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The purpose of the study is to assess poststroke muscle structural alterations by 
examining muscular electrical conductivity and inherent electrophysiological properties. 
In particular, muscle impedance and compound muscle action potentials (CMAP) 
were measured from the hypothenar muscle bilaterally using the electrical impedance 
myography and the electrophysiological techniques, respectively. Significant changes of 
muscle impedance were observed in the paretic muscle compared with the contralat-
eral side (resistance: paretic: 27.54 ± 0.97 Ω, contralateral: 25.46 ± 0.91 Ω, p < 0.05; 
phase angle: paretic: 8.81 ± 0.61°, contralateral: 10.79 ± 0.69°, p < 0.05). In addition, 
impedance changes correlated moderately with the CMAP amplitude in the paretic hand 
(phase angle: r = 0.66, p < 0.05; reactance: r = 0.58, p < 0.05). The study discloses 
significant muscle rearrangements as a result of fiber loss or atrophy, fat infiltration or 
impaired membrane integrity in chronic stroke.

Keywords: stroke, electrical impedance myography, compound muscle action potential, hand, muscle

inTrODUcTiOn

Muscle weakness is a remarkable symptom in stroke and contributes significantly to impaired motor 
functions. To understand mechanisms underlying weakness, studies can focus on assessing changes 
in neural control and muscular properties. In particular, intramuscular electromyography (EMG) 
and morphological techniques have been applied to examine muscle structural rearrangements post-
stroke. Increased motor unit fiber density, larger and complex motor unit action potentials (1–3), 
small angular fibers, as well as fiber type grouping (4, 5) have been observed in the acute and chronic 
stages of stroke suggesting the process of muscle denervation and reinnervation. While these studies 
characterize structural alterations in the paretic muscles, most approaches involve invasive recording 
and are limited by sampling only small selective areas of the muscle.

Electrical impedance myography (EIM) is an emerging technique for noninvasive evaluation of 
muscle electrical conductive properties. It applies weak, high-frequency alternating current to the 
muscles and produces raw bio-impedance data without causing neuronal and muscular depolariza-
tion (6, 7). EIM measures three impedance parameters in terms of resistance (R), reactance (X), 
and phase angle [θ = arctan (X/R)] (7, 8), which represent the inherent resistivity of skeletal muscle 
relative to extracellular and intracellular fluid, the integrity of cell membranes, tissue interfaces and 
non-ionic substances, and membrane oscillation properties of the muscle respectively (9–12).

Electrical impedance myography has been used to examine muscle structural alterations in a 
number of neuromuscular diseases including amyotrophic lateral sclerosis (ALS), muscular dystro-
phy, and spinal muscular atrophy (6, 7, 13–19). It is sensitive to muscle structural modifications in 

Abbreviations: EIM, electrical impedance myography; CMAP, compound muscle action potential.
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terms of atrophy, increased fat infiltration or connective tissue 
growth (20–22). In addition, the technique demonstrates strong 
correlations with standard measures of ALS including ALS func-
tional rating scale-revised, handheld dynamometry, and motor 
unit number estimation in tracking the progression of the disease 
(13, 17, 23).

Applications of EIM to assess poststroke muscle conditions 
are relatively limited in the literature. In a previous study, we 
examined muscle impedance properties in the biceps brachii 
and found significant changes of muscle structural properties in 
the paretic side (24). Since proximal muscles demonstrate differ-
ent extents of impairment from distal muscles (25), it remains 
unknown whether findings from biceps brachii are applicable to 
hand muscles. In this study, we applied EIM technique to exam-
ine impedance changes in the hypothenar muscle poststroke. In 
addition, we measured the compound muscle action potentials 
(CMAP) of the muscle, to assess inherent electrical properties. 
CMAP is evoked by electrical activation of all functioning motor 
units and represents summation of all action potentials in spatial 
distribution. Application of the two different techniques to the 
same muscle may disclose different features of the muscle and 
improve current knowledge on structural changes in the paretic 
hand muscle.

MaTerials anD MeThODs

experiment
Subjects
Fourteen chronic stroke survivors participated in the study  
(8 female, 6 male, age: 63 ± 10 years, mean ± SD). They had a 
single incidence of stroke with the time course of stroke varying 
from 8 month to 15  years (80  ±  55  months, mean  ±  SD). All 
subjects were free of any other known neurological disorders or 
symptoms including neuropathy, radiculopathy, cervical spondy-
losis, or hyperglycemia. All subjects gave written informed con-
sent in accordance with the Declaration of Helsinki. The protocol 
was approved by the Protection of Human Subjects (CPHS) at 
University of Texas Health Science Center at Houston.

Clinical assessment: hand recovery was evaluated using grip 
force and the Chedoke–McMaster assessment.

Experiment
Experimental protocol included EIM and electrophysiological 
tests in the hypothenar muscle.

EIM Measurement
Subjects were seated upright with the examined arm in a natural, 
resting position on a height-adjustable table. Muscle impedance 
was measured using the mView EIM system (Myolex Inc., Boston, 
MA, USA). A handheld electrode array (P/N number: 20-00036) 
was placed on the muscle bulk with slight pressure applied by the 
experimenter. To further improve contact between the electrode 
and skin, saline wipe was used to moisten the skin before each 
trial. During the trial, alternating current at high frequencies 
from 1 kHz to 10 MHz was delivered to the muscle in discrete 
steps. Stimulation intensity was less than 1  mA which did not 
involve any neuronal or muscular depolarization. Impedance 

measurement was applied to each muscle multiple times until 
three consistent trials were saved. In this study, impedance was 
obtained from the pair of current electrodes with the largest inter-
electrode distance of 32 mm in parallel to muscle fiber direction.

Muscle Response Measurement
Subsequent to the EIM test, CMAP was collected from the 
hypothenar muscle using an UltraPro S100 EMG system (Natus 
Neurology Incorporated, Middleton, WI, USA). Two disposable 
electrodes (Ag–AgCl electrode, 10-mm diameter) were placed on 
the motor point of the muscle and the distal phalanx of the little 
finger, respectively, as the active and reference electrodes. The 
ground electrode was positioned on the dorsal side of the hand. 
A standard bar electrode was placed on the ulnar nerve, 2  cm 
proximal to the wrist crease with the cathode oriented distally. 
After the electrodes were securely attached, the examined hand 
was restrained in pronation by Nylatex® wraps (4″ width).

Electrical stimulation was applied in single impulses of 200 µs 
width. It was initiated from relatively low intensity and increased 
at 2 mA per step until the maximum muscle response was reached. 
To guarantee all motor units were activated, supramaximal 
stimulation was applied to record the CMAP. Muscle responses 
were sampled at a frequency of 48  kHz and band-pass filtered 
between 1 Hz and 10 kHz.

Data analysis
Electrical impedance myography and muscle response data 
were processed using the Matlab software (MathWorks, Natick, 
MA, USA).

EIM Analysis
Impedance variables including resistance (R), reactance (X), and 
phase angle (θ) were averaged across three trials at the frequency 
of 100 kHz for comparison.

Muscle Responses
Compound muscle action potential amplitude was measured 
as the difference between negative peak and baseline of the 
waveform.

All data were screened for outliers and normality of distribution. 
Paired t-test was applied to compare the differences of impedance 
variables (R, X, and θ) and muscle responses (CMAP amplitude) 
between paretic and contralateral muscles. Pearson correlation 
analysis was used to assess linear relationships between EIM 
variables and the CMAP amplitude. Clinical relevance was exam-
ined by calculating Spearman ρ coefficients between impedance 
variables or muscle responses and the Chedoke scores. Pearson 
coefficients were calculated between two clinical measures of 
grip force and duration of the stroke, and the EIM or CMAP 
amplitude. Statistical significance was set as p < 0.05. Results are 
reported in a mean ± SE format unless specified.

resUlTs

Impedance variables and CMAP amplitude were averaged across 
14 subjects and compared between the paretic and contralateral 
muscles as illustrated in Figure 1. Among them, eight subjects 
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FigUre 1 | Comparisons of electrical impedance myography and compound muscle action potential (CMAP) between paretic and contralateral muscles.  
(a) Resistance (R) and reactance (X). (B) Phase angle (θ) and CMAP amplitude.

TaBle 1 | Pearson correlation coefficients between electrical impedance 
myography and compound muscle action potential (CMAP).

p_
cMaP

c_
cMaP

p_r c_r p_X c_X p_θ c_θ

p_CMAP 1.00 0.58* 0.01 −0.12 0.58* 0.17 0.66* 0.28
c_CMAP 1.00 −0.01 0.00 0.38 0.39 0.42 0.53*
p_R 1.00 0.54* 0.58* 0.24 0.26 0.07
c_R 1.00 0.24 0.68** 0.03 0.33
p_X 1.00 0.42 0.94** 0.43
c_X 1.00 0.38 0.91**
p_θ 1.00 0.48
c_θ 1.00

p, paretic; c, contralateral.
Significance was marked in bold *p < 0.05; **p < 0.01.
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had paresis in the dominant hand and six subjects had paresis 
in the non-dominant side. Statistical analysis indicated a sig-
nificant increase of resistance (R) and a significant decrease of 
phase angle (θ) in the paretic hypothenar muscle compared with 
the contralateral side (R: paretic: 27.54 ± 0.97 Ω, contralateral: 
25.46 ± 0.91 Ω, p < 0.05; θ: paretic: 8.81 ± 0.61°, 10.79 ± 0.69°, 
p < 0.05). On the other hand, no significant differences in the 
reactance (X) and the CMAP amplitude were observed between 
two sides (X: paretic: 4.32 ± 0.37 Ω, contralateral: 4.91 ± 0.43 Ω, 
p  =  0.19; CMAP: paretic: 9.34  ±  0.79  mV, contralateral: 
10.28 ± 0.7 mV, p = 0.19).

Significant weakness was observed in the paretic side from 
measurement of grip force (paretic: 7.84 ± 1.68 kg, contralateral: 
29.44 ± 1.91 kg, p < 0.001). Chedoke test disclosed severe impair-
ment of hand functions in most subjects (score 1:3 subjects, score 
2:4 subjects, and score 3:5 subjects) except two subjects who had 
scores of 6 and 7, respectively. Pearson correlation coefficients 
between the EIM variables (R, X, and θ) and the CMAP amplitude 
were illustrated in Table 1. In particular, moderate correlations 
between the CMAP amplitude and the phase angle (θ) were 
observed in both the paretic and contralateral muscles (paretic: 
r = 0.66, p < 0.05; contralateral: r = 0.53, p < 0.05). The CMAP 
amplitude also correlated moderately with the reactance (X) 
in the paretic muscle (r = 0.58, p < 0.05). We did not find any 
other significant correlations between impedance and CMAP 
amplitude on either side. In addition, changes of impedance or 
CMAP amplitude were not associated with any clinical measures 
including grip force, Chedoke assessments, and the time course 
of stroke (p > 0.1).

DiscUssiOn

The present study assessed structural alterations in the hypoth-
enar muscle in chronic stroke using EIM and electrophysiologi-
cal techniques. In particular, significant changes of impedance 

variables in terms of increased resistance and decreased phase 
angle were observed in the paretic muscle compared with the 
contralateral side. Additionally, changes of muscle impedance 
correlated well with the CMAP amplitude in the paretic side.

impedance changes
This study confirms our previous findings of impedance change 
in stroke that both the distal and proximal muscles of the upper 
limb demonstrated substantial reduction in phase angle in the 
paretic side (24). Phase angle is a sensitive biomarker not only 
for evaluation of muscle state in neurological disorders but also 
for assessment of malnutrition, cancer, and heart failure (9, 13,  
26, 27). It derives from the ratio of the resistance and reactance 
and represents membrane oscillation regardless of the anatomical 
differences. Despite that the physiological meaning and patho-
logic effects are not fully understood (28), a lower phase angle 
is often associated with muscle loss and decreased cell integrity 
(9, 29).

Compared with our previous study that observed remark-
able reduction of reactance in the biceps muscle (24), this study 
exhibited significant changes of resistance in the hypothenar 
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muscle following a stroke. A number of factors may account for 
the different results of the two studies, including subject group, 
electrode array size, subcutaneous fat thickness, and the fre-
quency used for analysis (30, 31). The differences are also likely 
due to that the proximal and distal muscles can be differently 
affected after stroke.

Phase angle and resistance are reported to have strong cor-
relations with subcutaneous fat thickness (31). With stroke and 
decreased mobility, there is a tendency of increase of fat mass in 
the paretic muscle replacing the lost muscle mass (32). Changes 
of phase angle and resistance in the study may reflect muscle 
structural reorganization in terms of increased fat thickness and/
or reduced muscle mass in the paretic muscle. On the other hand, 
the data were obtained from eight subjects with paresis in the 
dominant hand and six subjects with paresis in the non-dominant 
hand. It seems that handedness has limited influence on changes 
of impedance in the paretic muscle.

correlations Between eiM and cMaP
Phase angle and CMAP quantify two different electrical proper-
ties of the muscle. In general, CMAP amplitude measures muscle 
response in the forms of depolarization and repolarization 
whereas EIM measures muscle electrical conductivity as the 
low-intensity current passes the tissue. Despite the differences, 
the two parameters can quantify loss of muscle mass and correlate 
moderately in the paretic side in this study.

Decrease of CMAP amplitude in the paretic side was observed 
in the study, though statistical analysis did not show any sig-
nificant difference between the paretic and contralateral sides. 
The results are slightly different from previous studies in stroke  
(33, 34). In the chronic stroke, CMAP amplitude can be partially 
compensated by collateral sprouting of the denervated muscle 
fibers (35, 36). As a result, CMAP amplitude may maintain in a 
low normal range or be slightly lower than normal. Nevertheless, 
current findings may indicate high sensitivity of the EIM 
technique in detection of muscle structural alterations when 
electrophysiological measures may not disclose any significant 
changes.

clinical relevance
This study did not find any significant correlations between clini-
cal assessments (grip force, time course of stroke, and Chedoke 
score) and EIM or CMAP measures. Grip force and Chedoke 
evaluation involve coordination of multiple intrinsic and extrin-
sic hand muscles, for which hypothenar muscle has very limited 
contributions. This may explain the insignificant correlations in 
the study. In addition, Chedoke assessment uses a 7-point ordinal 
scale to differentiate levels of hand function recovery. The sub-
jective nature of the assessment and tendency to cluster in the 
lower range in the current study may also lead to insignificant 
relationship. In our previous study, we also observed that changes 
of EIM are not associated with the time course of stroke in the 
biceps (24). It seems state of the paretic muscle remains relatively 
stable in the chronic stage of stroke. Future work involving direct 
measurement of maximal contraction force from the tested mus-
cle or using multiple muscles may disclose new information on 
the relation of EIM and clinical assessments.

limitations
There are a number of limitations in the study. To match the 
muscle size, this study used the electrode array with relative 
smaller inter-electrode distance compared with previous stud-
ies (37, 38). When current electrodes are closer to the voltage 
electrodes, a larger proportion of the current will pass through 
the subcutaneous layer rather than deeper through the muscle. 
As a result, the measurement reflects a mix data of muscle and 
fat which undermines the real impedance measured from muscle 
(31). Since EIM (reactance and phase angle) recorded from the 
small electrode demonstrate high percent of negative values at 
50 kHz, current results were based on impedance at 100 kHz. As 
suggested in the literature, healthy tissue is more reactive around 
50 kHz, whereas tissues with disease may attain a peak reactance 
at higher frequencies (20). Use of impedance at 100 kHz may limit 
the comparison of the findings to other studies at 50 kHz.

cOnclUsiOn

This study found significant changes of impedance in the paretic 
hypothenar muscles compared with the contralateral side. The 
correlations between EIM and electrophysiological measure-
ment may indicate high sensitivity of the EIM technique in 
detection of muscle structural alterations. Future studies 
involving multiple frequency analysis may reveal insights for 
better understanding the impedance changes associated with 
structural modifications.
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