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Abstract: A direct Pd-catalyzed C—H functionalization of
benzoquinone (BQ) can be controlled to give either mono- or
disubstituted BQ, including the installation of two different
groups in a one-pot procedure. BQ can now be directly
functionalized with aryl, heteroaryl, cycloalkyl, and cyclo-
alkene groups and, moreover, the reaction is conducted in
environmentally benign water or acetone as solvents.

Benzoquinone (BQ, 1) and its derivatives are ubiquitous in
organic chemistry as they are useful in many fields, such as
oxidation chemistry,m molecular electronics, medicinal
chemistry,® natural products,® dyes” and as ligands.
Despite the prevalence of Pd’-catalyzed cross-couplings for
the formation of C—C bonds, a method for the direct Pd-
catalyzed Heck coupling with BQ has so far eluded synthetic
chemists. This reflects its electronic properties: BQ and its
derivatives will often act as an oxidant® or ligand® ! rather
than a substrate in Pd catalysis.’”'”! As a result, for decades,
the controlled Pd-catalyzed cross-coupling of BQ has relied
on first installing a Br, I, or OTf group (substrate 2), followed
by a Stille or Suzuki coupling (2—3, Scheme 1).''? This
procedure involves additional steps but may also suffer from
chemo- and regioselectivity issues during halogenations."!
The direct C-H functionalization of BQ would clearly
expedite the synthesis of BQ-containing targets, but to date,
an efficient Pd-catalyzed monofunctionalization has proven
elusive.'"

Current methods for the direct functionalization of BQ
are based on the Meerwein arylation." This approach,
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Scheme 1. Pd-catalyzed methods for the functionalization of BQ.

however, utilizes potentially explosive diazonium salt pre-
cursors, proceeds through a radical mechanism, and is limited
to arylations. Baran etal. have recently reported a Ag-
catalyzed C—H monofunctionalization of BQs using boronic
acids" and a strong co-oxidant (K,S,05), which is also
thought to proceed through a radical mechanism.!"”’ However,
strong oxidants preclude the use of attractive cross-coupling
partners with readily oxidizable (e.g. benzylic) positions.'®"!
Furthermore, no examples of functionalizations with hetero-
cycles or alkenes are known and the radical methods are so far
mainly useful only for monofunctionalizations. A mild and
practical Pd-catalyzed method, capable of either mono- or
difunctionalization, is therefore highly desirable.!'®!

Initial attempts at Pd-catalyzed C—H arylation of BQ with
the Pd(OTY), system used in our previous work['"! gave either
irreproducible results or complex mixtures of mono- and
various diarylated products. After extensive optimization, we
found that the less active catalyst PA(OCOCFs3), allowed for
controlled monofunctionalization in either acetone or water
as solvent® (Table 1). This required BQ to be used in excess
(optimally 3 equiv, see the Supporting Information); one
equivalent acting as an oxidant in the reaction and a further
equivalent ensuring the reaction stops after monofunctional-
ization. As BQ is far cheaper than organoboronic acids, it
makes sense to use the latter as the limiting reagent.

Using our optimized conditions, the scope of organo-
boronic acids was investigated (Table 1). Aryl boronic acids
with electron-rich, electron-poor, and ortho, meta, and para
substituents all performed well (products 3a-3k). Even
hindered mesityl- (31) and readily oxidizable fluorene boronic
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Table 1: C—H monofunctionalization of BQ.”

(0]
Pd(OCOCF3;), R
0,
Q= + RB(OH), (7.5 mol%)
acetone or water
14 6 RT, 18-24 h 5 3
(3 equiv) (1 equiv)
ool ﬁj Q ﬁj
3a
80%; 88%°  64%; lﬂlss% 0%[‘” o% 78% 48%
41% 4% 0% 2% 0% 89% 6% 75%
71%[91 53% 5% s% 87% 3% 52%; lﬂ 26%”] 62%; lﬂ 60%lﬂ
OoT 0y O O o 0O
Boc
41%[fl 45%; [ﬂ 75%[f] 3%[91 2%[91 7%[91 3%[91

[a] Yields of isolated products are given. For yields in italics, acetone was
used as solvent; for yields in bold, water was used as solvent. If only one
yield is given, the reaction in the other solvent proceeded with poor
conversion and the product was not isolated. [b] 87 % with 1 mol %
catalyst. [c] 6 equiv BQ used. [d] Gram-scale reaction resulted also in
70% yield. [e] 50°C, 48 h. [f] 40 h. [g] 40°C, 48 h.

acids (3m) underwent the reaction smoothly (the latter being
incompatible with existing Ag-catalyzed radical methods®").
Some boronic acids provided better yields in acetone, while
others fared better in water; the two solvents seeming to
complement each other. Heterocyclic boronic acids are also
suitable substrates (3n-3q), as are cycloalkyl- and cyclo-
alkene boronic acids (3r-3u).”!! Some of the more active aryl
boronic acids reacted well with lower catalyst loadings, for
example, 3a was produced in 87 % yield with only 1 mol %
catalyst.’? This air- and water-tolerant reaction could also be
carried out on a gram scale: 3¢ was produced in 70 % yield on
both 1 mmol and 10.5 mmol scale.

Having developed an efficient Pd-catalyzed direct C—H
monofunctionalization of BQ, we sought to extend this to
a controlled C—H difunctionalization. Diarylated BQs have
found diverse uses as ligands,® in molecular electronics,*!
natural products,® and biologically active compounds,?
despite their multi-step syntheses, which are often restricted
to homo-disubstituted BQs.>*! We first explored a one-pot
homo-difunctionalization (R =R’ in Scheme 1). In a one-pot
procedure, an excess of BQ cannot be used, but without this
excess of BQ, the monoarylated intermediate 3 acts as an
oxidant. Success therefore relied on finding a suitable sacri-
ficial oxidant, and extensive screening showed 2,6-dichloro-
1,4-benzoquinone (2,6-DCBQ) to be ideal and allowed
a range of homo-diarylations to be investigated (Table 2).
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Table 2: C—H homo-difunctionalization of BQ: dependence of the
selectivity on the electronics of the substituent.

Pd(OCOCF3),
+ RB(OH), (10 mol%)
(2.5 equiv) 2, 6 DCBQ (2.5 equiv)
1 6 acetone
RT, 48 h
Entry R Yield 5 [%6] Yield 4 [%]
1 p-HO-C¢H, 71 (5a) <5 (4a)
2 m-MeO-p-HO-C¢H, 73 (5b) trace
3 m,p-(MeO),-CsH; 58 (5¢) n.d.
4 m-tolyl 53 (5d) 28 (4d)
5 Ph 29 (5e) 44 (4e)
6! p-F3C-CeH, - 51 (4f)
7t p-EtO,C-CH, - 25 (4g)
8 0-Me-p-HO-C¢H, 41 (5h/4h=1:1)
9 0-MeO-C¢H, 25 (51) 28 (41)

[a] Yields of isolated products are given. [b] At 35°C. [c] Additional 2,6-
DCBQ, catalyst, and boronic acid added, treated with FeCl; at the end of
reaction. [d] Product only moderately stable. [e] Isomers not fully
separable. n.d.=not determined.

Under our optimized conditions, the selectivity for 2,6
disubstitution (5) or 2,5 disubstitution (4) appears to be
controlled by the electronic nature of the substituent that is
introduced (R). For example, strongly electron-donating
substituents provide the 2,6 isomers Sa-e¢, selectively
(Table 2, entries 1-3). A weakly electron-donating substituent
(meta-tolyl) reduces the selectivity, but 5d is still the major
product (Table 2, entry 4), whereas an electron-neutral sub-
stituent (phenyl) gives a poor 1:1.5 ratio of 5e/4e (entry 5).%°!
Electron-withdrawing substituents reverse the preference,
with 4f and 4g formed selectively (Table 2, entries 6 and 7).
Such products seem relatively unstable compared to their
counterparts with electron-donating groups and this may
contribute to the lower yields of isolated products in these
cases.””) Finally, ortho substituents on the aryl ring are
detrimental for selectivity (Table 2, compare entry 8 with
entry 1), presumably because of steric factors (entries 8 and
9).

With the selectivity and trends for the homo-difunction-
alizations in hand, we addressed the more challenging issue of
C—H hetero-difunctionalization, in which two different R
groups are introduced. Controlled and selective hetero-
difunctionalizations are not feasible with traditional methods
(see before). Initially, a stepwise procedure utilizing the
monofunctionalized BQs 3 (Table 1) was investigated, with
the second substituent (R’) being introduced using modified
conditions from our homo-difunctionalization reactions.

The same selectivity trends seen for 2,5 or 2,6 homo-
difunctionalizations also apply to hetero-difunctionalizations
(Table 3). With two electron-donating substituents, the 2,6
isomers 5j-1 are the major products, with higher selectivities
observed for more electron-donating substituents (Table 3,
entries 1-3). An ortho substituent causes a drop in selectivity
(S5m/4m =5:4, Table 3, entry 4). A combination of electron-
donating and electron-poor groups leads, unsurprisingly, to
a lower selectivity, independent of the installation order
(Table 3, entries 5 and 6). Two different electron-poor sub-
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Table 3: C—H hetero-difunctionalization of BQ.

0] (0] O
R Pd(OCOCFj), R' R R
+ RB(OH), (10 mol%) or
(1.25 equiv) 2'6‘DCB_Q R'
(1.25 equiv)
acetone
3 6 RT, 18-24 h 5 4
Entry R R Yield 5 Yield 4
[%][al [%][a]
1 p-MeO-C;H, p-HO-CH, 73 (5j) <5 (4)
2 m,p-(MeO),-CeH;  p-HO-CgH, 71 (5k) 10 (4k)
3 m,p-(MeO),-CsH;  p-MeO-CeH, 65 (51) 21 (41)
4 p-HO-C¢H, 0-MeO-CeH, 50 (5m) 41 (4m)
5 m,p-(MeO),-CeH;  p-EtO,C-CH, 44 (5n) 26 (4n)
6 p-Et0,C-CeH, m,p-(MeO),-CH;, 48 (5n) 16 (4n)
74 p-EtO,C-C¢H, p-F;C-CgH, <5 (50) 47 (40)
8! N-Boc-pyrrole-2 3-thiophene trace 74 (4p)
9t m-0,N-CH, 3-thiophene trace 42 (4q)
104 p-EtO,C-CeH, 3-thiophene trace 34 (4r)
11 m,p-(MeO),-C¢H;  cyclohexyl e -

[a] Yields of isolated products. [b] 2.5 equiv of boronic acid 6 used.
[c] Treated with FeCl; at the end of reaction. [d] Product only moderately
stable. [e] Complex mixture of products.

stituents cause a switch in selectivity to the 2,5 isomer 4
(Table 3, entry 7), and even a mixed-heterocyclic difunction-
alized BQ can be produced selectively in good yield as the 2,5
isomer (4p, 74 %, entry 8). The employment of a mixture of
electron-withdrawing aryl and heterocyclic groups also favors
the formation of isomer 4 (Table 3, entries 9 and 10), with
lower yields reflecting the apparently poorer stability of these
products.””! A current limitation is that alkyl boronic acids,
though efficient in monofunctionalizations, are not suitable
substrates for difunctionalizations (Table 3, entry 11).

A final target was the establishment of a simple one-pot
C—H hetero-difunctionalization procedure. Again this
required a reduction in the amount of BQ used in the
monofunctionalization (3 equiv). Following optimization (see
the Supporting Information), use of 1.5 equivalents of BQ
with 1.5 equivalents of 2,6-DCBQ was adopted as optimal to
produce 3a insitu, followed by the addition of a second
different aryl boronic acid to successfully give the hetero-
difunctionalized product Sj in 47% vyield over two steps
(Scheme 2), equivalent to a good average of 69 % for each
step.

Several mechanisms for the C—H functionalization of BQ
are possible. Previously, we showed that the reaction with
cyclohexenones under ligand-free conditions can be switched
between oxidative Heck and conjugate addition in the final
step of the cycle.”® Similarly, the C—H functionalization of

1) p-MeO-CgH4B(OH),
(0} Pd(OCOCF3), (10 mol%)
2,6-DCBQ (1.5 equiv)
acetone, RT, 28 h

2) p-HO-CgH,B(OH),

o) 2,6-DCBQ (2.5 equiv)

o
1 RT,24h 5j 47% over 2 steps

Scheme 2. One-pot C—H hetero-difunctionalization of BQ.

© 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

BQ could proceed through 1) a direct Pd"-catalyzed oxidative
Heck reaction, with the oxidant (BQ or 2,6-DCBQ) needed to
reoxidize Pd’ to Pd", or 2)conjugate addition to form
functionalized hydroquinone, which is then oxidized in situ
to the functionalized BQ product. Initial DFT calculations
suggest that the regioselectivity of difunctionalization origi-
nates from the BQ insertion step rather than from charge or
frontier orbital control.”®! The mechanisms of these processes
will be the subject of future work.

In conclusion, we have developed the first efficient Pd-
catalyzed direct C—H monofunctionalization of benzoqui-
none. Furthermore, an additional C—H functionalization to
give difunctionalized products has been achieved, including
the controlled installation of two different groups in a one-pot
procedure, which is a major advancement in the field.
Regioselectivities were found to be dependent on electronics
on the aryl ring, and good selectivities were obtained for
electron-rich and electron-deficient substrates. We believe
that this new Pd-catalyzed method will allow rapid access to
functionalized BQs that were previously difficult to synthe-
size.
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