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hosphoproteome Profiling
eveals Multifunctional Protein
PM1 as part of the Irradiation
esponse of Tumor Cells
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Abstract
To fight resistances to radiotherapy, the understanding of escapemechanisms of tumor cells is crucial. The aim of this
study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the
phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein
that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces
tumor cell survival after irradiation. NPM1 is dephosphorylated stepwisewithin 1 hour after irradiation at twoof itsmajor
phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycle
arrest, andwe found a heterogenous intracellular distribution of NPM1 between the nucleoli, the nucleoplasm, and the
cytoplasm after irradiation. We hypothesize that the dephosphorylation of NPM1 at threonine-199 and threonine-234/
237 is part of the immediate response to irradiation and of importance for tumor cell survival. These findings couldmake
NPM1 an attractive pharmaceutical target to radiosensitize tumor cells and improve the outcome of radiotherapy by
inhibiting the pathways that help tumor cells to escape cell death after gamma irradiation.
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troduction
espite recent advancements in tumor therapy, the development of
sistances and the recidivation of tumors remain a major challenge in
ncer treatment. Tumor diseases represent the second most frequent
use of death in the Western world, and the predicted global burden
expected to surpass 20 million new cancer cases by 2025 compared
ith an estimated 14.1 million new cases in 2012 [1].
Radiotherapy is a very important part of the treatment regimen for
ncer of different origins as it is noninvasive and not accompanied by
intense systemic toxicity such as chemotherapy [2]. Approximately
% of all cancer patients who are cured received radiotherapy alone
in combination with other treatment options [3]. Unfortunately,
e curative potential of radiotherapy is impeded by mechanisms of
mor radiation resistance that enable tumor cells to survive and
populate. To reestablish radiosensitivity, different strategies can be
rsued [4] which require an in-depth understanding of the radiation
sponse of tumor cells to enable a targeted intervention.
The cell's fate after irradiation is determined by the DNA damage
sponse which paves the way for either cell death or repair of the
stained damage. Posttranslational modifications — above all
osphorylation and dephosphorylation — play a crucial role in
ordinating the DDR at different levels in the signal transduction
scade [5]. This confers special significance to the phosphoproteome in
e light of the cellular response to irradiation.
Our proteome-wide analysis of the specific differences in protein
osphorylation before and after irradiation brought the multifunc-
onal hub-protein nucleophosmin (NPM1 / B23 / NO38 / numatrin)
to focus. NPM1 is a classical phosphoprotein that is regulated in
anifold ways by phosphorylation and dephosphorylation. Around 10
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its phosphorylation sites have been characterized in greater detail
–11], about 20 phosphorylation sites have been found in high-
roughput phosphoproteome studies [12,13], and up to 40 sites have
en predicted in silico [14]. NPM1 exerts a bunch of different
nctions. NPM1 is involved in ribosome biogenesis [15], maintenance
genomic stability [16] by securing correct centrosome duplication
7], DNA repair [18], chromatin remodeling as well as chaperoning of
stones [19,20], and regulation of cellular response to various stress
imuli [21] such as gamma irradiation [22,23], UV irradiation [24],
emotherapeutics [25], heat shock [26], oxidative stress [27], and
poxia [28].
Apart from posttranscriptional modifications and oligomerization
9–31], the subcellular localization of NPM1 plays a very important
le for the regulation of the protein and the switch between its
anifold functions and protein interaction partners. NPM1 mainly
sides in the nucleoli, but upon cellular stress stimuli, it can be
located into the nucleoplasm and the cytoplasm. The shuttling
tivity and the subcellular localization of NPM1 are essential for the
otein to exert its correct cellular functions.
The involvement of NPM1 in the tumorigenesis of hematological
alignancies is well demonstrated in several studies [32–34], and also
e link between proliferation and malignant transformation in solid
mors has been drawn [35–38]. In many solid tumors, the protein is
erexpressed [39–45] even though also misregulation in the sense of
duced NPM1 levels has been reported [46,47].
To gain deeper insights into the role of NPM1 in the response of
mor cells to irradiation, we evaluated the phosphorylation of
PM1 at four of its major phosphorylation sites that are serine-4,
rine-125, threonine-199, and threonine-234/237. Additionally, we
alyzed the subcellular localization of the protein and its influence
the survival of tumor cells after irradiation.

aterials and Methods

umor Cell Lines and Cell Culture
The non–small cell lung cancer (NSCLC) cell line A549 and the
rvical cancer cell line HeLa were purchased from DSMZ (German
ollection of Microorganisms and Cell Cultures, Braunschweig,
ermany). The head and neck squamous cell carcinoma (HNSCC)
ll line HNSCCUM-02Twas previously established and characterized
our laboratory [48]. The identity of the cell lines was verified by STR
alysis by the DSMZ. Cells were maintained in DMEM/Ham's F12
igma-Aldrich, St. Louis, MO) supplemented with 5% FCS (fetal calf
rum; Sigma-Aldrich, St. Louis, MO) and antibiotics (100 U/ml
nicillin and 100 mg/ml streptomycin) at 37°C in 5% CO2.

oelectric Focusing (IEF), Two-Dimensional (2D) Gel
lectrophoresis, and Mass Spectrometry (MS)
According to previous studies ([49] and therein), a single dose of
Gy is well suited to study the irradiation response of tumor cells. To
udy differences in the phosphoproteome after irradiation, the amount
phosphoproteins in cells 30 minutes after irradiation was compared
that in nonirradiated control cells. In brief, harvested cells were
suspended in lysis buffer (PhosphoProtein Purification Kit lysis buffer
iagen) with 0.25% CHAPS, phosphatase (PhosSTOP EASYpack
osphatase inhibitor cocktail tablets, Roche, Grenzach-Wyhlen,
ermany), and protease inhibitors (cOmplete Protease inhibitor
cktail tablets, Roche, Grenzach-Wyhlen, Germany) and sonicated.
he phosphorylated proteins were isolated by IMAC-columns followed
ultracentrifugation with Roti-Spin MIDI (Carl Roth, Karlsruhe,
ermany) and Vivaspin (Sartorius, Göttingen, Germany) centrifugal
ncentrators. Protein concentration was adjusted to 1.5 mg/ml,
d 1/125 vol. 2.5 MDTT, 1/80 vol HED, and 1/200 vol IPG buffer,
4-7, were added for IEF. The procedures of IEF andMS have been

scribed in detail before [50]. Shortly, for each sample, 360 μl lysate
as applied to an 18-cm IPG-strip (pH 4-7, Immobiline Dry Strips,
E Healthcare Bio-Sciences, München, Germany). After focusing,
rips were transferred to the top of a 14.5%SDS gel. Gels were runwith
mA/gel for 45 minutes and then with 40 mA/gel for 3 hours. The
ls were stained with SYPRO orange overnight. For scanning, we used
fluorescence scanner (Storm 840, Amersham Pharmacia, Freiburg,
ermany) at a PMT voltage of 1000, resolution 100 μm. At least three
ological replicates were performed in each case. Scanned gels were
alyzed using the Delta 2D program (Decodon, Greifswald,
ermany). Differentially expressed protein spots (normalized intensity
lues diverging by a factor of 1.5 or more) were analyzed byMS. Spots
ere trypsin-digested and spotted onto AnchorChip 600/384 T F
rgets (Bruker Daltonics, Bremen, Germany) using the dried
oplet method. As energy-absorbing molecule, we used α-cyano-4-
droxycinnamic acid (2 mg/ml in 50% ACN containing 0.2% TFA).
ass spectrometry analysis was performed using a MALDI-TOFTOF
S (Ultraflex II, Bruker Daltonics). The top 20 peaks were used for
bsequentMS/MS analysis. Data processing of raw spectra and protein
entification was performed using Bruker software (Flex analysis 2.4
d BioTools 3.1) and Mascot. As Mascot result parameters, we chose
andard scoring and a significance threshold of P b .05 for protein /
ptide identification.

NA Interference and Colony-Forming Assay
To knock downNPM1, small interfering RNA (siRNA) transfection
as performed according to the manufacturer's protocol using either
PM1 siRNA (Silencer Select siRNA, s9678, 5′-N3′ sequence CUA
CU UUU CGG UUG UGA Att, Ambion Applied Biosystems,
armstadt, Germany) or positive and negative controls (Silencer Select
NA GAPDH and negative control #2). Knockdown of NPM1 was
alyzed byWestern blot (Figure 2B) at day 3, day 4, day 6, day 8, and
y 10 after transfection. Thirty-six house (day 3) after siRNA
ansfection, when knockdown was fully established, tumor cells were
tached, cell numbers were determined by Casy1, and cell suspensions
ere irradiated with 4 or 8 Gy, respectively, using a Cs137 source. Cell
mbers were chosen according to pilot tests to reach between 10 and
0 colonies after 10 days, and the assay was performed as previously
scribed [51]. Nonirradiated cultures were processed in parallel.
olony formation was assessed with the COLCOUNT system (Oxford
ptronix Ltd., Abingdon, UK). Each experiment was performed in
plicates and repeated at least three times. The relative surviving
action and the relative colony size were calculated.

radiation and Fractionated Cell Lysis
For irradiation, tumor cell lines were isolated by tryptic digestion
igma-Aldrich, St. Louis, MO), and 1.8 × 104 cells/ml were seeded
culture dishes with a growth area of 25 cm2. After 24 hours, the
edium was replaced by new medium, and the cells were cultured for
ditional 24 hours. Subsequently, cells were irradiated with 8 Gy
ing a Cs137 source and harvested directly 3, 10, 30, and
minutes after irradiation using a rapid fractionated lysis [52]

ith phosphatase (PhosSTOP EASYpack Phosphatase inhibitor
cktail tablets, Roche, Grenzach-Wyhlen, Germany) and protease
hibitors (cOmplete Protease inhibitor cocktail tablets, Roche,
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renzach-Wyhlen, Germany) included in the lysis buffer. To verify
ccessful fractionation, control Western blots with antibodies against
stone H3 (for the nuclear probes) and GAPDH (for the cytoplasmic
obes) were performed.

xpression Analysis by SDS-PAGE and Western Blotting
Twenty micrograms of total protein was loaded onto 12%
rylamide gels and subjected to SDS-PAGE. Gels were transferred to
qui-Blot PVDF Membrane (Bio-Rad, München, Germany) by
midryWestern blotting procedure.We used the following antibodies:
PM antibody (Cell Signaling, Boston, MA), pNPM antibody
ospho T199 (Cell Signaling, Boston, MA), pNPM antibody
ospho T234/237 (Abcam, Cambridge, UK), pNPM antibody
gure 1. Phosphoproteome analysis after gamma irradiation brings NP
lls by 2D-electrophoresis andMALDI-TOF-mass spectrometry revealed
minutes. NPM1 stood out as it was detected in several spots on the g

lue represents the control gel, and orange represents the gel co
munoblotting, we could show that NPM1 is dephosphorylated in HN
adiation compared to untreated control cells (=100%). The dephospho
e means ± SD, *P b .05, **P b .01, ***P b .001, one-way ANOVA, c
rrection for multiple comparisons by Bonferroni, N = 3. Representativ
ospho S4 (Cell Signaling, Boston, MA), pNPM antibody S125
bcam, Cambridge, UK), anti-mouse IgG, HRP-linked Antibody
7076 Cell Signaling), anti-rabbit IgG, HRP-linked Antibody (#7074
ell Signaling) and GAPDH antibody (Abcam, Cambridge, UK)
d histone H3 antibody (Cell Signaling, Boston, MA), as loading
ntrol and for verification of proper cell fractionation. Blots were
veloped by enhanced chemiluminescent substrate (Thermo Fisher
ientific, Rockford, IL) and documented using the ChemiDoc Imager
io-Rad, München, Germany) and evaluated with the Image Lab
ftware (version 5.0 build 18, Bio-Rad). Band densities were
rmalized to those of the nonirradiated sample on each blot and
pressed as percentage of that control. Each experiment was performed
least in triplicate.
M1 into focus. (A) Phosphoproteome analysis of HNSCCUM-02 T
10 phosphoproteins regulated upon 8-Gy gamma irradiationwithin
el. (B) Two representative gels of lysates of HNSSCUM-02T cells.

ntaining the cell lysates harvested after irradiation. (C) By 1D
SCCUM-02T, HeLa, and A549 cells within 1 to 4 hours after 8-Gy
rylation lasts for up to 24 hours depending on the cell line. Shown
omparison between untreated control cells and irradiated cells,
e Western blots are shown in Figure S3 in the supplementary data.
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Figure 2. Knockdown of NPM1 reduces tumor cell survival. (A) The
surviving fraction of A549 cells in a colony-forming assay was
significantly reduced after knockdown of NPM1. Combined
treatment with 4-Gy or 8-Gy gamma irradiation, respectively, with
knockdown further reduced tumor cell survival significantly
compared to cells which received irradiation alone. Shown are
means ± SD, *P b .05, **P b .01, ***P b .001, unpaired t test,
comparison between cells which received NPM1 knockdown and
respective control groups as indicated, correction for multiple
comparisons by Bonferroni, N = 3. (B) Knockdown of NPM1 was
confirmed by Western blot analysis at day 3, 4, 6, 8, and 10 after
transfection. At day 3, the knockdown was fully established, the
cells were irradiated and seeded for the colony assay, and the
knockdown lasted until day 10.
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munohistochemistry
For immunofluorescent staining, 2.5 × 104 cells were grown on cover
ps in 6-well dishes. Twenty-four hours after seeding or transfection
pending on the experiment, cells were washed 3 × 5 minutes with
PBS (Phosphate Buffered Saline; Sigma-Aldrich, St. Louis, MO) and
ated by incubation with 4% (w/v) paraformaldehyde in DPBS for
minutes, followed by another 3 × 5–minute washing step with

PBS. Cells were incubated with ice-cold methanol for 10 minutes,
ashed again for 3 × 5 minutes with DPBS, and blocked with DPBS
ith 5% BSA and 0.3% Triton-X100 for 1 hour to avoid unspecific
nding. The following antibodies were used: Phospho-NPM (Thr199)
ntibody (#3541 Cell Signaling), Mitotic Cells Antibody [8B3G]
b8956Abcam), Goat anti-Rabbit IgG (H + L)Highly CrossAdsorbed
condary Antibody, Alexa Fluor 555, (A-21429 Invitrogen), and Goat
ti-Mouse IgG (H + L) Highly CrossAdsorbed Secondary Antibody,
lexa Fluor 488, (A-11029 Invitrogen). The cover slips were transferred
microscopy slides, covered by VECTASHIELD Mounting Medium
ith DAPI (Vector Laboratories, Burlingame, CA), and evaluated by
ide field microscopy.

ell Cycle Analysis
For cell cycle analysis, tumor cell lines were treated according to the
rresponding protocol and isolated by tryptic digestion. Cells were
ashed with DPBS and finally suspended in 500 μl DPBS and 4.5 ml
% ice-cold ethanol. After incubation for at least 2 hours at −20°C,
lls were washed with washing buffer [0.2% (v/v) Triton X-100, 1%
SA in DPBS] and transferred to propidium iodide staining solution
.1% (w/v) RNAse A, 5 μg/ml PI in DPBS]. The staining was
aluated with FACSCanto flow cytometer and analyzed with the
odFit LT software (Verity Software House, Topsham, ME).

de-Directed Mutagenesis and Transfection
The side-directed mutagenesis was performed according to the Quik
hange II L Sited-Directed Mutagenesis Kit (Agilent Technologies,
öblingen, Germany) using the pc3-NPM1-wt-GFP expression vector
sed on the pcDNA 3.1 plasmid (Invitrogen Life Technologies,
arlsbad, CA) which was a gift of Prof. Stauber (Molecular and Cellular
ncology, Department of Otorhinolaryngology, Head and Neck
rgery, University Medical Centre Mainz) and has previously been
scribed [53]. Threonine or serine residues at the phosphorylation sites
NPM1 were replaced by alanine residues, which leave them
osphorylation insensitive. GFP-tagged NPM1 was transiently
ansfected into HeLa cells using the above described expression vector
cording to the jetPrime system (Polyplus, Illkirch, France).

atistics
One-way ANOVA and unpaired t tests followed by Bonferroni
rrection for multiple comparisons and Welch correction for uneven
riations, where applicable, were used to assess statistical signifi-
nces. All calculations were performed using the software GraphPad
ism 6 for Windows, Version 6.01 (GraphPad Software, La Jolla,
A). Shown are mean values ± SD; P values b .05 are indicated as
b .05, **P b .01, and ***P b .001.

esults

egulation of NPM1 Postirradiation
HNSCCUM-02T cells were treated with a single 8-Gy dosage of
mma irradiation, and changes of the phosphoproteome were
udied 30 minutes after irradiation by means of 2D electrophoresis
d MALDI-TOF-mass spectrometry. In total, we could identify 10
osphoproteins of different protein families which were subjected to
gulation upon irradiation (Figure 1A). Two of these proteins
owed increased phosphorylation, and eight proteins were dephos-
orylated following irradiation. Among them, the phosphoprotein
cleophosmin (NPM1) was very prominent (Figure 1B). In the 2D
l, several NPM1 containing spots could be identified. The NPM1
the spots differed in the isoelectric point; thus, most probably, the
ots correspond to differentially phosphorylated protein variants.

ephosphorylation of NPM1 at Threonine-199 within 24Hours
ter Irradiation
Western blot analysis showed NPM1 expression in all tumor cell lines
der study. NPM1 expression was highest in HeLa cells, followed by
NSCCUM-02T cells and A549 cells (data not shown). NPM1 occurs
three different splicing forms: isoform 1 is considered the dominant
rm [54] which consists of 294 amino acids, and isoforms 2 and 3 are a
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tle bit shorter with 265 and 259 amino acids [55]. In ourWestern blot
periments, wewere able to detect one to three different bands in the gel,
hich were bound by the NPM1 antibody. In all three bands, NPM1
uld be identified by MALDI analysis (data not shown). For our
alysis, all three bands were evaluated together. To avoid falsification of
e phosphorylation status, we worked strictly on ice with protease and
osphatase inhibitors included. Contrary to Koike et al. [23], Sekhar et
. [22], and Penthala et al. [56], we did not separate the fraction of the
luble proteins in the nucleoplasm from the insoluble proteins in the
romatin fraction according to Groisman et al. [57], but we obtained
e nuclear fraction containing all proteins. Complete dissolution of all
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oteins was ensured by sonification and heating of the lysates prior to
ading onto the gel.
Threonine-199 is one of the most important and well-characterized
PM1 phosphorylation sites. Therefore, we analyzed the phosphoryla-
n at this site within 24 hours after irradiation with 8 Gy in A549,
eLa, and HNSCCUM-02T cells (Figure 1C). Representative blots are
own in Figure S3 in the supplementary data. A549 as well as HeLa cells
ar wild-type p53, while HNSCCUM-02T cells bear a p53 mutation
hich results in unconditionally high p53 expression [58]. Hela cells
present a special case concerning their p53 level; they are affected by a
utation-independent reduction in p53 protein level due to the
pression of the viral E6 protein [59]. Thus, the analysis covers different
tities as well as differences in the p53 status. We found that NPM1 is
phosphorylated at threonine-199 shortly after irradiation in all three cell
es. In A549 cells, threonine-199 was completely dephosphorylated,
d the dephosphorylation persisted for 24 hours. In HNSCCUM-02T
lls, the dephosphorylation was less pronounced, and 24 hours after
radiation, the phosphorylation at threonine-199 returned to the basal
vel. In HeLa cells, the dephosphorylation was a little bit slower
mpared to A549 cells, reaching complete dephosphorylation after
hours, and phosphorylation was regained after 24 hours.

epletion of NPM1 Diminishes Tumor Cell Survival after
radiation
To tackle the question of the importance of NPM1 for the survival of
mor cells after irradiation, we performed a colony-forming assay with
549 cells as a representative cancer cell line, which showed the most
onounced NPM1 dephosphorylation after irradiation. This revealed
at knockdown ofNPM1 significantly reduced tumor cell survival when
was administered alone and in combination with 4-Gy or 8-Gy dosages
irradiation (Figure 2A). The surviving fraction of untreated tumor cells
as set to 1.0, and the surviving fraction of tumor cells which were
bjected to NPM1 knockdown and/or irradiation was related to that
lue. We could detect a significantly reduced tumor cell survival after
PM1 knockdown, and additional NPM1 knockdown further reduced
mor cell survival after irradiation with 4 or 8 Gy.Moreover, the colony
ze after depletion of NPM1 was reduced when NPM1 knockdown was
ministered alone (data not shown). NPM1 depletion after siRNA-
ediated knockdown was confirmed by Western blot (Figure 2B).

hosphorylation Pattern of NPM1 at Serine-4, Serine-125,
hreonine-199, and Threonine-234/237 within 1 Hour after
radiation
For the subsequent analysis of the phosphorylation status of
PM1 shortly after irradiation, we chose four of its most important
gure 3. Phosphorylation pattern of NPM1 rapidly changes upon
adiation. The phosphorylation of NPM1 after 8-Gy irradiation was
acked after 1 minute, 10 minutes, and 1 hour in the cytoplasm
d in the nucleus of A549 and HeLa cells byWestern blot analysis.
PM1 was significantly dephosphorylated at serine-4 in the
toplasm and at threonine-199 in both compartments in A549
lls. Dephosphorylation at theonine-199 was also found in HeLa
lls. At theorine-234/237, NPM1 was phosphorylated 1 minute
ter irradiation in the cytoplasm of A549 cells followed by a
phosphorylation after 1 hour. Shown are means ± SD, *P b .05,
P b .01, ***P b .001, one-way ANOVA, comparison between
treated control cells (=100%) and irradiated cells of the same
mpartment, correction for multiple comparisons by Bonferroni,
= 3. Representative Western blots are shown in the Figures S1
d S2 in the supplementary data.
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osphorylation sites: serine-4, serine-125, threonine-199, and
reonine-234/237. A549 cells as well as HeLa cells, which both bear
ild-type p53 but differ in their p53 expression level, were used. Cells
ere irradiated with 8 Gy, and cell lysates were harvested within
minute, 10 minutes, 30 minutes, and 1 hour after irradiation using a
st fractionated lysis protocol [52]. All cell lysates of each experiment
ifferent compartments, different time points, and irradiated vs.
ntrol) were loaded on one gel to correct for differences between the
ngle experiments, and the phosphorylation was expressed as relative
osphorylation in percent compared to the corresponding nonirradi-
ed control in the corresponding compartment (Figure 3). Represen-
tive blots are shown in Figures S1 and S2 in the supplementary data.
At serine-4, we could show a significant dephosphorylation 1 hour
ter irradiation in the cytoplasm of A549 cells, while the phosphorylation
the nucleus at this site remained unchanged (Figure 3A). InHeLa cells,
is dephosphorylation could not be confirmed due tomajor variability in
e phosphorylation at this site between the biological replicates. At
rine-125, there could be detected a slight dephosphorylation in the
toplasm in A549 and in HeLa cells after irradiation, but the effect was
t significant due to variations within the replicates (Figure 3B).
evertheless, it was clearly visible that serine-125 just like serine-4 was
phosphorylated in the cytoplasm but not in the nucleus. At threonine-
9,NPM1was dephosphorylated in both cell lines in the nucleus as well
in the cytoplasm (Figure 3C). The dephosphorylation in A549 cells
as more pronounced and faster than the one in HeLa cells, confirming
e results in the long-duration measurement (Figure 1C). At threonine-
gure 4. Phosphorylation of NPM1 at threonine-199 is high in mitotic c
9 revealed that some A459 cells were especially high in phosphoryla
at those cells were currently undergoing mitosis (B).
4/237, there could be detected a very fast phosphorylation in the
toplasm within 1 minute after irradiation in A549 cells followed by a
phosphorylation within 1 hour. The phosphorylation at threonine-
4/237 in the nucleus was slightly elevated throughout the complete
espan compared to nonirradiated control cells. In HeLa cells, the
alysis of phosphorylation was inconclusive: 1 hour after irradiation,
ere could be seen a slight dephosphorylation in the nucleus and the
toplasm, but the effect did not reach significance (Figure 3D).

itotic Cells Exhibit High Level of NPM1 phosphorylated at
hreonine-199
In the immunohistochemical staining of NPM1 phosphorylated at
reonine-199 (pT199-NPM1), we observed some cells that exhibited a
ry strong staining for pT199-NPM1 in the whole cell (Figure 4A). We
ondered what was special about these cells that they contained a huge
ount of pT199-NPM1while other cells did not. One first hint gave us
e staining with DAPI of those cells: the DAPI staining was not as
ooth as in other cells; the nucleus had no round shape but was rough
d the staining uneven. This led us to a staining with an antibody against
itotic cells, and we could show that the cells with a strong staining for
199-NPM1 were currently undergoing mitosis (Figure 4B).

ephosphorylation of NPM1 at Threonine-199 is not
ttributable to Cell Cycle Arrest
To evaluate a potential association between the dephosphorylation
NPM1 at threonine-199 and a reduction in mitotic cells after

radiation, we performed a cell cycle analysis (Figure 5). We could
ells. Fluorescent staining for NPM1 phosphorylated at threonine-
tion (A). Staining with an antibody against mitotic cells revealed
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Figure 5. Cell cycle arrest is induced in HeLa and A549 cells 6 hours after irradiation. Within the first hour after irradiation with 8 Gy, the
distribution between G1, S, and G2 phase of the cell cycle remained constant in A549 and HeLa cells. Six hours postirradiation, a cell cycle
arrest in the G2 phase was initiated in both cell lines. The time course of cell cycle distribution is shown in the upper panel for HeLa cells
on the left and for A549 cells on the right. Beneath there are shown exemplary cell cycle distributions after 0 hour and after 6 hours, which
were depicted and evaluated by the ModFit LT software.
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ow that the cell cycle distribution within the first hour after
radiation remained constant in HeLa as well as in A549 cells. This
eans that within 1 hour after irradiation, the fractions of cells in G1,
2, or S phase did not change; thus, within this time scale, no cell
cle arrest is induced. Taking a closer look at the later time points,
e could see that the percentage of cells in G1 phase was reduced and
e percentage of cells in G2 phase rose within 6 hours after
radiation. This suggests a cell cycle arrest in G2 phase 6 hours
stirradiation.
hosphorylation of NPM1Differs between Cellular Compartments
Several recent studies associated the phosphorylation status of
PM1 with its localization within the cell [9,60] NPM1 is a
edominantly nucleolar protein [15], but it is well established that
e protein can undergo redistribution to the nucleoplasm and the
toplasm upon different stimuli [24,61,62]. Thus, we analyzed the
lative phosphorylation of NPM1 in the nucleus and in the
toplasm at serine-4, serine-125, threonine-199, and threonine-234/
7 in HeLa and in A549 cells (Figure 6). This revealed that NPM1
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Figure 6. Phosphorylation of NPM1 differs between the cellular compartments. The phosphorylation of NPM1 at threonine-199 and
threonine- 234/237 was more pronounced in the cytoplasm than in the nucleus of HeLa cells and A549 cells. In contrast, phosphorylation
of NPM1 at serine-125 could mainly be found in the nucleus. Phosphorylation of NPM1 at serine-4 was detected in both compartments,
and it was dependent on the cell line in which part of the cell it was more prominent. Shown are means ± SD, *P b .05, **P b .01,
***P b .001, unpaired t test with Welch correction for uneven variations, comparison between expression in the nucleus (=100%) and
expression in the cytoplasm, N = 3. Representative Western blots are shown in the Figures S1 and S2 in the supplementary data.
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osphorylation at threonine-199 and threonine-234/237 was more
ominent in the cytoplasm than in the nucleus in both cell lines. By
ntrast, the phosphorylation at serine-125 was more pronounced in
e nucleus. The analysis of the phosphorylation of serine-4 delivered
conclusive results: it was less prominent in the cytoplasm of A549
lls compared to the nucleus while being nearly equally phosphorylated
nucleus and cytoplasm in HeLa cells. Representative blots are shown
Figures S1 and S2 in the supplementary data (A549 and HeLa,
Gy = untreated cells).

eterogenous Localization of NPM1 after Irradiation
Next, we analyzed the dependence of the localization of NPM1 on
s phosphorylation status. Thereto we transfected HeLa cells with a
ctor containing the NPM1 gene tagged with GFP. By side-directed
utagenesis, the phosphorylation sites serine-4, serine-125,
reonine-199, or threonine-234/237, respectively, were replaced
ith alanine to make them phosphorylation insensitive. In the
llowing, we analyzed whether the mutation of these phosphoryla-
on sites had an influence on the distribution of the protein within
e cell. This was not the case; irrespective of the mutation of the
osphorylation sites, the majority of the NPM1 protein still
calized to the nucleoli (Figure 7A).
Moreover, we analyzed the distribution of NPM1within 1 hour after
adiation with 8 Gy (Figure 7B). By live cell imaging, we could show
at the cellular distribution of wild-type NPM1 did not change within
hour after irradiation. Next, we transfected cells with wild-typeNPM1
d tracked its localization for 24 hours after irradiation (Figure 8). We
served a heterogenous reaction of the tumors cells to irradiation
ncerning the NPM1 distribution. Some cells maintained their
edominant nucleolar localization of NPM1 (white arrows). In other
lls, NPM1 lost its localization in the nucleolus and was distributed in
e whole nucleus (red arrows). We also saw cells that were fragmented
d most likely were undergoing cell death (blue arrows). In some cases,
PM1 could also be detected in the cytoplasm (yellow arrow).

iscussion
e identified NPM1 as a very prominent protein in our analysis of
e phosphoproteome after irradiation and could show that NPM1 is
portant for tumor cell survival after gamma irradiation. It came
to focus because we could detect several different spots containing
PM1 which were lined up like pearls on a string. They differed in
eir isoelectric point which indicated that the NPM1 in the different
ots differed in the phosphorylation pattern. NPM1 is a classical
osphoprotein which is regulated by phosphorylation and dephos-
orylation to a great extent [9,63,64]. It is well established that
PM1 is involved in cellular proliferation and also in tumorigenesis
5,65], and it is frequently overexpressed, mutated, or rearranged in
mor cells [33]. NPM1 has versatile cellular functions, and several of
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Figure 7. Transfection with GFP-tagged NPM-1 to study subcellular distribution of the protein. HeLa cells were transfected with a vector
containing GFP-tagged NPM1 with mutations in different phosphorylation sites which rendered them phosphorylation insensitive. Still,
the protein showed predominantly nucleolar localization (A). With the help of live cell imaging, it could be seen that GFP-tagged wt-NPM1
does not redistribute within the first hour after irradiation with 8 Gy (B).
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em are known to be relevant for malignant degeneration and
ogression, among them ribosomal biogenesis [15] and licensing of
ntrosomal duplication, thus assuring of genomic stability [17],
NA repair processes [18,56,66–68], and apoptosis [28,69].
To check whether NPM1 is relevant for the survival of tumor
lls after irradiation, we performed a colony-forming assay. We
mpared the ability of tumor cells to survive and form colonies after
radiation between cells expressing NPM1 and cells in which NPM1
as knocked down. After depletion of NPM1 by siRNA knockdown,
e could see a significant decrease in survival rates compared to
ntrol cells. This was true for cells which received NPM1
ockdown alone as well as for those which additionally were
radiated with 4 or 8 Gy, respectively. Additionally, we could see a
duction of the colony size after knockdown of NPM1. This
derlines that the protein is important for the survival and
oliferation of tumor cells after irradiation. As NPM1 performs
rsatile functions within the cell, we had a closer look at its
osphorylation status after irradiation to understand its role in the
sponse of tumor cells to irradiation.
Threonine-T199 is the best studied phosphorylation site of NPM1;
us, as a first step, we tracked the phosphorylation at this site within
hours after irradiation, and we found a dephosphorylation of the

otein in all three cell lines under investigation. This dephosphorylation
as initiated very fast, as it could be detected within 1 hour after
radiation, and depending on the cell line, it lasted for several hours.
herefore, we decided to have a closer look at the early phosphorylation or
phosphorylation events within the first hour after irradiation. Our
tailed analysis of the phosphorylation and dephosphorylation events
ithin 1 hour after irradiation revealed thatNPM1was dephosphorylated
threonine-199 and threonine-234/237 in A549 and inHeLa cells. The
phosphorylation was more pronounced in HeLa cells than in A549
lls, which may be attributable to the lower amount of total NPM1 in
eLa cells which enables the dephosphorylation to come into effect more
pidly which is also in line with the long-duration measurements. As
PM1 is known to directly and indirectly interact with the tumor
ppressor p53 and its associated pathways [38], it is important to notice
at A549 cells and HeLa cells both bear wild-type p53, but p53
pression in HeLa cells is diminished by the viral E6 protein to a nearly
detectable level [70]. The fact that dephosphorylation of NPM1 at
reonine-199 and threonine-234/237 could be detected in both cell lines
ggests that this cellular reaction is not dependent on p53 expression.
ephosphorylation of NPM1 at threonine-199 and threonine-234/237
as also reported following UV irradiation [18], where it was associated
ith DNA-damage repair pathways. Several studies were able to relate
PM1 and its phosphorylation at threonine-199 with DNA-damage
pair pathways. For example, Koike et al. and Sekhar et al. [22,23,31,56]
stulated the recruitment of NPM1 to the sites of DNA damage and
critical role of the protein for their repair. Our study focused on
osphorylation status of NPM1 in the whole nucleus and in the
toplasm and was able to underline the importance of the protein
r the survival of tumor cells after irradiation. Altogether, there is
owing evidence that NPM1 is highly relevant for DNA-damage
pair pathways and as such is an attractive target for innovative
titumor agents.
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Figure 8. Localization of GFP-tagged NPM1 after irradiation was
heterogenous following irradiation. HeLa cells transfected with
GFP-tagged NPM1 irradiated with 8 Gy showed a heterogenous
distribution of the protein between the different cellular compart-
ments. Many cells maintained their predominant nucleolar local-
ization of NPM1 (white arrows). In some cells, NPM1 was
redistributed in nucleoplasm (red arrows). A few cells were
fragmented (blue arrows), and in some cases, NPM1 could be
detected in the cytoplasm (yellow arrow). Shown are representa-
tive pictures of at least N = 3 independent experiments.
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Immunohistochemical staining of pT199-NPM1 revealed that
osphorylation at threonine-199 is particularly prominent in cells
dergoing mitosis, which is in line with previous studies [9,71]. This
d us to the question of whether the observed dephosphorylation at
reonine-199 is attributable to a cell cycle arrest which is accompanied
a reduction of the proportion of mitotic cells. Thus, we performed a
ll cycle analysis, and we could show that there is no relevant change in
e distribution of cells between G1, G2, and S phase within the first
ur after irradiation. Thus, the dephosphorylation of threonine-199
uld not be the consequence of a fast cell cycle arrest. We could see an
rest of the cell cycle in both cell lines, but it took longer to be initiated
d was detectable after 6 hours postirradiation.
Several studies suggested that the phosphorylation status of NPM1
kes influence on the subcellular distribution of the protein [9,72].
herefore, we pursued the question whether the dephosphorylation of
PM1 after irradiation is accompanied by a relocation of the protein.
rst, we checked for each phosphorylation site under study in which
mpartment of the cell is was most prevalent. With the help of a
actionated cell lysis, we were able to show that threonine-199 and
reonine-234/237 were mainly phosphorylated in the cytoplasm. In
ntrast, serine-125 was predominantly phosphorylated in the nucleus.
he observation that pT199-NPM1 and pT234/237-NPM1 are
ostly localized in the cytoplasm is congruent with studies showing that
osphorylation at these sides reduces the binding to nucleic acids and
us the affinity to the nucleus [9].
Next, we constructed a vector containing NPM1 tagged with GFP
d expressed it in HeLa cells. Additionally, mutations in the NPM1
ne were introduced which made the protein phosphorylation-
sensitive at serine-4, serine-125, theonine-199, or threonine-234/
7, respectively. Contrary to our expectations, we could not see any
location of NPM1 from the nucleoli into other parts of the cell when
e individual phosphorylation sites were “turned off.” This supports
e synergistic model of Negi et al. [9] which says that different
osphorylation sites take effect together and alternations of the
bcellular distribution are only expected if several phosphorylation sites
e mutated. Also, oligomerization of NPM1, which also influences
stribution of the protein, is regulated by a stepwise process [63,64],
hich supports that localization of NPM1 is influenced by several
osphorylation sites which act in cooperation and mutation of one of
em is not sufficient to disrupt normal localization. We cannot
mpletely rule out that the NPM1 tagged with GFP partially formed
terooligomers with the nativeNPM1, and thus, the localization of the
utated NPM1 was distorted. Nevertheless, transfection with the
utated NPM1 led to a clear increase in the protein level by a factor of
6 on average; thus, it is likely that some effect in the localization of the
otein should have been detectable if there had been one.
Finally, we studied the distribution of NPM1 within the different
llular compartments after irradiation. Within the first hour after
adiation, we could not observe any dislocation of the protein by live
ll imaging. Within the following hours, we saw different cellular
actions upon irradiation within the cell population. Some cells
nserved the predominant nucleolar localization of NPM1; in others,
e protein was redistributed in the whole nucleus, and in some cells, an
crease in cytoplasmic NPM1 could be detected. This shows that the
action upon irradiation concerning NPM1 is not uniform, and there
uld not be detected a clear redistribution of NPM1 to the nucleoplasm
it was suggested in case of the response to UV irradiation [21,24,73].
All in all, we could show that NPM1 is important for the survival of
mor cells following irradiation, as knockdown of the protein
duced the surviving fraction and the colony size of tumor cells in a
lony-forming assay. Additionally, we could demonstrate that
PM1 is dephosphorylated at threonine-199 and threonine-234/
7 within 1 hour after gamma irradiation, which is in line with
milar findings made observing cellular reaction to UV irradiation
8]. This dephosphorylation could not be associated either with a
st cell cycle arrest or with a uniform redistribution of the protein
ithin the cell. We found a heterogenous response of the tumor cells
on irradiation concerning the NPM1 distribution. This study
ggests that NPM1 is regulated by a complex system of
osphorylation and dephosphorylation to switch between the
rsatile functions of the protein. We hypothesize that NPM1 and
phosphorylation status after irradiation are relevant for the
mediate early response of tumor cells upon irradiation and their
ility to repair sustained damage and survive the treatment. Thus, we
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ink that further investigation of the cooperative activity of several
osphorylation sites of NPM1 would be rewarding to gain an in-
pth understanding of their role in the early irradiation response of
mor cells in the light of irradiation resistances that frequently
mper the success of radiotherapy.
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