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Abstract

Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian

brain and has been characterized as a regulator of neuronal differentiation, synaptic func-

tionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human

Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1

in disorder-related behaviors are still unknown. Moreover, as recent studies have

highlighted the importance of gene-environment interactions in the development of psychiat-

ric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a par-

adigm that models social stress factors found in human patients, on psychiatric disorder-

related behaviors in mice. Through assessment in a behavioral battery, we found that

Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like

behavior in an elevated plus maze test, (2) short term memory deficits in novel object recog-

nition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, expo-

sure to social isolation stress resulted in additional behavioral abnormalities where isolated

Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibi-

tory avoidance test, as well as (2) increased depression-like behavior in the forced swim

test. Furthermore, we investigated whether mice showed alterations in plasma levels of

stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and

found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5).

Moreover, significant decreases in the level of prolactin were found in all groups except for

group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger

widespread behavioral abnormalities associated with psychiatric disorders, some of which

were further exacerbated by exposure to adolescent social isolation. The use of Kpna1
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knockout mice as a model for psychiatric disorders may show promise for further investiga-

tion of gene-environment interactions involved in the pathogenesis of psychiatric disorders.

Introduction

Importin αs, also known as Karyopherin αs (KPNAs), are a family of proteins that mediate

nucleocytoplasmic transport in eukaryotic cells. They recognize and bind cytoplasmic cargo

proteins containing nuclear localization signals (NLSs) and mediate their entry into the nucleus

through formation of a Cargo-Importin α-Importin β1 trimeric complex [1]. Several members

of the Importin α family are expressed widely across the brain [2], and have been linked with

various human disorders of brain and behavior, including schizophrenia, mood disorders, and

substance abuse [3–5]. Via individual subtypes that mediate the transport of different sets of

cargo, importin αs can function as regulatory switches of gene expression [6], responsible for

central cellular functions such as proliferation and differentiation [7–9]. Characterization of

importin αs at a cellular level has revealed wide roles of importin α both inside and outside of

canonical nucleocytoplasmic transport function [10–13]. However, further characterization is

necessary to fully understand the implications of importin αs in physiological contexts.

In mice, importin α1 (human importin α5, gene symbol: Kpna1, protein symbol: KPNA1)

is expressed widely throughout the central nervous system [2]. Past studies have demonstrated

KPNA1 to be an important regulator of neuronal differentiation from mouse embryonic stem

cells [7,8], although, interestingly, the brains of Kpna1 knockout (KO) mice (labeled as impor-

tin α5-deficient mice by the authors, according to the human nomenclature) do not show any

obvious morphological defects [14]. Behaviorally, Kpna1 KO mice have been reported to

exhibit reduced anxiety-like behaviors and impaired startle responses [15], indicating that

KPNA1 may play a role in controlling behaviors associated with psychiatric disorders. Inter-

estingly, in humans, examination of the exomes of schizophrenia patients have identified a de
novo nonsense mutation in KPNA1 (human importin α5 gene) [16], suggesting a possible link

between KPNA1 and schizophrenia. These findings suggest the necessity for further character-

ization of the role of KPNA1 in controlling cognitive and behavioral functions known to be

impaired in psychiatric disorders.

While gene sequencing studies in humans have identified several genetic risk factors for

psychiatric disorders [17–19], increasing evidence suggests that interactions between genetic

and environmental factors (G x E interaction) play important combinatorial roles in the devel-

opment of psychiatric disorders [20–22]. Such findings support the “two-hit” hypothesis of

schizophrenia, suggesting that the development of psychiatric disorders result from individuals

with underlying genetic risk being exposed to environmental stress factors (e.g., social stress,

malnutrition, or inflammatory episodes) [23]. Recent studies utilizing mouse models of psy-

chiatric disorders have further supported this “two-hit” hypothesis by demonstrating that

exposure to environmental stress factors can trigger or exacerbate behavioral deficits in geneti-

cally vulnerable mice [24,25]. These G x E interaction-associated behavioral alterations have

been linked with various physiological alterations in the brain, including in intracellular signal

transduction pathways [25], corticosteroid levels [24], and patterns of DNA methylation [24].

Such results demonstrate the effectiveness of G x E mouse models of psychiatric disorders as a

tool for uncovering the roles of risk factors in psychiatric disorder pathogenesis, and suggest

further use of such models will likely help to gain insight into the molecular pathology of psy-

chiatric disorders.
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In this study, we aimed to further characterize the physiological roles of KPNA1 in the

brain by using an extensive behavioral test battery to analyze psychiatric disorder-related

behaviors in a previously established Kpna1 KO mouse line [26]. Moreover, we assessed the

cumulative effects of an environmental risk factor in combination with Kpna1 deletion by sub-

jecting Kpna1 KO mice to adolescent social isolation stress, a developmental stress paradigm

proposed to model social stress factors found in human patients [24,27,28]. Finally, in order to

identify potential biomarkers of psychiatric disorders, we assessed the effects of genetic and

environmental factors on levels of signal molecules (corticosterone, cytokines, protein hor-

mones) contained in plasma [29–31].

Materials and methods

Animals

Generation of Kpna1 Het and KO mice. In this study, we used a previously reported

Kpna1 knockout line where Exons 2 and 3 have been removed [26] (deposited to RIKEN BioR-

esource Research Center as RBRC06031; mice were referred to as Importin α5 KO (Impα5-/-)

mice by the authors, according to the human nomenclature). The Kpna1 knockout line was

backcrossed >10 generations on a C57BL/6JJcl background prior to all experiments with mice

purchased from CLEA Japan, Inc. (Tokyo, Japan). Homozygous Kpna1 knockout (KO), and

wild type (WT) mice were produced by mating male and female heterozygous Kpna1 knock-

out mice.

Housing. Mice were kept in a noise-attenuating and temperature-controlled room at

23˚C ± 2˚C on a 12h light/dark cycle (Light: 0900–2100 Dark 2100–0900) with ad libitum
access to standard mouse chow and fresh water.

Group-housed mice were kept in standard cages (21 x 32 x 13 cm) together with their same

sex siblings (3–6 mice per cage) for the entire duration of experiments. Social isolation stress

was performed as previously reported [24], with minor modifications. Isolated mice were sepa-

rated from their siblings and housed individually in a small cage (length:20 x width:12.5 x

height:11 cm) surrounded by white paper during the adolescent period (between ages 5 w to 8

w old). After isolation, mice were returned to standard cages with their same sex siblings.

All mouse experiment procedures were approved by the Institutional Safety Committee on

Recombinant DNA Experiments (approval ID 04219), Animal Experimental Committee of

Institute for Protein Research at Osaka University (approval ID 29-02-1), and the Animal Care

and Use Committee of Kyoto University (approval ID MedKyo17071).

Behavioral test battery

Behavioral tests were conducted after the mice reached 8 weeks old. All tests were conducted

during the daytime (13:00–18:00) according to institutional regulations. The behavioral test

battery consisted of the following tests administered in the following order: open field test

(OFT), elevated plus maze (EPM), Y-Maze, novel object recognition test (NORT), inhibitory

avoidance (IA), prepulse inhibition (PPI), and forced swim (FS). All tests were administered

with 2 to 5 days in between tests.

A total of 39 male mice (group-housed: 9 WT, and 11 Kpna1 KO; isolated: 10 WT, and 9

Kpna1 KO) were subjected to the behavioral test battery. All behavioral tests were performed

in the Medical Innovation Center, Kyoto University.

Open field test. Spontaneous locomotion was measured in the open field test. Mice were

placed in the center of a grey plexiglass box (length:40 x width:40 x height:27 cm) located in a

brightly illuminated sound-attenuating room and allowed to freely explore for 60 min. Nov-

elty-induced locomotion was assessed by the total distance traveled (cm) and the percentage of
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time in the center area (1/3 of the width and length) of the field over the first 10 min of the 60

min session. Basal levels of locomotion beyond initial novelty-induced locomotion were

assessed by measuring the total distance traveled (cm) in the box over 60 min. All measure-

ments were scored using EthoVision XT 8.5 software (Noldus).

Elevated plus maze test. The elevated plus maze test was conducted as previously

described [32], using a plus-shaped maze with 4 arms (each length:30 cm x width:7 cm), con-

sisting of 2 open arms (arms without walls), 2 closed arms (arms with surrounding walls

(height:20 cm), and a center area (length:7 cm x width:7 cm) connecting the arms. Mice were

placed in the center area facing a closed arm and allowed to explore the maze for 15 min. The

percentage of time spent in the open arms (%), and the number of entries into the open arms

were scored using EthoVision XT 8.5 (Noldus). Mice were excluded from analysis if they fell

from the open arms onto the floor below.

Y-maze test. The Y-maze test was conducted as previously described [33], using a Y-

shaped maze with 3 arms (length:42 cm, wall height:15cm) spaced 120˚ apart from each other.

Mice were placed in the center area and allowed to explore for 15min. Entries into the arms

were scored using EthoVision XT 8.5 (Noldus). The alternation rate (%) was calculated using

the following equation:

Alternation rate ð%Þ ¼ ½no: of times all 3 arms were consecutively entered�
=ð½total no: of entries� � 2Þx100

Novel object recognition test. The novel object recognition test was conducted in an

open field apparatus (length:40 x width:40 x height:27 cm). The mice were habituated to the

field for 5 min for 3 consecutive days. On the 4th day, 2 identical objects (Object 1, Object 2)

were placed inside the box and the mouse was allowed to explore for 5 min (training session)

before being returned to their home cage. Fifteen min after the end of the training session the

test session was begun. Mice were returned to the field where one of the objects was exchanged

for a novel object (Object 1’) and allowed to explore for 5 min (retention session), during

which time their movement was recorded on video. Mice were excluded from analysis if they

spent more than 50% of the duration of a session on top of one of the objects. The amount of

time the mice spent interacting with each object during the test session was scored using Etho-

Vision XT 8.5 (Noldus), and the exploratory preference (%) for was calculated as follows:

Exploratory Preference ð%Þ ¼ ½Interaction with Object 1
;
�=ð½Interaction with Object 1

;
�þ

½Interaction with Object 2�Þ � 100

Inhibitory avoidance test. The step through inhibitory avoidance test was performed as

previously described [34,35], using a two-chamber light-dark transition apparatus (Med Asso-

ciates) consisting of an illuminated grey “light” chamber, a light-attenuating black “dark”

chamber, and a sliding door between the two rooms. On day 1, mice were introduced into the

“light” chamber and their latency (sec) to enter into the “dark” chamber (all four paws crossing

the threshold of the door) was manually recorded using a stopwatch. Immediately after entry

into the “dark” chamber, mice were subjected to a 1 sec footshock (0.5 mA) then left for 1 min

in order for conditioning to occur, after which time they were returned to their home cages.

On day 2, mice were introduced into the “light” chamber again, and their latency to enter into

the “dark” chamber was measured. Mice were excluded from analysis if the latency to enter on

day 1 exceeded 1 min.

Prepulse inhibition test and startle response. The prepulse inhibition test was adminis-

tered as previously described [36,37]. Mice were placed in sound-attenuating startle response

system chambers (SR-LAB©, San Diego Instruments) and habituated to a 70 dB white noise
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for 30 min. The test session began after the habituation step and consisted of 6 different trial

types (5 types of prepulse-pulse trials, and 1 pulse-only trial). Six blocks of the 6 trial types

were presented in a pseudorandomized order with each trial type only presented once each

block. Seventy dB white noise was presented for the entire duration of the test. The total dura-

tion of each trial was 500 ms, starting with a 50 ms null period followed by a prepulse (20 ms;

74, 78, 82, 86, or 90 dB white noise). The startle stimulus (40 ms; 120 dB white noise) was pre-

sented after a 100 ms delay, and was followed by a 290 ms recording time. The pulse-only trial

had no prepulse and only had the 70 dB background noise presented for the 20 ms period. The

following formula was used to calculate the percentage (%) of prepulse inhibition (PPI):

ð100 � ððstartle response to prepulse� pulse=startle response to 120 dB pulseÞ � 100ÞÞ

Forced swim test. The forced swim test was conducted as previously described [37] with

minor modifications. Briefly, glass containers (diameter:13.5 cm x height:20 cm) were filled

with room temperature (23-28˚C) water up to a height of 14 cm. Mice were placed in the

water for 6 min. The movement of the mice in the water was recorded on video and manually

analyzed at a later date using a digital stopwatch to measure the time spent immobile (sec).

Immobility was defined as a lack of any movement apart from those necessary to balance or

keep the head above the surface.

Blood plasma collection

Blood sampling was performed >5 days after the mice completed all steps of the behavioral

test battery. Sampling was performed before noon (0900–1130) when basal corticosterone lev-

els are low [38] to exclude the effects of circadian changes in corticosterone. Mice were deeply

anesthetized with isoflurane then blood was removed from the inferior vena cava. Blood was

immediately transferred to a 1.5 ml Protein LoBind tube (Eppendorf) containing 10 μl heparin

sodium (10000 U/10mL Mochida Pharmaceutical, Tokyo) to prevent clotting. The blood was

centrifuged at 1000 g for 10 min at 4˚C to separate and collect plasma.

Plasma Corticosterone measurement

Plasma Corticosterone levels were measured using a Corticosterone ELISA kit (Cayman

Chemical Company) according to the manufacturer’s instructions. All measurements were in

duplicate. Plasma samples from a total of 37 mice (group-housed: 9 WT, 9 Kpna1 KO; isolated:

10 WT, and 9 Kpna1 KO) with enough volume for measurement were used for ELISA

measurement.

Plasma cytokine measurement

Plasma levels of cytokines were measured using a Mouse Magnetic Luminex Assay (R&D sys-

tems), according to the manufacturer’s instructions. Twenty-nine different cytokines were

measured: IL-1 β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-13, IL-16, IL-17A, IL-17E, IL-33, IL-6

Rα, CCL3, CCL5, CCL11, CXCL 1, CXCL10, LIX, IFN-g, TNF-α, TNF RI, TNF RII, VEGF,

PDGF-BB, Prolactin, TIMP-1, G-CSF, and GM-CSF. Plasma samples from a total of 35 mice

(group-housed: 9 WT, 9 Kpna1 KO; isolated: 9 WT, and 8 Kpna1 KO) with enough volume for

measurement were measured in the multiplex immunoassay.

Statistical analysis

All statistical analyses and data visualization were performed using Prism 8.0 (GraphPad Soft-

ware, La Jolla, CA). Data are presented as the Mean ± SEM for bar graphs, with dots indicating
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individual data points. For box-whisker plots, data is presented as the median (center line),

±1.5 interquartile range (box), and minimum and maximum values (whiskers). For all experi-

ments other than the NORT, IA, and PPI, the main effects of genotype and environment, and

their interaction, were analyzed with a 2-way analysis of variance (ANOVA). The main effects

of genotype, environment, and trial, and their interactions, in the IA and PPI tests were ana-

lyzed with a 3-way repeated measures ANOVA. For PPI, Greenhouse-Geisser-corrected

degrees of freedom were used for the main effect of the trial. All ANOVA results are shown in

S1 Table. When a significant interaction between genotype and environment was observed in

the ANOVA analysis, a post hoc Tukey’s multiple comparisons test was used to analyze differ-

ences between groups differing by 1 factor. Differences between the two groups in the NORT

were analyzed with an unpaired t test. Outliers were determined by the ROUT test (Q:1%) on

Prism 8.0. The number of individual mice used for analysis, as well as the number of excluded

outliers are shown in S2 Table.

Results

Behavioral test battery

To investigate the effects of Kpna1 deletion and adolescent isolation on psychiatric-disorder

related behaviors, we designed a behavioral test battery to assess anxiety-like behaviors

(OFT, EPM), Memory (Y-Maze, NORT, IA), sensorimotor gating (PPI), and depression-

like behavior (FS). Two similar-sized groups were either group-housed or subjected to

social isolation during adolescence (isolated). A total of 9 WT and 11 Kpna1 KO group-

housed mice, and 10 WT and 9 Kpna1 KO socially isolated mice, were subjected to the

behavioral test battery.

Anxiety-like behaviors

Open field test. The open field test is a behavioral test used to assess spontaneous locomo-

tion and anxiety-like behavior in a novel environment [39]. The first 10 min of the 60 min trial

was used to assess novelty induced locomotion by calculating the total distance traveled over

10 min (Fig 1A). Anxiety-like behavior was assessed by measuring the time spent in center of

the field (Fig 1B) during the first 10 min. Two-way ANOVA analysis showed no significant

main effect of either genotype or environment on the distance traveled over 10 min. A signifi-

cant main effect of environment (F (1,35) = 11.51, p = 0.0017) was seen in in the duration of

time spent in the center of the field, with isolated mice spending less in time in the center com-

pared to group-housed mice, indicating higher levels of anxiety-like behavior in isolated mice.

The total distance traveled over the entire 60 min duration of the test was used to assess basal

levels of locomotion beyond the initial novelty induced locomotion (Fig 1C). Two-way

ANOVA analysis on the total distance traveled over 60 min showed no significant main effect

of genotype or environment.

Elevated plus maze test. Next, we examined behavior in an elevated plus maze (EPM), a

test for assessing anxiety-like behavior in rodents [40]. The total number of entries into, as well

as the total time spent in the open arms was measured, where more exploration of the open

arms indicates a decrease in anxiety-like behavior. Two-way ANOVA analysis showed a signif-

icant main effect of genotype on both the duration of time (Fig 1D; F(1,34) = 25.92, p<0.001)

and number of entries (Fig 1E; F(1,34) = 31.40, p<0.001) spent in the open arms, with Kpna1
KO showing an increase in both measures compared with WT controls. There was no signifi-

cant main effect of environment on both the total entries into open arms and total time spent

in open arms.
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Memory-related tasks

Y-maze test. Short-term spatial memory was assessed using a Y-maze test of spontaneous

alternation [41]. In the Y-maze test, a decrease in the percentage of successful alternations

between arms indicates impaired spatial working memory. All 4 groups of mice showed higher

levels of successful alternations than the 50% rate expected by chance (Fig 2A). Two-way

ANOVA analysis showed no significant main effect of genotype or environment on the num-

ber of correct alternations between groups.

Novel object recognition test. The ability for short-term recognition memory was evalu-

ated using the novel object recognition test (Fig 2B) [42]. An exploratory preference for the

novel object during the test session 15 min after the training session suggests successful recog-

nition of the familiar object. During both sessions, all isolated mice (isolated WT and Kpna1
KO) climbed on top of the objects and spent extended periods of time (>50% session dura-

tion) on them, resulting in them being excluded from the analysis. Analysis of group-housed

mice revealed that Kpna1 KO mice showed a significantly lower exploratory preference for the

novel object in the test session (unpaired t test, t(16) = 3.322, p = 0.0043).

Inhibitory avoidance test. The inhibitory avoidance test assesses aversive learning and

memory by measuring the latency to enter into a ‘dark’ chamber paired with an aversive

Fig 1. Kpna1 KO mice show decreased anxiety-like behavior in the elevated plus maze. Assessment of Anxiety-like behaviors in group-housed and isolated

WT and Kpna1 KO mice. (A-C) Open field test (A) Total distance traveled in the open field over 10 min (cm). (B) Time (s) spent in the center of the open field

over 10 min. (C) Total distance traveled in the open field over 60 min (cm). (D-E) Elevated plus maze (EPM) (D) Total number of entries into the open arms in

the EPM test. (E) Time (s) spent in the open arms in the EPM test. Mean ± SEM. Group-housed: 9 WT, 11 Kpna1 KO; isolated: 10 WT, 9 Kpna1 KO.

https://doi.org/10.1371/journal.pone.0258364.g001
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Fig 2. Kpna1 KO mice show significant impairment in short-term recognition memory and avoidance learning and/or

memory. Assessment of spatial working memory (Y-maze), object recognition memory (novel object recognition test (NORT)) and

aversive learning and/or memory (inhibitory avoidance (IA)) in group-housed and isolated WT and Kpna1 KO mice. (A) Y-maze

(A) Rate of correct alternations (%) in the Y-maze. (B) NORT (B) Exploratory preference of the novel object (%) in the NORT

during the test session. (C) IA (C) Latency (s) to enter into the shock-paired chamber on Day 1 (pre-learning) and Day 2 (post-
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footshock stimulus (Fig 2C) [32,43]. Three-way repeated measures ANOVA analysis

revealed a significant main effect of trial (day) on the latency to enter the ‘dark’ chamber

(F (1,34) = 265.1, p<0.001), indicating that mice were able to learn the contingency

between the chamber and the shock with which it had been paired on day 1. Additionally,

there were found to be significant main effects of genotype (G) (F (1,34) = 4.920,

p = 0.0333) and environment (E) (F (1,34) = 4.852 p = 0.0345), as well as significant interac-

tions between G x E (F (1,34) = 6.741, p = 0.0138), Trial x G (F (1,34) = 12.05, p = 0.0014),

and Trial x G x E (F (1,34) = 7.521, p = 0.0097). A post hoc Tukey’s test was used to analyze

differences amongst each group and day. All 4 groups showed significant increases in

latency to enter on day 2 compared to day 1 (group-housed: WT p<0.001, Kpna1 KO

p<0.001; isolated: WT p<0.001, Kpna1 KO, p<0.001). Isolated Kpna1 KO mice showed a

significant decrease in latency to enter on day 2 compared to group-housed Kpna1 KO

and isolated WT mice (p = 0.0027; KO vs isolated KO, p = 0.0061; isolated WT vs isolated

KO, p<0.001)

Prepulse inhibition and startle response

The ability for sensorimotor gating was assessed in a PPI test, a cross-species measure known

to be disrupted by schizophrenia and other disorders of the brain [44–48]. There was no signif-

icant main effect of genotype or environment on the startle responses to a 120 dB startle pulse

(Fig 3A). Three-way repeated measures ANOVA analysis revealed a significant effect of trial

(prepulse dB level) on the PPI percentage (F(3.319,109.5) = 29.39, p<0.001, Geisser-Greenhouse’s

epsilon = 0.8297), with PPI percentage increasing with louder prepulse (Fig 3B). Moreover,

significant effects of genotype (F(1,33) = 5.747, p = 0.0223) and environment (F(1,33) = 6.473,

p = 0.0158) on the PPI percentage were also observed, with Kpna1 KO mice and isolated mice

showing a decreased PPI percentage compared with their WT and group-housed counterparts,

respectively.

Forced swim test

Immobility time in the FS test is often used to assess depression-like behavior in rodents [49].

Two-way ANOVA analysis revealed significant main effects of genotype (Fig 4; F (1,33) = 6.789,

p = 0.0137) and environment (F (1,33) = 51.78, p<0.001), as well as a significant G x E interac-

tion (F (1,33) = 9.323, p = 0.0044), on the time spent immobile during the FS test (Fig 4). Post-

hoc Tukey’s tests revealed that increased immobility time in isolated mice (group-housed WT

vs isolated WT (p = 0.0271), group-housed Kpna1 KO vs isolated KO (p<0.001)) was aug-

mented by Kpna1 KO (isolated WT vs isolated KO (p = 0.0016)).

In summary, both Kpna1 deletion and adolescent social isolation stress were found to

significantly impair aversive learning and/or memory in the IA test and sensorimotor gating

in the PPI test, while increasing anxiety-like behavior (in the EPM for Kpna1 deletion and

OFT for isolation) and depression-like behavior in the FS test. Conversely, only Kpna1 dele-

tion was found to disrupt short-term recognition memory. Finally, gene x environment

interaction in isolated Kpna1 KO mice was observed in aversive learning and/or memory in

the IA test as well as depression-like behavior in the FS test, where significant differences

between WT and KO were only observed when the mice were subjected to social isolation

stress.

learning) in IA. Dotted line indicates 50% chance value. Mean ± SEM, ## p< 0.01 unpaired t test; �� p< 0.01, ��� p< 0.001 Tukey’s

test. (A-B) Group-housed: 9 WT, 11 Kpna1 KO; isolated: 10 WT, 9 Kpna1 KO (C) Group-housed: 9 WT, 9 Kpna1 KO (D) Group-

housed: 9 WT, 9 Kpna1 KO; isolated: 10 WT, 9 Kpna1 KO.

https://doi.org/10.1371/journal.pone.0258364.g002
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Fig 3. Kpna1 KO mice show impaired sensorimotor gating in the prepluse inhibition test. Assessment of startle

response and prepulse inhibition (PPI) in group-housed and isolated WT and Kpna1 KO mice. (A) Startle response (a.u.) to

a 120 dB startle pulse. (B) PPI (%) to 5 different prepulse strength levels (74, 78, 82, 86, 90 dB). (A) Mean ± SEM (B) median

(center line), ±1.5 interquartile range (box), minimum and maximum values (whiskers). Group-housed: 9 WT, 11 Kpna1
KO; isolated: 9 WT, 9 Kpna1 KO.

https://doi.org/10.1371/journal.pone.0258364.g003
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Assessment of plasma levels of stress-associated molecules

Characterization of group-housed and isolated Kpna1 KO mice using a behavioral test battery

showed that Kpna1 deletion and social isolation stress both significantly alter several different

psychiatric disorder-related behaviors. Moreover, a G x E interaction between Kpna1 deletion

and social isolation stress was observed in aversive learning and/or memory impairments and

depression-like behavior in the IA and FS tests, respectively. As the administration of both

genetic and environmental risk factors have previously been reported to cause major increases

the levels of plasma corticosterone compared to when each risk factor is administered alone

[24], we assessed plasma corticosterone levels of both group-housed and isolated groups after

behavioral experiments. Additionally, as changes in neuroendocrine signaling through gluco-

corticoids is known to alter downstream levels of signal molecules in circulation following

exposure to stress [29], we assessed the plasma levels of cytokines, hormones, and receptors in

group-housed and isolated Kpna1 KO and WT mice using a multiplex immunoassay after the

completion of behavioral experiments [31].

Corticosterone ELISA. We used an ELISA assay to assess the plasma levels of corticoste-

rone, a stress-related glucocorticoid [24,50–52] across group-housed and isolated Kpna1 KO

and WT mice (Fig 5A). After exclusion of outliers, the effects of genotype (Kpna1 KO or WT)

and/or environment (adolescent isolation or group-housing) on plasma corticosterone levels

were analyzed using a 2-way ANOVA. A significant main effect of genotype was observed on

plasma corticosterone levels (F(1,32) = 6.148, p = 0.0186), with Kpna1 KO mice demonstrating

an increase in corticosterone levels compared with WT controls.

Multiplex immunoassay for cytokines, hormones, and receptors. Alterations in plasma

glucocorticoid levels are known to affect neural activity, causing alterations in the activity of

Fig 4. Kpna1 KO mice show increased depression-like behavior in the forced swim test. Assessment of depression-

like behaviors in the forced swim test (FS) in group-housed and isolated WT and Kpna1 KO mice. Time spent

immobile (s) in the FS. Mean ± SEM, � p< 0.05, �� p< 0.01, ��� p<0.001 Tukey’s Test. Group-housed: 9 WT, 9 Kpna1
KO; isolated: 10 WT, 9 Kpna1 KO.

https://doi.org/10.1371/journal.pone.0258364.g004
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Fig 5. Measurement of stress-associated signal molecules in plasma. Measurement of plasma levels of stress-

associated molecules by (A) ELISA or (B-L) multiplex immunoassay in group-housed and isolated WT and Kpna1 KO

mice. (A) Corticosterone, (B) IL-16, (C) IL-6Rα, (D) CCL11, (E) CXCL1, (F) LIX, (G) TNFRI, (H) TNFRII, (I) VEGF,

(J) p, (K) TIMP-1, (L) G-CSF. �� p< 0.01 Tukey’s Test. Median (center line), ±1.5 interquartile range (box), minimum

and maximum values (whiskers).

https://doi.org/10.1371/journal.pone.0258364.g005
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the Hypothalamus-Pituitary-Adrenal (HPA) signaling pathway. Moreover, such alterations

can affect downstream pathways causing changes in systemic levels of signal molecules such as

cytokines [53]. To assess the possible effects of Kpna1 deletion and adolescent social stress on

systemic levels of cytokines, hormones, and receptors, we used a multiplex bead-based immu-

noassay to measure the levels of cytokines (cytokines, hormones, and receptors) in plasma col-

lected from mice subjected to the behavioral battery. Of the 29 species measured in the assay

(IL-1 β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-13, IL-16, IL-17A, IL-17E, IL-33, IL-6 Rα, CCL3,

CCL5, CCL11, CXCL 1, CXCL10, LIX, IFN-g, TNF-α, TNF RI, TNF RII, VEGF, PDGF-BB,

Prolactin, TIMP-1, G-CSF, GM-CSF), 11 species (IL-16, IL-6 Rα, CCL11, CXCL 1, LIX,

TNFRI, TNFRII, VEGF, Prolactin, TIMP-1, G-CSF) were detected above the lower limit of

quantitation (LLQ) in plasma collected from both group-housed and isolated groups.

After exclusion of outliers, the effects of genotype (Kpna1 KO or WT) and environment

(adolescent isolation or group-housing), as well as their interactions, on plasma levels were

analyzed using a 2-way ANOVA. A significant main effect of genotype was observed on LIX

levels (Fig 5F, F(1,31) = 7.931, p = 0.0084), with Kpna1 KO mice showing increased levels com-

pared with WT controls. Additionally, a significant main effect of environment was observed

on levels of CCL11 (Fig 5D; F(1,31) = 22.48, p<0.001), TNFRII (Fig 5H; F(1,28) = 8.209,

p = 0.0078), and TIMP-1 (Fig 5K; F(1,31) = 6.567, p = 0.0155), with isolated mice demonstrating

higher levels of CCL11, but lower levels of TNFRII and TIMP-1 than WT controls. Finally, a

significant G x E interaction was observed for prolactin levels (Fig 5J; F(1,28) = 5.168,

p = 0.0309). Post hoc Tukey’s tests on the differences in prolactin amongst groups showed that

WT mice had significantly higher levels of prolactin compared to Kpna1 KO and isolated WT

mice (WT vs KO, p = 0.0216; WT vs isolated WT, p = 0.0224). No significant effects of envi-

ronment or genotype were observed on levels of IL-16 (Fig 5B), IL-6Rα (Fig 5C), CXCL1 (Fig

5E), TNFRI (Fig 5H), VEGF (Fig 5I), and G-CSF (Fig 5L).

In summary, Kpna1 deletion was found to increase levels of corticosterone and LIX, regard-

less of whether animals were exposed to social isolation. However, genetic and environmental

factor were found to interact in the control of prolactin levels, where group-housing was able

to confer protection to WT mice against the reduced prolactin levels observed in group-

housed Kpna1 KO mice and isolated WT mice. Finally, isolation stress was found to increase

plasma levels of CCL11 and decrease TNFRII and TIMP-1 in both WT and Kpna1 KO mice.

Discussion

In this study, we investigated the effects of Kpna1 deletion and social isolation stress on psychi-

atric disorder-related behaviors by exposing group-housed and isolated Kpna1 KO mice to an

extensive behavioral test battery. We also assessed plasma levels of multiple stress-associated

signal molecules in group-housed and isolated Kpna1 KO mice. In our study, we found Kpna1

deletion decreases anxiety-like behavior, impairs short-term memory and sensorimotor gating,

and increases depression-like behavior, suggesting that hypofunction of KPNA1 results in

behavioral changes associated with psychiatric disorders [32,39–45,49]. Furthermore, the

administration of adolescent social isolation stress, an environmental risk factor known to

interact with genetic risk factors in the development of psychiatric disorders [25,27], resulted

in significant impairment of aversive learning and/or memory in the IA and increased depres-

sion-like behavior in the FS in Kpna1 KO mice. All behavioral alterations caused by Kpna1
deletion and G x E interaction, other than decreased anxiety-like behavior, were identified

here for the first time.

In the EPM, Kpna1 KO mice demonstrated a significant decrease in anxiety-like behavior

compared with WT mice. A previous study has reported that Kpna1 KO mice show decreased
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anxiety-like behavior (in EPM and OFT), which was attenuated by either administration of a

Sphk1 inhibitor PF-543, or rescue of Kpna1 in the ventral hippocampus [15]. Interestingly,

while there was a significant effect of social isolation observed in the time spent in the center of

the field in the OFT in our study, no significant effect of Kpna1 deletion was observed. The

apparent contradiction between the OFT results in our study and those reported in the previ-

ous study may reflect differences between background strains of the Kpna1 KO mice used

(C57BL/6JJcl vs C57BL/6OlaHsd). Indeed, significant differences in the behavioral characteris-

tics of different C57BL/6 substrains have been previously described [54,55]. Additionally, dif-

ferences in length of social isolation stress [27], along with differences in experimental

apparatus and procedures (ambient illumination, wall color) [56,57] are known to influence

performance in both OFT and EPM, and the differences in results could reflect such differ-

ences in apparatus and procedure. Further investigation into molecular alterations following

social isolation stress may provide insight on the molecular mechanisms regulating anxiety-

like behaviors.

Here we show for the first time that Kpna1 deletion causes significant impairment of PPI.

PPI is frequently used as a cross-species measure of sensorimotor gating in a wide range of

organisms [46–48], and is of particular interest for the development of rodent models of

schizophrenia as PPI impairment is seen in both human schizophrenia patients [44] and vari-

ous mouse models of schizophrenia [45]. Although the neural circuits that control sensorimo-

tor gating are not yet fully understood, cortical and limbic pathways of the brain have been

implicated in its control, suggesting that PPI impairment in Kpna1 KO mice may reflect dis-

function of such pathways [47,58]. A previous study has also reported that Kpna1 deletion

results in a significant decrease in acoustic startle response [15]. However, in our behavioral

test battery, we did not observe any changes in acoustic startle to a 120 dB startle pulse in

Kpna1 KO mice. This apparent contradiction may also be the explained by differences in back-

ground strains or experimental protocols; our assessment of acoustic startle response was per-

formed as a part of the prepulse inhibition test rather than on its own, as in the previous study

[15].

In the FS, an increased depression-like phenotype was seen only in isolated Kpna1 KO

mice. This is the first report of increased depression-like behavior in Kpna1 deficient mice,

and stands in contrast to the decreased anxiety-like behavior observed in the EPM. Interest-

ingly, there have been several studies reporting negative correlations between measures of anx-

iety-like behavior (OFT, EPM) and depression-like behavior (FS) [59,60]. This has inspired

recent discussion about negative correlations between anxiety-like and depression-like behav-

ior in mouse models of psychiatric disorders, and highlights the need for greater elucidation of

the mechanistic background of anxiety-like and depression-like behaviors [61].

In the IA task, only isolated Kpna1 KO mice exhibited reduced latency to enter into a

shock-paired chamber compared to group-housed KO and isolated WT mice, indicating

impaired aversive learning and/or memory. Other than impairments in aversive learning and/

or memory, a decreased latency in the IA could suggest that isolated Kpna1 KO mice have a

reduced pain response compared to other groups. A recent study assessing the effect of differ-

ent importin α deficiencies on pain responses in mice showed that Kpna1 deletion (referred to

as importin α5 in the manuscript) does not alter pain perception [62]. Therefore, it is unlikely

that the decreased latency to enter the shock-paired chamber observed in Kpna1 KO mice in

this study reflects a reduced pain response, but rather impaired aversive learning and/or mem-

ory. In the NORT, a short-term memory-related task, group-housed Kpna1 KO mice showed

significantly fewer interactions with the novel object compared to WT controls. This is the

first report of Kpna1 deletion resulting in impaired novel object recognition. Kpna1 deletion

has been suggested to alter gene expression and decrease synaptic functionality of the
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hippocampus [15]. The hippocampus plays a central role in multiple types of memory includ-

ing aversive memory [43], and in object recognition memory [63,64] together with the peri-

rhinal cortex [65]. It is possible that the impairment in IA and NORT reported in our study

may reflect memory disfunctions of the hippocampus caused by Kpna1 deletion. However, it

is important to note that in the IA test it is difficult to identify whether the reduced latency to

enter the shock-paired chamber is the result of impaired aversive learning or impaired aversive

memory, as the effects of genetic and environmental factors were present during both the

acquisition (Day 1) and expression (Day 2) stages of the test. Indeed, while the hippocampus

has been implicated in aversive memory [43], the ventral striatum appears to be important for

aversive learning [34].

In the FS and IA tests, G x E interaction between Kpna1 deletion and social isolation was

found, where significant changes in behavior were only observed when adolescent social isola-

tion and Kpna1 deletion were both present. Such G x E interactions seen in these behaviors

may suggest that environmental factors (adolescent social isolation) influence similar regions/

pathways of the brain as genetic risk factors (Kpna1 deletion), where the cumulative effects

from both factors cause increased levels of impairment. Administration of social isolation

stress has been shown to alter performance in FS along with increases in serum corticosterone

levels and hippocampal microglial activation [66]. Similar increases in serum corticosterone

levels have been found in mice with decreased IA performance after social isolation [67]. As

increased plasma corticosterone is known to alter synaptic states in the hippocampus [68],

increased glucocorticoid signaling acting onto the already altered Kpna1 deficient hippocam-

pus may be one possible mechanism behind the G x E interactions in behavior observed in this

study. Further determinations of the individual regions/pathways susceptible to each genetic

and/or environmental stress factor will allow for detailed examinations of the cellular processes

in each region that result in the disfunctions of brain and behavior [50,51].

In our assessment of plasma corticosterone, Kpna1 KO mice had higher corticosterone lev-

els compared to WT mice. Corticosterone is a stress-associated steroid hormone analogous to

human cortisol, which contributes to the HPA signaling axis [50,51], and is consistently

reported to be increased in socially isolated rodents [69]. In human studies, increased serum

cortisol suggestive of HPA axis hyperfunction has been found in individuals with schizophre-

nia [70]. Importantly, a past study investigating the effect of social isolation on a transgenic

mouse model of psychiatric disorder (DISC1-DN-Tg-PrP) found significant increases in

plasma corticosterone as a result of G x E interaction [24]. In this study, differential regulation

of DNA methylation through glucocorticoid receptor signaling was found in subsets of ventral

tegmental area (VTA) dopaminergic neurons projecting to different areas (mesolimbic, meso-

cortical), revealing specific subsets of VTA neurons that are targeted by corticosterone signal-

ing. Later studies have found that synaptic functions in the PFC network can be influenced by

glucocorticoids ether directly through glucocorticoid signaling or indirectly through the mod-

ulation of upstream projecting neurons [71]. Increased levels of corticosterone in Kpna1 KO

mice could affect similar regions such as the PFC or hippocampus, causing epigenetic changes

and disruption of downstream neural pathways.

Recent studies exploring diagnostic biomarkers in human patients have highlighted the

role of systemic signal molecules such as cytokines, hormones, and their receptors in psychiat-

ric disorders [72–74]. Alterations in neuroendocrine pathways such as HPA axis signaling are

known to influence circulatory cytokine levels [29,53]. In this study, we assessed the impact of

genetic and environmental factors on the circulatory levels of such stress-associated systemic

signal molecules (cytokines, hormones, and receptors) through a multiplex immunoassay,

finding several species of signal molecules that were altered in Kpna1 KO and/or isolation

stress mice.
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Of the 11 species detected in the multiplex immunoassay, both group-housed and isolated

Kpna1 KO mice exhibited higher plasma LIX levels than WT controls. LIX (CXCL5) is a

CXCR2 ligand chemokine (cytokine responsible for chemotactic recruitment of leucocytes

into tissue) involved in neuroinflammation, BBB collapse, and neutrophil infiltration into the

brain [75]. Furthermore, LIX has been associated with schizophrenia in a large-scale assess-

ment of plasma protein biomarkers in patients [73]. Recently, neuro-immune interactions

involved in the regulation of various behaviors has become an area of increasing interest

[76,77], and investigations on other rodent social stress paradigms such as repeated social

defeat have revealed neuro-immunological alterations such as increased neutrophil mobiliza-

tion [78] and increased brain monocyte infiltration [79], as potential factors causing abnormal

behaviors in these models. As increases in plasma LIX levels can cause increases in chemokine

signaling and leucocyte chemotaxis/infiltration, a potential mechanism of increased LIX levels

in Kpna1 KO affecting behavior may be an increased level of leucocyte infiltration into the

brain after social stress. As our measurements are only from LIX in circulation, further evi-

dence on LIX production/secretion in the brain and other organs in Kpna1 KO mice is neces-

sary to determine the connections between Kpna1 KO and LIX alteration.

In our measurements of plasma prolactin, a G x E interaction was found on plasma prolac-

tin levels, where WT mice had higher prolactin levels compared to other groups. prolactin is a

protein hormone secreted from the anterior pituitary involved in the regulation of physiologi-

cal functions including reproduction, metabolism, and maternal behavior [80,81], with more

recent evidence suggesting additional regulatory roles such as HPA axis regulation [82,83] and

suppression of anxious/depressive behavior [84] in rodents. Administration of social isolation

stress has been found to disrupt circadian fluctuations of prolactin in rats, causing circulatory

prolactin levels to be low throughout the day compared to unstressed controls [85,86].

Although the effects of Kpna1 deletion on prolactin secretion, along with the effects of circula-

tory prolactin on the behaviors caused by G x E interaction in this study (FS, IA) have not

been investigated yet, the decreased prolactin levels found in our study may underlie changes

in signaling pathways and feedback loops involved in stress response and behavioral regula-

tion. Further insight into the regulatory roles of prolactin on HPA axis regulation and behavior

may uncover converging points for the adverse effects of genetic and environmental stressors.

As prolactin secretion from the pituitary is negatively regulated by dopamine signaling

from the hypothalamus [87], the main focus on prolactin in clinical settings with regard to psy-

chiatric disorders has been antipsychotic induced hyperprolactinemia, an adverse effect caused

by the administration of common antipsychotics which target dopamine D2 receptors [88].

However, emerging evidence has suggested additional connections between prolactin and psy-

chiatric disorders, where negative correlations have been found between systemic prolactin

levels and measures of positive symptoms in schizophrenia patients [89]. Future studies may

uncover further connections between systemic prolactin signaling and behavioral regulation.

Exposure to adolescent social isolation stress in rodents has been proposed as a paradigm to

mimic social stress factors [28] known to affect human patients with psychiatric disorders

such as schizophrenia and pathological social withdrawal (Hikikomori) [90,91], and changes in

anxiety-like behavior, depression-like behavior, recognition memory, and PPI following social

isolation stress have previously been reported across numerous studies [92]. Our study pro-

vides further support for the findings of many of these studies, demonstrating exposure to

social isolation stress alone to result in increased anxiety-like behavior in the OFT, impaired

aversive learning and/or memory in IA, reduced sensorimotor gating in PPI, and increased

depression-like behavior in FS. In addition to these behavioral changes, past studies have

reported social isolation in rodents to result in changes in corticosterone [52]. In our study we

measured the levels of several stress-associated signal molecules and found for the first time
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that mice that experienced adolescent social isolation showed altered levels of CCL11, TNFRII,

and TIMP-1. CCL11 was increased, whereas TNFRII and TIMP-1 were decreased, in socially

isolated mice. CCL11 (Eotaxin-1) is a chemokine known to enhance excitotoxicity [93] and is

associated with neurological aging in mice [94] and psychiatric disorders in humans [95].

TNFRII acts as a receptor for TNF and is involved in the neuroprotective roles of TNF signal-

ing [96]. Changes in TNF signaling in the brains of patients with psychiatric disorders (schizo-

phrenia, bipolar disorder) have been an area of therapeutic interest [97]. TIMP-1 is a matrix

metalloprotease inhibitor involved in the regulation of neuroinflammation through matrix

metalloprotease regulation [98]. Future research is required to ascertain the mechanisms

underlying stress-associated changes in these signal molecules and how they may act to regu-

late behavior.

Past reports have characterized the widespread expression of Kpna1 across the brain [2]

and its regulatory roles in neuronal differentiation [7,8]. Our study expands on these previous

reports by providing novel evidence that genetic alterations in Kpna1 can combine with envi-

ronmental stress factors to cause behavioral abnormalities associated with several psychiatric

disorders. These findings appear to support previous evidence from genetic studies of human

psychiatric disorder patients revealing a de novo nonsense mutation of KPNA1 to be associated

with schizophrenia [16]. However, it is important to note that similar de novo mutations have

not been identified by further screening of schizophrenia patients [99], and KPNA1 is yet to be

identified in large-scale GWAS studies of human schizophrenia patients despite being pro-

posed as an important regulator of neuronal differentiation and behavior in mice. Future

attempts to include the effects of environmental stress factors in large-scale analysis may

uncover the effects of previously unknown G x E interactions and highlight the contributions

from less common genetic risk factors.

Further assessment of the molecular mechanisms underlying the behavioral abnormalities

seen in Kpna1 KO mice may be an effective approach for elucidating the complex molecular

mechanisms underlying human pathology, along with advancing the understanding of Impor-

tin αs in physiological contexts. Finally, the finding that social isolation stress in Kpna1 KO

mice resulted in an augmentation of some behavioral alterations demonstrates the effective-

ness of this mouse models to dissect the interactive effects of individual genetic and environ-

mental factors in relation to psychiatric disorders.
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