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Abstract

Members of the plant genus Selaginella (de Beauvois 1805) have few known insect herbivores even though

they are considered by some to be ‘living fossils’, with extant taxa virtually indistinguishable from 300 Mya fos-

sils. Butterflies are well-known herbivores, and the satyrs are among the most speciose of them despite having

radiated �35 Mya ago. Nearly all satyrs feed on grass or sedges, but members of the Neotropical genus

Euptychia H€ubner 1818 feed on Selaginella; little is known about the degree to which this butterfly favors this

ancient plant over those that its close relatives utilize. To advance our knowledge of Euptychia natural history,

we conducted a series of experiments to examine oviposition preference and growth rates across a series of po-

tential host plants on a Euptychia westwoodi population in Costa Rica. We found that Euptychia westwoodi

Butler 1867 exhibit a strong preference to oviposit on Selaginella eurynota over the sympatric Selaginella arthri-

tica, though they perform equally well as larvae on both plants. We did not observe oviposition on a sympatric

grass that is commonly consumed by close relatives of E. westwoodi, and when larvae were offered the grass

they refused to eat. These results suggest that E. westwoodi in Costa Rica exhibit a strong preference for

Selaginella and may have lost the ability to feed on a locally abundant grass commonly used by other

Satyrinae.
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Butterflies of the family Nymphalidae underwent a period of rapid

diversification during the late Cretaceous period, �90 Ma, resulting

in �6,000 extant species in �540 genera (Wahlberg et al. 2009).

The timing of the nymphalid radiation is highly correlated with the

diversification and spread of the angiosperms (their primary host

plants), such that this pattern is considered a classic example of co-

evolution (Ehrlich and Raven 1964, Crane et al. 2005). The

Satyrinae is the most speciose subfamily within the Nymphalidae,

containing �2,200 species in �200 genera (Hamm and Fordyce

2014), and experienced a burst of diversification in the Oligocene

(�25 Ma [million years]) (Pe~na 2009). Consistent with the coevolu-

tionary hypothesis, this expansion is associated with diversification

of the satyr’s primary host plants, which are graminoids, such as

Poaceae and Cyperaceae (Str€omberg 2005, Pe~na 2009, Spriggs et al.

2014). Graminoid feeding is likely an ancestral condition in the

Satyrinae as this regime is found in the vast majority of satyrs

(Ackery 1988, Pe~na 2007).

The satyrine genus Euptychia H€ubner 1818 is found in the

Neotropics but does not follow the dietary trends of its relatives

(e.g., other members of the subfamily or tribe Euptychiini).

Although there are records of Euptychia feeding on Poaceae

(Beccaloni et al. 2008, Janzen and Hallwachs 2009), species within

this genus primarily feed on two plant lineages, the Selaginellaceae

(Lycopsidophyta) and Neckeraceae (Bryophyta) (Singer et al. 1971,

Singer and Mallet 1985, DeVries 1987, Mound et al. 1994). These

are interesting host plants for Euptychia, not only because these are

not graminoid plants, but also because they are two of the oldest

plant lineages known (Finet et al. 2010).

Members of the Lycopsidophyta reached peak diversity during

the Carboniferous period (�310 Ma) and are among the ancestral

taxa to the gymnosperm/angiosperm radiation (Nickrent et al.

2000, Banks 2009). The genus Selaginella (de Beauvois 1805) is typ-

ically considered a ‘relict’ species as it has exhibited very little phe-

notypic change over the last 300 Ma, yet few insects feed on it

(Mound et al. 1994, Banks 2009). Only 16 species from 6 orders of

insects have been reported to feed on Selaginella, yet there are multi-

ple accounts of Euptychia spp. feeding on Selaginella (Singer et al.

1971, DeVries 1987, Mound et al. 1994, Janzen and Hallwachs
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2009). It is intriguing that Euptychia would make the apparent

switch to Selaginella and mosses considering these plants typically

grow in nutrient poor soils and are thought to have less nutrient con-

tent relative to the more derived plant graminoids (Scriber and

Slansky 1981, Egorov 2007).

Despite this apparent transition to feed on what are considered

nutrient poor and very old plant lineages, little is known about the

oviposition and feeding ecology of Euptychia on Selaginella. We set

out to address outstanding questions in Euptychia ecology, such as

what is the oviposition preference for different plants, what is the

degree of feeding specialization on different Selaginella species, and

at what rate do larvae add mass under different feeding conditions?

To this end we conducted a series of ‘buffet’ style oviposition experi-

ments and no-choice feeding using Euptychia westwoodi Butler

1866, a species of Euptychia common to the lowland forests of

Costa Rica that has only been reported feeding on one species of

Selaginella, S. eurynota Alston 1935 (DeVries 1987) (Fig. 1).

Materials and Methods

Oviposition Preference
A series of buffet style oviposition experiments were conducted at

La Tirimbina reserve between 1 and 14 May 2015. Sprigs of S. eury-

nota, Selaginella arthritica, and the grass Lasiacis ruscifolia (Kunth)

Hitchc. 1911 were collected in the field and immediately placed in

water. This grass was chosen because it is host plant to other

Euptychiini species and is commonly found with S. eurynota and

S. arthritica (DeVries 1987, Janzen and Hallwachs 2009). At the

same time, female E. westwoodi were collected in the field and then

all specimens were returned to the lab and experimental chambers

prepared. Each experimental chamber consisted of a 16 oz. plastic

cup with perforations at the base that allowed plants stems to be

laced through and a lid made of a coffee filter with perforations to

allow air flow. This apparatus was then set in water so the plant

stem-ends were submerged in water and the samples could retain

turgor pressure, while the bottom of the chamber itself was dry. One

sprig of each plant species (of approximately the same size) was

placed in the chamber. A single E. westwoodi female was then

placed in the chamber and the lid was placed to prevent escape. We

sprayed the filter paper with a sugary electrolyte solution ad libidum

to provide a carbohydrate source for the butterfly. Each replicate

(n¼13) was run for 48 h, after which time the female was removed

and eggs were counted on each plant.

Following the oviposition experiments we analyzed the data us-

ing a hierarchical Bayesian framework, as implemented in the R

package bayespref (Fordyce et al. 2011). This framework uses the

count data (number of eggs deposited on a plant by individual) and

allows direct estimation of parameters of interest, in our case the

preference for putative host plants. In order to generate a reasonable

posterior distribution density from the MCMC, we sampled the

1,000th step from each of 1,000 MCMC runs that we conducted.

Larval Performance
Larval feeding experiments were conducted at both the La Selva

Biological Research Station and the Tirimbina Biological Reserve

(10� 220 0N, 84� 70 60W) in Costa Rica between 18 and 23 May

2010. These sites are located in lowland tropical wet forest of

Sarapiqui County, Heredia province. Larvae of E. westwoodi (third

and fourth instars) were collected from S. eurynota, a locally abun-

dant species. We were restricted to using larvae of this size because

the balance at the field station could not reliably measure smaller

larvae. In total, 54 E. westwoodi larvae were collected in the field.

Once in the laboratory, each individual larva’s mass was measured

to the nearest 0.01 mg using a SM-50 semimicro balance (Curtiss-

Wright Corp.). Larvae were then haphazardly placed into one of

three treatment groups, each with an initial n¼18.

Individual larvae were placed into 2 oz. sealable containers with

the respective food plant for that treatment. Treatment group S1 was

offered S. eurynota, the host plant the larvae were collected on;

treatment group S2 was offered S. arthritica, another Selaginella spe-

cies found sympatrically with S. eurynota (indeed, right next to);

and treatment group G1 were offered the grass L. ruscifolia. All

treatment groups were offered fresh, undamaged plant material ad

libidum in the morning and again in the evening. The experiment

was maintained in an open-air laboratory under ambient conditions

(�25�C, 80% RH) with containers placed haphazardly relative to

the room’s window. Larvae were allowed to feed for 48 h., after

which time the mass of all larvae was measured.

We asked if there were difference in final mass among treatment

groups using ANOVA followed by Tukey’s post hoc and imple-

mented in R 3.2.2 (R Core Team 2015). All data and the code neces-

sary to reproduce the results presented here are freely available on

FigShare (https://dx.doi.org/10.6084/m9.figshare.3083320.v1). All

comparisons were considered statistically significant at a¼0.05.

Because we used third and fourth instars in the feeding trial, we also

considered that mass gain might covary with initial mass. Therefore,

we also modeled final mass as explained by treatment with starting

mass as a covariate.

Results and Discussion

We observed 113 eggs deposited during the course of our experi-

ment, of which 111 were deposited on S. eurynota. Plotting the pos-

terior densities for each individual indicated a strong preference for

S. eurynota (Fig. 2). After 48 h of no-choice trials, the final experi-

mental group sizes were: S. eurynota n¼18, S. arthritica n¼17,

and L. ruscifolia n¼17. E. westwoodi larvae offered either

Selaginella were observed feeding, and most gained mass over the

course of the experiment (Fig. 3-S1, S2). One individual from the

S. eurynota group lost mass and expired shortly after the conclusion

of the feeding trial. Necropsy revealed what appeared to be fungal

mycelia, which filled the body cavity. Additionally, one individual

from each of the Selaginella groups maintained mass during the ex-

periment. In these cases, the individuals molted (and eventually

Fig. 1. E. westwoodi larva feeding on S. eurynota at the La Tirimbina

Biological Reserve. Photo by Philip J. DeVries.
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pupated), which suggests they that each would have continued to

gain mass had the experiment continued.

Contrary to expectations, larvae offered L. ruscifolia were never

observed feeding and all individuals in this treatment lost mass dur-

ing the trial (Fig. 2, G1). This was surprising given that L. ruscifolia

is a common host plant of close relatives of Euptychia (DeVries

1987, Beccaloni et al. 2008, Janzen and Hallwachs 2009), and be-

cause grasses are generally considered to have low levels of allelo-

chemicals relative to other angiosperms (Ackery 1988).

Behaviorally, larvae placed with L. ruscifolia would crawl over leaf

plant material but were never observed feeding; in contrast to

Selaginella groups, which appeared to feed continuously. When

fresh food was exchanged for old, we microscopically examined

L. ruscifolia leaves for damage and observed none.

Given these observations, it was not surprising that mass gain

varied among host plants (F2,49¼19.37, P<0.001). The average

mass change ( 6 SE) over the 2 days the experiment were as follows:

S. eurynota¼7.74 mg (62.20), S. arthritica¼8.91 mg (61.277),

L. ruscifolia¼�3.54 mg (60.67). The model using final mass as a

response and initial mass as a covariate approach gave similar re-

sults (F5,46¼40.01, P<0.001). Tukey’s post hoc-tests on both

modeling approaches indicated that both Selaginella diets resulted in

greater mass gain compared with the L. ruscifolia diet, and that

there was no difference between the Selaginella diets (a ¼ 0.05).

Once the no-choice trials were concluded, half of the larvae in the L.

ruscifolia treatment group were offered S. eurynota, or maintained

on L. ruscifolia. All larvae switched to S. eurynota immediately re-

sumed feeding and eventually completed metamorphosis, while indi-

viduals that remained on L. ruscifolia expired within 96 h.

Our data suggest that E. westwoodi in the Heredia Province of

Costa Rica exhibit a strong preference for oviposition on S. eurynota

while retaining the ability to feed on at least one other species of

Selaginella. Even though E. westwoodi laid eggs almost exclusively

on S. eurynota, larvae retained the ability to feed on S. arthritica.

We did not observe E. westwoodi oviposition or feeding on the grass

L. ruscifolia. These data suggest that E. westwoodi in the Heredia

Province of Costa Rica are specialized on Selaginella, it is premature

to make that claim for the species as a whole for a number of rea-

sons. There are many instances of local herbivore populations evolv-

ing some degree of host specificity that the species as a whole does

not exhibit. This phenomenon has been referred to as the ‘mosaic

pattern of coevolution’ (Thompson 1994, 2005) and is commonly

recognized in butterflies. Furthermore, we know from different re-

gions that other Euptychia feed on both grasses and Selaginella

(Janzen and Hallwachs 2009). Additionally, it is possible that

E. westwoodi is capable of feeding on grasses other than L. ruscifo-

lia, and was not offered a suitable alternative.

Another possible explanation for the refusal of L. ruscifolia was

the use of third and fourth instars. Other researchers have demon-

strated Pieris rapae (Lepidoptera: Pieridae) larvae will reject host

plants if switched during later instars (Karowe 1989, Renwick and

Lopez 1999). We cannot discount this, but note that transferring

E. westwoodi larvae from S. eurynota to S. arthritica had no appar-

ent effect on mass; however, the magnitude of difference between

Selaginella and Lasiacis could be much greater than the differences

among Selaginella. In contrast, other Lepidoptera are capable of

switching host plants at later instars and still complete development

(Scriber 1979, 1982). A longer experiment using neonate caterpillars

and additional alternative host plants are needed to further under-

stand the degree of host specialization present in E. westwoodi.

Given these results and the apparent specialization of E. west-

woodi, what is the diet breadth of Euptychia? This is not an easy

question given the high level of divergence among Euptychia’s three

host plants. Using a metric such as Faith’s Phylogenetic Diversity (PD)

index (Faith 1992, Symons and Becalloni 1999) and functions in the

‘picante’ package in R (Kembel et al. 2010), Euptychia has an

unrooted PD of �0.578 (branch lengths from Finet et al. [2010]).

This value is strongly influenced by the phylogenetic distance between

Neckeraceae, Selaginellaceae, and Poaceae. For example, this influ-

ence is observed when analyzing the genus Adelpha, which has a PD

of 0.576, but feeds on 22 host plant families. Other methods that con-

sider host breadth, such as the ordinated diet breadth (ODB) (Hamm

and Fordyce, 2014, Fordyce et al. 2016), may provide a more intuitive

answer to the question of diet breadth. ODB asks, based on insect

diets, what is the relative diet breadth of a taxon compared with all

other taxa in the data set (Fordyce et al. 2016)? Using this metric,
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Fig. 2. Host plant preference of E. westwoodi. Each curve indicates the poste-
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Fig. 3. Boxplots of representing the difference in mass from the start to the

end of the larval E. westwoodi feeding experiment, dashed line indicates no

difference between starting and ending mass. E. westwoodi larvae were fed:

G1¼L. ruscifolia, G1¼S. eurynota, G2¼S. arthritica. Letters indicate statisti-

cally significant differences (P< 0.001, Tukey’s HSD).
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Euptychia occupies 1.4% of the total potential diet space, whereas

Adelpha occupies 13.2%, which seems more in line with the number

of host families that these genera are known to feed on.

To the best of our knowledge, these are the first data reporting

insect performance on Selaginella. These data are useful but indicate

other experiments should be performed. Future directions for re-

search on Euptychia diet breadth include: beginning the experiment

with eggs, conducting the experiment for a longer period, and com-

paring final adult dry mass and size among experimental groups. In

addition, it would be useful to investigate other Selaginella feeding

insects and butterflies, such as the two Oriental satyr genera,

Acrophtalmia and Ragadia. Both have been reported to feed on

Selaginella, and would provide an important comparative frame-

work for future work (Igarashi and Fukuda 1996).

Conclusions

Females exhibited a strong preference to oviposit on S. eurynota,

with 111 of 113 eggs being deposited on this species and none on

the grass L. ruscifolia. Larval (third and fourth instar) E. westwoodi

feeding on Selaginella gained an average of �10 mg during a 2 day

no-choice feeding experiment, while larvae offered a common grass

refused to feed and lost �3 mg during that same time. Larvae that

were initially offered grass, but were later switched to Selaginella,

resumed feeding and eventually completed metamorphosis. A num-

ber of issues warn against a broad interpretation of these results,

and calling E. westwoodi a specialist based on these results would

be over reaching. However, it appears that third and fourth instar

E. westwoodi from the Sarapiqui region of Costa Rica were adapted

to Selaginella and incapable of feeding on a common grass.
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