcL), and heart rate of 147 beats per minute. Besides, RDW (red cell distribu-

tion width) of 19.4 percent, blood potassium of 5.58 mmol/L, respiratory rate of 40 breaths per

minute, eyes score of 1 (i.e., no eye-opening), and blood calcium amount of 6.7 mg/dL were

among other influential factors toward patients’ mortality. The patient’s age (53 years old),

unit stay type of "transfer" (transferred to ICU), MCHC of 33.6 g/dL, WBC of 8.4 × 1000 K/

mcL, and blood Sodium of 125.2 mmol/L were the main factors reducing the patient’s mortal-

ity risk. As expected, this patient has an expired status upon discharge from ICU.

As another example, the feature values of a patient with a 79 percent mortality probability

in the oncology category are explained to understand the underlying factors contributing to

the patient’s high predicted mortality probability. According to S8 Fig part (f), the bicarbonate

value of 12 mEq/L is the most critical feature increasing the patient’s mortality risk. Mean

blood pressure of 40 mmHg, BUN (blood urea nitrogen) of 54.6 mg/dL, blood calcium of

5.725 mg/dL, blood potassium of 6.1 mmol/L, and patient’s need for intubation and ventilation

are among the other factors increasing the patient’s mortality risk. On the other hand, features

Fig 4. A detailed explanation of patient features with the highest mortality probability in endocrine and gastrointestinal disease groups using Shapley values (force

plots).

https://doi.org/10.1371/journal.pone.0262895.g004
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reducing the patient’s mortality risk are MCV (mean corpuscular volume) of 115.7 fL, RBC of

1.967 mil/mcL, a verbal score of 5 (i.e., oriented), and a motor score of 6 (i.e., obeys commands

for movement) which are all within their normal range of values. In addition, a seriously low

value of platelets counts (9,700 << 150,000 per microliter of blood), a dangerously low body

temperature (34.9 < 36.1 Celsius), a high blood creatinine level (1.7> 1.35 mg/dL), and a high

body weight of 105 Kg (high BMI based on the patient’s height) have all contributed to increas-

ing the patients’ mortality probability and ultimate expiration upon discharge from the ICU.

Observations from the force plots are mostly in line with the clinical knowledge in this area;

thus, these tools are highly useful in explaining the decisions made by the black-box CatBoost

model regarding the patients’ mortality/survival status. Similar conclusions can be derived for

other patients across various disease categories (refer to S8 and S9 Figs).

In this section, we also applied LIME on the CatBoost classifier to examine and explain the

importance of various features in the mortality prediction of some representative individuals.

We selected four patients from each disease group using a submodular pick algorithm [87]

and applied LIME to explain their mortality prediction. The submodular pick algorithm

picked a set of patient records with diverse characteristics to provide a global view of feature

importance. Fig 5 shows LIME explanations for four patients in surgery, toxicology, burns/

trauma, and cardiovascular disease groups (graphs for the rest of the disease groups are shown

in S10 and S11 Figs). The vertical axis in these figures shows features at various levels of impor-

tance (highest to lowest from top to bottom) in mortality prediction and their respective values

that increase or decrease the survival or expiration probabilities. The horizontal axis shows the

likelihood of expiration. The bar lengths in the graphs correspond with the importance of each

respective feature value in mortality prediction, such that longer bars show higher importance

and shorter bars show lower importance, respectively. The bar colors in graphs represent if the

associated feature value increases the survival (red) or expiration (green) probability.

Fig 5. Feature importance of individual patients calculated using LIME in surgery, toxicology, burns-trauma, and cardiovascular

disease groups.

https://doi.org/10.1371/journal.pone.0262895.g005
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The observations in Figs 5 and S10 and S11 are mostly in line with clinical findings; for

example, not being diagnosed with aids for a patient in the burns/trauma group increases their

survival probability and helps in keeping him "alive." The cardiovascular patient’s heart rate is

over 120 beats per minute, which is the most important condition leading to their “expired”

outcome. The leading feature of the patient’s expiration in the endocrine disease group is age

(> 74), which conforms to medical evidence (older patients have a higher mortality probability

than younger patients). There are few counterintuitive observations of feature effects in the

plots; however, these features appear in lower importance ranking, and their effect values are

negligible (e.g., aids and lymphoma in toxicology and cardiovascular groups).

4.4. Partial dependence (PD) and individual conditional expectation (ICE)

plots for important features in the mortality prediction model

In this section, we created partial dependence (PD) and individual conditional expectation

(ICE) plots for the most important features in the mortality prediction using the CatBoost

model. The goal is to explain the monotonic behavior of each feature in patient mortality pre-

diction across various disease groups. PD and ICE plots are calculated on the same scale and

shown in the same plot. This helps to compare the average global prediction behavior of the

entire model with the local prediction behavior of specific data points; this provides an opportu-

nity to evaluate the reliability of average prediction behaviors using PD plots. We created PD

and ICE plots for the most important feature at each percentile of the patient’s predicted

Fig 6. Partial dependence (PD) and individual conditional expectation (ICE) plots for the most important features in the prediction of ICU

discharge status in surgery, toxicology, burns-trauma, and cardiovascular disease groups.

https://doi.org/10.1371/journal.pone.0262895.g006
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mortality probability. Studying ICE plots for all patients is overwhelming; thus, plots were

drawn only for the deciles of predicted mortality probabilities and are shown in Figs 6 and S12

and S13.

Figs 6 and S12 and S13 show the monotonic decreasing/increasing behavior of the most

important features for patients at different percentiles of mortality probability (0 to 1) in each

disease category. The graphs for the patients in all deciles show a steady increase in mortality

probability when "age" increases. For patients at the 90th and 99th percentile of mortality prob-

ability, the increase rate in mortality probability with "age" is significantly higher than patients

in lower mortality percentiles. The monotonic increase in heart rate from 100 to 130 beats per

minute is associated with a significant rise in mortality probability of patients in cardiovascular

and renal disease groups. For patients in the oncology group, the graphs for all percentiles

show a sharp increase in the mortality probability when the respiratory rate increases from 30

to 35 per minute. For patients in the hematology group, a drop in platelets count to below

100,000 per microliter of blood significantly increases the mortality probability.

It is also noteworthy to study the histograms of these features in mortality prediction (Figs

7 and S14 and S15). In this way, we can roughly verify the patterns observed in the PD and

ICE plots.

In Figs 7 and S14 and S15, bar charts show histograms of categorical features, and Kernel

Density Estimation (KDE) plots display the distributions of continuous features. The

Fig 7. Bar and KDE plots for the most important features in predicting ICU discharge status for surgery, toxicology, burns-trauma, and cardiovascular

disease groups.

https://doi.org/10.1371/journal.pone.0262895.g007
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represented feature in each graph is the most important in predicting the patients’ discharge sta-

tus in the mentioned disease group. The bar and KDE plots for the surgery, toxicology, burns/

trauma, and cardiovascular disease groups are shown in Fig 7; plots for the rest of the disease

groups are shown in S14 and S15 Figs. KDE plot is an effective tool for estimating the probabil-

ity density function of continuous random variables. These plots show that there are distin-

guishably different distributions for the studied features based on their discharge status; this

further confirms the usefulness of these features in explaining the variability of the data (class

labels). The points where the KDE distributions of “Alive” and “Expired” patients intersect are

key feature points in predicting patients’ discharge status. These value points conform to the

previous observations in Figs 6 and S12 and S13 regarding the critical domains of feature

values.

4.5. E-CatBoost: An improved model through feature selection

Patient records in ICU databases are stored by numerous variables, which do not have equal

relevancy and importance in mortality prediction. The efficiency of ICU mortality prediction

frameworks can be improved by developing models that can make accurate predictions pro-

vided with only a few input features. Medical data is expensive to collect and is not available at

the same level for all patients; thus, reducing the amount of required input data to the predic-

tion model is highly beneficial to the medical informatics area.

We studied the important features in mortality prediction in the previous sections. Based

on the acquired results, we decided to limit the information provided to each model to the top

ten most important features revealed by the SHAP values. Thus, we propose E-CatBoost, a

highly optimized and efficient CatBoost-based model with improved features to predict patient

mortality. E-CatBoost is considered efficient as it uses a significantly lower number of features

(ten) to predict patient discharge status compared to the fifty features used by CatBoost. A

lower number of required features for mortality prediction simplifies the patient evaluation

process and helps medical experts make faster life-saving decisions about the patients’ treat-

ment needs. For details regarding the required computation time to train and test the E-Cat-

Boost and CatBoost models, refer to S27 Table. The validation results of the E-CatBoost model

are shown in Table 6.

Table 6 shows the AUROC results of the E-CatBoost model using the top ten most impor-

tant features in each disease category. Based on the results, when we limit the input informa-

tion to the model, AUROC values reduce between 0.01 and 0.04. Although this modification

significantly reduces the amount of required information and the time spent gathering the

data, AUROC scores decreased in negligible amounts. Although E-CatBoost uses only ten fea-

tures to make mortality predictions, its performance on the entire patient population

(AUROC = 0.87) is comparable to the state-of-the-art mortality prediction models tested on

the eICU-CRD dataset (BiLSTM [74] = 0.84, community-based federated learning (CBFL)

Table 6. Cross-validation (mean AUROC [standard deviation AUROC]) results of E-CatBoost model using 10-fold cross-validation.

Disease group AUROC Disease group AUROC

burns-trauma 0.91 [0.03] neurologic 0.89 [0.01]

cardiovascular 0.88[0.01] oncology 0.86 [0.03]

endocrine 0.88 [0.01] pulmonary 0.83 [0.02]

gastrointestinal 0.86 [0.02] renal 0.84 [0.01]

hematology 0.86 [0.03] surgery 0.88 [0.04]

infectious diseases 0.84 [0.02] toxicology 0.91 [0.06]

https://doi.org/10.1371/journal.pone.0262895.t006
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[27] = 0.70–0.75, Discharge Readiness Score (DRS) [75] = 0.86–0.94, and two-level attention-

based LSTM [76] = 0.89). Also, E-CatBoost’s validation results showed that the model’s

AUROC scores are 2 to 12 percent higher than the most commonly used illness severity scor-

ing systems [10, 63–67] despite using a significantly lower amount of input information. For

instance, APACHE IVa uses 142 patient variables for mortality prediction compared to only

ten features used by E-CatBoost. Therefore, E-CatBoost accelerates the mortality prediction

while keeping the prediction accuracy high.

5. Conclusion

In this study, we proposed an efficient machine learning model named E-CatBoost for the

early prediction of the discharge status of patients admitted to the ICUs using the information

available during the first 24 hours of admission. The model was trained and validated using

the eICU Collaborative Research Database v2.0. The proposed method provides invaluable

support for clinical decision-making and ICU management systems.

The study’s contributions are: 1- We proposed highly accurate and efficient mortality

prediction models and compared their performance against a comprehensive list of base-

lines. We also interpreted the prediction of our proposed method using post-hoc explana-

tion tools. Our proposed model (E-CatBoost) requires a significantly lower number of input

features than the compared baseline models. 2- We developed and validated our models on

the recently released eICU Collaborative Research Database v2.0, an extensive multi-center

electronic database containing the data for over 200,000 ICU admissions at 208 hospitals

throughout the United States. 3- Most previous studies [21–24] have proposed a single mor-

tality prediction model for their entire patient population or have solely focused on a spe-

cific patient group. However, in this paper, we divided patients into twelve representative

disease groups and tuned the baseline and proposed mortality prediction models for each

group. 4- We identified the most critical risk factors in increasing the patient mortality

probability in ICUs using Shapley values. Moreover, we studied how changing each under-

lying factor increases/decreases the mortality probability in each disease group using force,

PD, and ICE plots. We found the critical ranges of values in each feature based on its corre-

spondence with the mortality risk. Also, in addition to making global inferences, we studied

the important factors and their critical ranges associated with heightened mortality proba-

bility in individual patients using LIME and force plots. This helps medical specialists to

have a clear understanding of the decision-making process of our proposed model. 5- We

performed feature selection on the entire set of biological, physiological, and medical vari-

ables and used the top ten most informative features to make predictions using the CatBoost

model. In this way, we proposed E-CatBoost, a highly optimized and efficient CatBoost-

based model with improved features to predict patient mortality.

The developed E-Catboost model has excellent potential to be generalized and used in clini-

cal practice. The AUROC scores for the entire patient population were 0.91 [std:0.0038] for

CatBoost and 0.87 [std:0.004] for E-CatBoost models; their performance was 7 to 18 (Cat-

Boost) and 2 to 12 (E-CatBoost) percent higher than the most commonly used illness scoring

systems [10, 63–67]. Also, the AUROC scores for the defined disease groups were 0.85

[std:0.02] to 0.92 [std:0.007] for CatBoost and 0.83 [std:0.02] to 0.91 [std:0.008] for E-CatBoost

models; their performance was superior to illness severity scoring systems [10, 63–67] across

all disease groups except pulmonary. Based on Shapley values, age, mean blood pressure, plate-

lets count, heart and respiratory rate, blood glucose level, and having diabetes were found as

the most important features for mortality prediction of patients in the defined disease groups
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(endocrine, gastrointestinal, hematology, infectious diseases, neurologic, oncology, pulmo-

nary, renal, surgery, toxicology, burns-trauma, and cardiovascular).

In short, our model can visually explain to clinicians which patient characteristics are asso-

ciated with high/low mortality risks and discuss the important domain values in each feature

that increases/decreases the mortality probability. Age, heart rate, respiratory rate, blood urea

nitrogen, blood creatinine level, and the verbal score features had the highest cross-disease

importance in determining the patients’ discharge status.

It is advisable to externally validate E-CatBoost using other electronic ICU databases for

future study. Additionally, an expansion of the proposed model (E-CatBoost) to predict the

readmission probability and length of stay is desirable; it would lead to a more comprehensive

and robust ICU monitoring system and could better suit the needs of clinical decision-makers.
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S5 Fig. Force plots of the most important features in mortality prediction of patients in

pulmonary and renal disease groups.

(TIF)

S6 Fig. Force plots of the most important features in mortality prediction of patients in

surgery and toxicology disease groups.

(TIF)

S7 Fig. Force plots of the most important features in mortality prediction of patients in

burns-trauma and cardiovascular disease groups.

(TIF)

S8 Fig. Detailed explanation of features for patients with the highest mortality probability

in hematology, infectious diseases, neurologic, oncology, and pulmonary disease groups

using Shapley values (force plots).

(TIF)

S9 Fig. Detailed explanation of features for patients with the highest mortality probability

in renal, surgery, toxicology, burns-trauma, and cardiovascular disease groups using Shap-

ley values (force plots).

(TIF)

S10 Fig. Feature importance of individual patients calculated using LIME in endocrine,

gastrointestinal, hematology, and infectious disease groups.

(TIF)

S11 Fig. Feature importance of individual patients calculated using LIME in neurologic,

oncology, pulmonary, and renal disease groups.

(TIF)

S12 Fig. Partial dependence (PD) and individual conditional expectation (ICE) plots for

the most important features in the prediction of ICU discharge status in endocrine, gastro-

intestinal, hematology, and infectious disease groups.

(TIF)

S13 Fig. Partial dependence (PD) and individual conditional expectation (ICE) plots for

the most important features in the prediction of ICU discharge status in neurologic, oncol-

ogy, pulmonary, and renal disease groups.

(TIF)

S14 Fig. Bar and KDE plots for the most important features in predicting ICU discharge

status in endocrine, gastrointestinal, hematology, and infectious disease groups.

(TIF)

S15 Fig. Bar and KDE plots for the most important features in predicting ICU discharge

status in neurologic, oncology, pulmonary, and renal disease groups.

(TIF)
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