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Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural
response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was
to examine how healthy children�s brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select
the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then
scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal
cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results con-
firmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine
brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the
neural level to marketing.
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INTRODUCTION

Advertising is a dominant industry in the United States with food and

beverage companies alone spending more than $10 billion annually to

market their products to children (Institute of Medicine Committee,

2006). The intense marketing toward youth is driven by companies’

ambitions for brand recognition, preference and loyalty. The average

child in the United States views more than 5500 television food

advertisements per year (Federal Trade Commission, 2007). Of these,

98% are for products high in fat, sugar and/or sodium (Powell et al.,

2007). Advertising is successful with studies on the effects of television

food advertising showing that children exposed to advertisements will

prefer advertised foods at much higher rates than children who were

not exposed (Coon and Tucker, 2002). Also, the amount of exposure

children have to food advertisements directly impacts the number of

attempts they make to influence their parents’ purchases (Coon and

Tucker, 2002). Robinson et al. (2007) asked children aged 3–5 years to

taste identical foods and beverages labeled in McDonald’sTM or

unbranded packaging. Although the food and drink samples were

identical, children indicated a statistically significant preference for

the taste of food and drinks labeled with McDonald’sTM brand logos,

exemplifying how food advertising impacts children’s preferences and

food motivation. The consensus among published reviews is that ‘food

promotion has a causal and direct effect on children’s food preferences,

knowledge, and behavior’ (Livingstone, 2005: 283). In addition, some

experts have cited food marketing as one of the contributors to the

recent rise in childhood obesity (Harris et al., 2009).

Neuroimaging techniques such as functional magnetic resonance

imaging (fMRI) can help to improve understanding of how people

process, evaluate and respond to product brands (see Plassman

et al., 2012 for a review). Published neuromarketing studies of healthy

adults viewing culturally familiar logos have determined that the

prefrontal cortex (PFC) and hippocampus are involved in brand rec-

ognition. Specifically, product brands activate dorsolateral PFC,

ventromedial PFC, orbitofrontal cortex (OFC), anterior cingulate

cortex (ACC), ventral striatum and hippocampus (e.g. McClure

et al., 2004; Schaefer et al., 2006; Schaefer and Rotte, 2007a,b;

Schaefer and Rotte, 2011; Esch et al., 2012). Moreover, the PFC,

OFC, ACC, ventral striatum and hippocampus have also been identi-

fied as being involved in food motivation, reward processing and gen-

eral appetitive cues (as both ‘drive’ and ‘control’ regions) (e.g. Gautier

et al., 2000; Small et al., 2001; DelParigi et al., 2005; Simmons et al.,

2005; Martin et al., 2010).

Studies on children’s brain responses to actual food images have

implicated similar brain regions as those identified in adults (Holsen

et al., 2005; Killgore & Yurgelun-Todd, 2005; Bruce et al., 2010; Davids

et al., 2010). In healthy weight children, one fMRI study compared

brain activations in response to appetizing food images when children
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were hungry and when they were satiated (Holsen et al., 2005).

Increased activations to food images were reported in insula, amygdala,

medial frontal cortex and OFC, which are similar to adult findings.

Another study compared adolescent and adult brain activation and

identified increased activation to food images in OFC and hippocam-

pus (Killgore & Yurgelun-Todd, 2005). The neural networks associated

with food motivation are the same regions discussed in the well-

supported theory of brain development (Casey et al., 2000). This the-

oretical model posits that the increase in risk-taking behavior in ado-

lescence is attributed to uneven neurobiological development in brain

regions associated with cognitive control and emotional drive

(Somerville and Casey, 2010). Specifically, reward regions including

striatum mature before the cognitive and self-control regions of the

PFC. Therefore, without the necessary inhibitory processes to aid in

decision making, youth are particularly susceptible to making poor

health behavior choices and these differences may be particularly pro-

nounced when evaluating appetitive cues (Somerville and Casey, 2010).

Despite recent interest in neuromarketing and the neuroscience of

food motivation, no studies thus far have examined brain activation in

children viewing brand logos. Therefore, the aim of this study was to

examine neural responses to product brands in children to gain a

better understanding of how children’s brains respond to appetitive

cues frequently used in advertising. We hypothesized an increase in

activity in the limbic and paralimbic system, including ventral stri-

atum, and prefrontal brain regions when children were viewing food

logos compared with either non-food logos or a baseline condition.

We used an fMRI stimulus paradigm including familiar food and

non-food logos that were common in the United States, e.g.

McDonald’s arches�, Lucky CharmsTM leprechaun, Rice KrispiesTM

elves vs the TargetTM bulls-eye, the Energizer Bunny�, FedEx� vs

blurred images of logos matched on color composition and brightness

(baseline condition) as comparisons. A better understanding of chil-

dren’s responses to food logos will be beneficial in elucidating the

complex relationships between advertising and neural responses to

motivational cues.

MATERIALS AND METHODS

The protocols for the pilot validation study and the main fMRI

study were approved by the Human Subjects Committee at the

University of Kansas Medical Center (KUMC). Written informed con-

sent was obtained from each child’s parent/legal guardian and written

informed assent was obtained from each child before study

participation.

Validation of logo stimuli

A validation study was first conducted to select the most appropriate

logos for use in the activation paradigm. Thirty-two participants

(13 males) aged 9–16 years (mean¼ 11.5 years, s.d.¼ 2.2) rated 239

culturally familiar brand logos on a five-point Likert scale on three

categories: familiarity, valence (happy/sad) and arousal (exciting/

boring) (Figure 1). This standardized scale has been used in many

stimulus validation studies for the International Affective Picture Set

(Lang et al., 2008). Based on the participants’ ratings, 60 food and 60

non-food logos that were high on familiarity were selected (see online

Supplementary Data). Food logos as a group were matched on famil-

iarity with non-food logos [t(118)¼ 0.33, P¼ 0.74]. The food and

non-food logos were not significantly different on valence

[t(118)¼ 1.26, P¼ 0.21] or arousal [t(118)¼ 1.49, P¼ 0.14]. These

120 logos were used in the fMRI paradigm in the main study described

later. Baseline images were created from the food and non-food logos

using three iterations of a fast Fourier transform to render the logos

unidentifiable. The baseline images were therefore matched to the food

and non-food logos on visual properties of color composition and

brightness.

Main fMRI study

Participants

Seventeen children (10 males) with a mean age of 11.8 years (s.d.¼ 1.4,

range 10–14) were recruited from broadcast email messages sent to the

KUMC employees and from the pediatric clinic. All participants were

in age-appropriate grades. Exclusion criteria included major psychi-

atric diagnoses and neurological illness (parental interview),

left-handedness and impaired, uncorrected vision. All participants

spoke English as their primary language. None of these participants

took part in the validation study.

Procedures and methods

After informed consent was obtained, participants and their parents

completed demographic measures. Time since last food intake was at

least 4 h. Prior to the scan, the MRI experience was fully explained to

the children and their parents. The scanning session took �45 min.

fMRI data acquisition

Data were acquired with a 3-Tesla Siemens Allegra scanner. Each scan

consisted of one anatomical and two 6 min 36 s functional sequences.

T1-weighted 3D MPRAGE anatomic images were acquired [time to

repetition (TR)/time to echo (TE)¼ 23/4 ms, flip angle¼ 88, field of

view¼ 256 mm, matrix¼ 256� 192 and slice thickness¼ 1 mm].

Gradient-echo blood-oxygen-level-dependent scans were acquired in

43 contiguous axial slices at a 408 angle to the anterior commissure-

posterior commissure (AC–PC) line [TR/TE¼ 3000/30 ms, slice thick-

ness¼ 3 mm (0.5 mm skip), in-plane resolution¼ 3� 3 mm, 130 data

points]. To optimize signal in ventromedial prefrontal regions, the

susceptibility artifact was addressed in two ways: (i) acquiring the

slices at a 408 angle to the AC–PC line and (ii) positioning all partici-

pants in the scanner so that the angle of the AC–PC plane was between

178 and 228 from the axial plane in scanner coordinate space. This

procedure also standardized head positioning.

Experimental paradigm

A block design with two functional runs (each run was 6 min 36 s) was

used to display the food logos, non-food logos and blurred baseline

images (Bruce et al., 2010). Each logo was presented only once to each

participant. Functional scans involved three repetitions of each block

Fig. 1 Example of item from the pilot validation of logo stimuli prior to the main fMRI study.
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of stimulus type (i.e. each block contained 10 food logos or 10

non-food logos), alternated between blocks of 10 blurred images.

Stimulus presentation time was 2.5 s with an interstimulus interval

of 0.5 s. The order of category presentation was counterbalanced

across participants. Visual images were back-projected to a screen

mounted on the back of the MRI scanner, and participants viewed

the images through a mirror on the head coil. Foam cushions were

placed around the participants’ heads to minimize movement.

fMRI data analysis

Data preprocessing and statistical analyses were conducted using

BrainVoyager QX 2.1 statistical package (Brain Innovation, Maastricht,

the Netherlands). The preprocessing steps included trilinear 3D

motion correction, sinc-interpolated slice scan time correction, 2D

spatial smoothing (4 mm Gaussian filter) and high-pass filter temporal

smoothing. Functional images were realigned to the anatomic images

obtained within each session and normalized to the BrainVoyager

template image, which conforms to the space defined by the Talairach

and Tournoux stereotaxic atlas (Talairach and Tournoux, 1988). Four

runs out of 34 (two runs each from 17 participants) were discarded

due to motion >3 mm of movement on an axis (x, y and z).

Activation maps were generated using statistical parametric methods

and random effects in BrainVoyager QX. Statistical contrasts were

conducted using multiple regression analysis with the general linear

model allowing multiple predictors to be built into the model.

Regressors representing experimental conditions of interest were mod-

eled with a hemodynamic response filter and entered into the multiple

regression analysis using a random-effects model. Contrasts between

conditions of interest were assessed with t-statistics across whole brain.

For each contrast (food logo vs baseline, non-food logo vs baseline and

food logo vs non-food logo), voxel values were considered significant if

the activation survived a statistical cluster-based threshold of P < 0.01,

corrected. We corrected for multiple comparisons using the familywise

approach (�< 0.05; P < 0.01, k¼ 9 voxels), determined by Monte Carlo

simulation in BrainVoyager (Goebel et al., 2006; Lieberman and

Cunningham, 2009).

RESULTS

Food logos vs baseline

As shown in Table 1, the food logos vs baseline analysis (P < 0.01,

corrected) revealed significant activations in left OFC [Brodmann’s

area (BA) 10/11] (Figure 2) and bilateral inferior frontal gyrus (IFG,

BA 13), left temporal cortex and bilateral visual cortex. Significant

deactivations to food logos were found in right parietal, bilateral tem-

poral and left posterior cingulate.

Non-food logos vs baseline

The non-food logos vs baseline analysis (P < 0.01, corrected) revealed

significant activations in left medial PFC, left IFG, right thalamus and

bilateral fusiform gyrus (Table 1). Significant deactivations to non-

food logos were found in right superior frontal gyrus, left insula/tem-

poral cortex, bilateral parietal cortex, right temporal cortex and right

precuneus.

Food logos vs non-food logos

The food logos vs non-food logos analysis (P < 0.01, corrected) re-

vealed significant activations in right occipital cortex and right para-

central lobule and left parietal and left lingual gyrus (Table 2).

Activation in right paracentral lobule extended into posterior cingulate

cortex (PCC) (P < 0.01; x¼ 9, y¼�23, z¼ 43) (Figure 3). No regions

showed significantly greater activations to non-food compared with

food logos.

DISCUSSION

Although a growing body of neuroimaging literature documents adult

brain responses to product brands, this is the first study to examine

Table 1 Regions reaching significance for the contrasts between food and non-food logo
stimuli in comparison to baseline images

Contrast and region Coordinates t-Value Contiguous
voxels

x y z

Food logos vs baseline
OFC (L), BA 10/11 �6 41 �8 5.96 114
Bilateral IFG, BA 13 �39 29 10 6.78 280

BA 47 24 29 �2 6.19 15
Bilateral occipital cortex, BA 18 27 �82 1 8.43 1326

�27 �79 �11 11.47 1547
Bilateral temporal cortex �51 �34 1 6.36 11

�57 �16 �17 5.52 12
�48 �22 13 �5.01 30

39 �10 �5 �3.92 12
Parietal cortex (R), BA 40 63 �37 31 �5.44 90
Posterior cingulate (L), BA 31 �6 �46 43 �6.02 183

Non-food logos vs baseline
Medial prefrontal (L), BA 6 �9 5 55 6.82 10
IFG (L), BA 13 �42 26 10 5.71 119
Thalamus (R) 21 �25 4 4.82 14
Bilateral fusiform gyrus, BA 19/37 39 �70 �11 9.88 1328

�39 �46 �17 11.28 1445
Superior frontal gyrus (R), BA 10/9 30 68 1 �4.21 11

30 59 28 �4.63 11
Insula (L), BA 13 �42 �10 4 �5.86 63
Insula/temporal cortex (L) �45 �31 19 �7.01 19
Precuneus (R), BA 30/31 15 �55 16 �4.60 13

6 �37 43 �5.75 372
Temporal cortex (R), BA 21 54 �22 �2 �5.44 20
Bilateral parietal cortex 63 �28 43 �5.38 180

�63 �28 37 �5.05 87

P < 0.01, cluster corrected at 9 voxels. Activations are listed first (positive t-values) followed by
deactivations (negative t-values) for each contrast. L¼ left; R¼ right.

Fig. 2 fMRI statistical maps (sagittal perspective) showing results from food logo vs baseline
contrasts, co-registered with average structural MRI data from participants. Significance thresholds
are set at P < 0.01, corrected (cluster threshold¼ 9 voxels). Arrow highlights greater activation
in OFC.

120 SCAN (2014) A. S.Bruce et al.



children’s brain responses to culturally familiar food and non-food

logos. In healthy children, food and non-food logos activated object

identification regions of the brain (visual cortex/ventral stream).

Studies examining adults’ brain responses to logos also noted signifi-

cant activation in these regions (Plassman et al., 2012).

We found that healthy children’s brains show significant activation

to food logos compared to baseline images in regions associated with

both motivational value (OFC, BA 10/11) and cognitive control (IFG,

BA 13). The non-food logos compared to baseline activated inferior

frontal and medial PFC and thalamus. In a direct comparison between

food logos and non-food logos, food logos resulted in greater activa-

tion in occipital and parietal cortex and PCC. PCC was significantly

deactivated to food logos and non-food logos, only more so to non-

food logos. PCC is known to be an integral member in the default

mode network (Fransson and Marrelec, 2008) and it is possible the

deactivations in PCC may indicate the children’s engagement with the

visual stimuli. Furthermore, the food logos showed significant positive

activations in occipital cortex compared with non-food logos. Other

studies have shown that food images elicit brain activations in visual

cortex (Simmons et al., 2005). No areas were significantly more active

to non-food logos vs food logos. Food logos may attract children’s

attention more than non-food logos. This is significant considering

the vast majority of foods marketed to children are for unhealthy,

calorically dense foods (Powell et al., 2007). Results from this preli-

minary study should be interpreted using the usual caution pertinent

to reverse inference, and may serve as the basis for future hypothesis

testing. Researchers should directly compare neural responses to food

logos compared to actual images of food.

Our results in children overlap partially with findings from previous

studies examining healthy adults’ brain responses to logos including

significant activations in medial PFC, inferior PFC, OFC and visual

cortex (Plassman et al., 2012). However, unlike the adult studies, we

did not observe significant activations in hippocampus or ventral stri-

atum (caudate, nucleus accumbens). Our results are consistent with

those found by previous neuroimaging studies examining children’s

brain activation in response to actual food images that show activation

in PFC and OFC (Holsen et al., 2005; Bruce et al., 2010; Davids et al.,

2010).

As this is the first study to examine children’s brain responses to

brands, there are some limitations of the results. First, our sample size

is relatively small. Future studies with larger samples would permit

examination of age and gender effects in response to brands. Second,

our study was limited to healthy children and the effects of advertising

on obese children were not examined. Given that children are exposed

to unhealthy food more often than healthy food (Klepp et al., 2007),

such advertising effects may have implications for childhood obesity.

Research should examine the differences between healthy weight and

obese children’s responses to brands. Third, because we needed to

match the food and non-food logos on familiarity, valence and inten-

sity, the logos we chose for the imaging paradigm were not the most

familiar, most positively valenced food logos. Thus, findings may

underemphasize the effects of food logos on children’s brain responses.

Future studies wishing to further clarify the relationship between brain

responses to food logos and children’s perceptions of those logos could

ask participants to rate the logos while in the scanner. Finally, because

we asked participants to refrain from eating for 4 h before the scan to

standardize hunger, it is possible that the observed differences in brain

activations between food and non-food logos could be due to hunger.

Future research should consider manipulating hunger levels of partici-

pants to determine whether there is a relationship between brain

responses to food logos and food motivation.

From a developmental perspective, these early findings are import-

ant, as the brain regions involved in food motivation, reward process-

ing, decision making and self-control change throughout childhood

and adolescence (Bruce et al., 2011). A recently published study exam-

ined decision making in an intertemporal choice task ($20 now vs $50

in 10 days) using fMRI in conjunction with brand exposure. When a

brand logo was subliminally presented to adults before making their

choices, preferences shifted to a more immediate reward (Murawski

et al., 2012). The prospect of brand exposure altering decision making

even in an unrelated task is compelling and worthy of further investi-

gation. Future studies should directly compare youth of different ages

and adults to determine how differential maturity affects responses to

marketing and decision making regarding food and non-food

products.

Children’s brains show responses to brand logos in similar regions as

adults’ brains. Food logos, however, seem to be more emotionally sa-

lient than the non-food logos, perhaps due to the survival salience of

food as a biological necessity. Additional research is needed to better

characterize children’s brain responses to marketing and marketing’s

impact on their choices and behavior.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.

Fig. 3 fMRI statistical maps in the sagittal view showing results from food vs non-food logo
contrasts, co-registered with average structural MRI data from participants. Significance thresholds
are set at P < 0.01, corrected (cluster threshold¼ 9 voxels). Arrow highlights greater activation
in PCC.

Table 2 Regions reaching significance for the contrasts food logo stimuli in comparison
to non-food logo stimuli

Contrast and region Coordinates t-Value Contiguous
voxels

x y z

Food logos > non-food logos
Occipital cortex (R), BA 18 18 �85 11 6.23 71
Lingual gyrus (L), BA 17 �6 �88 �2 5.73 89
Paracentral/PCC (R), BA 31 9 �28 46 4.41 18
Parietal cortex (L), BA 40 �24 �40 55 4.85 13

P < 0.01, cluster corrected at 9 voxels. There were no regions where non-food logos > food logos.
L¼ left; R¼ right.
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