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Abstract: Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical,
chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein contain-
ing in situ synthesized AuNPs has been successfully used as an effective and completely biocom-
patible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be
uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages,
few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing
ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain
(L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular
uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs
on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the
specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic
cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake
was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines,
showing more than seven times more uptake than apoferritin.

Keywords: ferritin; gold nanoparticles; cellular internalization; cellular viability; theranostics

1. Introduction

Gold nanoparticles (AuNP) have great potential as theranostic agents in biomedicine
due to their optical, chemical, and biological properties, such as surface plasmon resonance,
low chemical reactivity, and reduced cell toxicity. The use of AuNP for cell targeting
requires a protective layer that provides biocompatibility and prevents nonspecific ad-
sorption of proteins as protein coronae, which could impart new biological properties
impacting nanoparticle reactivity, bioavailability, and pharmacokinetics, and ultimately
lead to cytotoxicity or immunotoxicity [1]. Ideally, the protective biocompatible layer
must improve circulating half-life and minimize the reticuloendothelial system uptake that
rapidly removes nanoparticles from the circulatory system to the liver, spleen, or bone
marrow [2].

Different molecules have been evaluated as protective layers or coating agents for
AuNPs. For example, polymers such as polyethylene glycol [3], biomolecules such as
cysteine [4,5], peptides such as glutathione [6,7], and synthetic peptides [8] and proteins
such as bovine serum albumin (BSA) [9–13] and ferritin [14–18] have been used in different
biomedical applications.
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The use of ferritin (FT) meets many desirable characteristics for a good coating agent
for AuNPs in nanomedical applications. This is mainly due to ferritin’s particular qua-
ternary structure, which comprises a tissue-specific mix of 24 subunits of heavy (H) and
light (L) chain ferritins, forming a hollow sphere protein complex that can be used as a
container for metallic nanoparticles. Both subunit types (H or L) have similar amino acid
substitutions that confer functions specific to each subunit [19,20]. Ferritin is completely
biocompatible because it is endogenous to humans; its protein shell provides a highly stable
protective layer for inorganic nanoparticle coating [17,21–26], and its cavity has been suc-
cessfully used as a nanoreactor to prepare monodisperse metallic nanoparticles [18,22,27].
The synthesis of AuNP in ferritins from different origins has been reported using horse
spleen FT [14–16], mutant L-chain horse spleen FT [28], H-chain human FT [17,29], mutant
H-chain human FT [30], and Archaeoglobus fulgidus FT [26].

Another relevant feature of ferritin for nanoparticle targeting is that it can be uptaken
by different cell types and tissues through a receptor-mediated endocytosis process. The
primary receptor for ferritin is transferrin receptor-1 (TfR1), expressed in many cell lines [31]
and tumor tissues [32,33]. Furthermore, two other known receptors interact with ferritin:
the Tim2 receptor, expressed on oligodendrocytes [34] and B-cells and in the liver and
kidney [35,36], and the Scara-5 receptor, expressed in some specific embryonic kidney
cell types (stromal and capsular cells, [37]), the MCF-7 breast cancer cell line [38], and
blood-retinal barrier cells [39]. So far, these three ferritin receptors are known to recognize
the ferritin H-subunit, except for Scara5, which can also interact with the L-subunit of
ferritin [40]. Additionally, ferritin can be genetically modified or chemically conjugated to
add cell specificity for different receptors to further enhance specificity or target more than
one possible receptor or cell type.

Promising results in biomedical imaging in mice have been observed after tail vein
injection of horse spleen ferritin and human H-chain ferritin homopolymer containing NIR
fluorescent gold nanoclusters, which acted as excellent fluorescent probes for whole-body
imaging, with particular targeting to the kidneys [16,17]. Additionally, horse spleen ferritin
containing AuNP targeted to the MCF-7 cancer cell line (by chemical conjugation with
2-amino-2-deoxy-glucose) has shown increased computer tomography contrast enhance-
ment [41]. However, despite these few efforts to evaluate the use of gold nanostructures in
ferritin for biomedical imaging, the use of human H and L ferritin homopolymers for gold
nanoparticle synthesis and the evaluation of their toxicity and internalization in different
cell lines are still underexplored aspects that must be addressed.

Considering the potential biomedical use of ferritin as a theranostic agent in hu-
mans, we tested both human homopolymers (H and L) as nanoreactors to synthesize
gold nanoparticles. We characterized each FT-AuNP homopolymer and analyzed their
cytotoxic effect and ability to be taken up by different cell lines. The results show how the
intrinsic characteristics of each homopolymer influence the successful synthesis of AuNPs
and reveal that the metallic content provides advantageous properties to the FT-based
theranostic agent.

2. Materials and Methods
2.1. Plasmid Construction

cDNA from colorectal adenocarcinoma (Caco-2) cells, donated by Dr. Tulio Nuñez,
was used for the amplification of H-chain ferritin (FTH) and L-chain ferritin (FTL) cD-
NAs with primers designed based on NCBI reference sequences (NM_002032.3 and
NM_000146.4). For subsequent cloning into the bacterial expression plasmid pET-22b,
the cDNAs were amplified with primer pairs FTH-F/FTH-R and FTL-F/FTL-R (Table 1),
which introduced restriction endonuclease cleavage sites for NdeI and XhoI into the 5′

and 3′ regions, respectively. The sequences of constructed plasmids pET-28a-FTH and
pET-28a-FTL were verified by DNA sequencing.
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Table 1. Sequences of primers used in this work with the introduced restriction endonuclease sites.

Primer Name Sequence 5′–3′

FTH-F TCGCCCATATGACGACCGCGTCCACCTC
FTH-R TTGGTCTCGAGGGAAGTCACCCCACGGCTATG
FTL-F AGCCACATATGAGCTCCCAGATTCGTCAG
FTL-R GGGCCCTCGAGAAGTCGCTGGGCTCAGAAG

2.2. Ferritin Expression and Purification

Plasmids were transformed into Escherichia coli BL21 DE3, and protein expression
was induced by growing the cells in autoinduction media [42] for 20 h at 25 ◦C, with
shaking at 250 rpm. Cells were harvested at 6000× g for 10 min, resuspended in 50 mM
Tris pH 8, and disrupted by sonication. Clarified supernatants were heated at 75 ◦C for
10 min, cooled on ice for 5 min, and denatured protein contaminants were removed by
centrifugation. Then, ferritin extracts were purified through a Q-sepharose column eluting
with a linear NaCl gradient (0–1 M) using an ÄKTA Avant system. Ferritin-containing
fractions were concentrated and finally purified using a Superdex 200 Increase 10/300 GL
column, selecting monomer protein elution for further AuNP synthesis.

2.3. Gold Nanoparticle Synthesis in Apoferritin

Gold nanoparticle (AuNP) synthesis was performed following the protocol published
by Fan 2010 [15] with slight modifications. Briefly, 13.3 µL of a 100 mM solution of HAuCl4
were added to 1 mL of 2 mg/mL ferritin solution in Tris 50 mM pH 8 (equivalent to 300 Au
atoms per ferritin, 300 Au/FT), and the solution was incubated for 2 h at 4 ◦C. Afterward,
excess metallic salts were removed by dialysis against Tris 50 mM pH 8. A first chemical
reduction was performed by adding 13.3 µL of a 100 mM solution of NaBH4 and incubating
at 4 ◦C overnight. The next day, another 13.3 µL fraction of 100 mM HAuCl4 (300 Au/FT)
was added to the ferritin solution and incubated for 2 h at 4 ◦C. Excess auric salts were
removed by dialysis against Tris 50 mM pH 8. A second chemical reduction was performed
by adding 13.3 µL of a 100 mM ascorbic acid solution and incubating at 4 ◦C overnight.
Samples were centrifuged at 14,000 rpm for 10 min at 4 ◦C. Finally, the soluble fraction was
dialyzed against Tris 50 mM pH 8 and stored at 4 ◦C. Each gold nanoparticle synthesis
experiment in ferritin was performed in duplicate.

2.4. Characterization of Ferritin AuNP

Protein quantification was carried out using the modified Lowry method (Thermo
Fisher), with BSA as a reference. Optical properties of protein samples with nanoparticles
were measured using UV–vis spectroscopy in a Lambda 25 spectrophotometer (Perkin
Elmer, Waltham, MA, USA). Ferritin samples containing AuNPs were subjected to size
exclusion chromatography (SEC) using a Superdex 200 Increase 10/300 GL in an FPLC Äkta
Avant instrument (GE Healthcare Life Sciences), measuring absorbance at 280 (A280 nm) and
550 nm (A550 nm) for protein and AuNP detection, respectively. Dynamic light scattering
(DLS) was used to measure the colloidal size distribution and Z-potential of samples using
a Zetasizer Nano instrument (Malvern). The structural integrity of the samples was also
characterized by native polyacrylamide gel electrophoresis (PAGE). TEM characterization
was performed using a JEM-1010 JEOL microscope operated at 100 KV from the University
of Barcelona. The statistical analysis of gold nanoparticle size distribution was performed
using ImageJ software by sampling over 400 particles.

2.5. Cell Culture and Incubation with Ferritin AuNP

Human colon adenocarcinoma HT29 cells (ATCC), human embryonic kidney HEK293
cells (ATCC), mouse brain cortex BEND3 cells (ATCC), and mouse embryonic fibrob-
lasts 3HC/10T1/2 cells (ATCC) were maintained in Dulbecco’s modified Eagle’s medium
(DMEM HG medium) (Gibco™; Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (FBS; Bioind) and antibiotics (penicillin 100 UI/mL,



Pharmaceutics 2021, 13, 1966 4 of 15

streptomycin 100 µg/mL), at 37 ◦C in 5% CO2. For uptake assays, cells were seeded in a
96-well plate at a density of 2500 cells/100 µL of medium and incubated for 24 h with FTH
and FTL containing gold nanoparticles or iron oxides (as loading control). ApoFTH and
ApoFTL were used as control. The added ferritin samples never exceed 10% of cell culture
volume.

2.6. Viability Assays

In order to evaluate cell viability after incubation with ferritin samples containing
AuNPs, the medium was replaced with fresh culture medium containing 10% of tetrazolium
compound in an MTS® assay (CellTiter 96® Aqueous Non-Radioactive Cell Proliferation
Assay), according to the manufacturer’s instructions (Promega, Madison, WI, USA). The
soluble formazan produced by live cells was detected by absorbance at 490 nm on a
multiscan reader (Synergy-H4, Biotek, VT, USA). Background values contributed by excess
cell debris and bubbles obtained by measuring at 650 nm were subtracted.

2.7. Fixation and Confocal Microscopy

Cells were fixed with 4% paraformaldehyde (PFA) at 4 ◦C for 10 min. Then, residual
PFA was blocked with 50mM glycine. Then, cell membranes were permeated with 0.1%
Triton X-100 for 10 min and blocked with 2% BSA for 30 min. Next, cells were incubated
with a dilution of 1:100 of anti FTL (PA5-29599, Thermo Fisher Scientific, Bedford, MA,
USA) or anti FTH (sc-376594, Santa Cruz Biotechnology Inc, Dallas, TX, USA) in 2%
BSA for 1 h at 37 ◦C. Then, antibodies were rinsed with 2% BSA and incubated with
1:300 secondary antibodies (Anti Rabbit Alexa488, ®Invitrogen or Anti Mouse Alexa546,
®Molecular Probes, Salem, OR, USA). After several rinses, cells were incubated with
a 1:2000 DAPI dilution. The cell-containing coverslips were mounted on glass slides
using Fluoromount G (Thermo Fisher Scientific, Bedford, MA, USA) for imaging and
analysis in a Zeiss confocal microscope. Images were taken using a 63X aqueous lens
with glycerol-based immersion medium (IR: 1.4) employing a digital zoom of 0.5X by
plane and 1X for z stacking. Ten different fields of the glass slide with cell homogeneity
were measured and quantified using ImageJ software. Cell fluorescence was measured in
the region of interest and corrected by integrated density adjusted by mean background
fluorescence in the region of interest of the cell area. Mean fluorescence intensity (ROI of
Cell Fluorescence Corrected = Integrated Density of ROI (Area of ROI x Mean Fluorescence
of Background Readings) of treated cells with metal-containing ferritin was divided by the
mean fluorescence of the apoferritin control group and, finally, was registered, plotted and
analyzed using GraphPad software.

3. Results and Discussion
3.1. Gold Nanoparticles Synthesis and Characterization

Recombinant human H-ferritin homopolymer (FTH) and L-ferritin homopolymer
(FTL) were used as nanocontainers for the synthesis of AuNPs to obtain FTH-AuNP and
FTL-AuNP, respectively, following a protocol with two successive gold addition–reduction
steps based in a previous protocol published by Fan 2010 [15] (Figure 1). Potentially, gold
nanoparticle growth could occur in the outer or inner surface of the ferritin shell.
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Figure 1. Diagram of the 2-step gold nanoparticle synthesis protocol in recombinant human ferritin.
It cannot be discarded that some gold atoms could be on the outer ferritin surface after the first
dialysis, giving rise to nanoparticles outside the formation.

Ferritin-containing gold nanoparticles (FT-AuNPs) were characterized by UV-vis spec-
troscopy in the range of 400 to 800 nm to evaluate the characteristic surface resonance
plasmon (SRP) absorbance peak of the AuNPs [43] (Figure 2). The spectra of FT-AuNP
samples exhibited the SRP absorbance peak at 511 and 520 nm in FTH and FTL, respec-
tively. The slight shift observed between both AuNP-ferritin SRP peaks and the different
absorbance intensities between FTH and FTL reflect not only differences in the metallic
core size distribution of the gold nanoparticles [44] but also the effect of the dielectric
constant of the nanoparticle environment in each homopolymer, which is different due to
the specific amino acid composition interacting with the AuNP surface.
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Figure 2. Absorbance spectra of FT-AuNP samples. Gold-containing samples (FTH-Au NP and
FTL-Au NP) are represented by dash-and-dot lines to compare them to the apo-forms of FTH and
FTL shown as continuous lines.

The FT-AuNP samples were further characterized by studying their structural in-
tegrity using size exclusion chromatography (SEC) and dynamic light scattering (DLS).
Absorbance at 280 nm (A280nm) was used in chromatographic analysis to detect the pro-
tein and the absorbance at 550 nm (A550nm) for AuNP detection. The chromatographic
characterization of apoferritin homopolymer samples at 280 nm exhibited two prominent
elution peaks for each sample, with a slight difference in elution volumes. The ApoFTH
profile showed a first elution peak at 9.1 mL and a second peak at 10.4 mL. ApoFTL ex-
hibits a broad first protein elution with two overlapping peaks at 8.9 and 9.4 mL and a
second elution peak at 10.8 mL (Figure 3A). These elution profiles indicate two different
subpopulations of ferritin in the original sample that have also been reported by other
authors [22,45–47]. The first protein elution peak with a higher molecular weight cor-
responds to ferritin cage oligomers (dimers or trimers), while the second elution peak
contains ferritin cage monomers, corroborated by native PAGE analysis (Figure S1). In a
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previous work of our group, horse spleen ferritin (HSF) showed the same elution profile
and hydrodynamic diameter measurement in the SEC collected fractions, with a first elu-
tion peak having a mean diameter of 30 ± 2 nm (ferritin oligomers) and the second elution
peak with a monodisperse diameter of 10 ± 1 nm (monomeric ferritin) [46].
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The chromatographic profile of the FTH-AuNP sample (A280nm) shows elution peaks
at 8.5 and 11.2 mL, while the FTL-AuNP sample shows protein elution peaks at 8.6 and
11.4 mL (Figure 3B,C, respectively). The absorbance profile of these samples at 550 nm
shows the coelution of AuNPs with the first protein elution peak (8.5–8.6 mL), which corre-
sponds to the fraction containing oligomeric ferritin species. On the other hand, the lack of
absorption at A550nm in the ferritin monomer elution (second elution peak, 11.2–11.4 mL)
suggests that this peak contains apoferritin or ferritin containing gold nanoclusters, which
are fluorescent and are undetectable by absorbance measurements [15,48,49].

A semiquantitative analysis of the peak areas from protein chromatograms in Figure 3
suggests that nanoparticle synthesis in ferritin induces changes that alter the monomer/
oligomer ratio present in the initial apoferritin sample (Table 2). This monomer/oligomer
ratio is lower for FTH-AuNP (ratio: 1.8), which implies a higher proportion of oligomeric
species (fraction associated with AuNP) and, therefore, a higher AuNP synthesis effi-
ciency compared to FTL-AuNP. The FTH homopolymer has a ferroxidase center in each
of its 24 subunits that could interact through the imidazole ring of His residues with
Au+3 ions [17,50], offering nucleation sites for the further formation of nanostructures. In
addition, sulfur-containing amino acids (cysteine and methionine) in the FTH homopoly-
mer could play an essential role in interacting with Au+3 ions [15,30,51]. Nanoparticle
nucleation and growth in FTL seem to be mediated by Cys126 [28].

Table 2. Monomeric/oligomeric fraction analysis from size exclusion chromatograms.

Apo FTL FTL-AuNP Apo FTH FTH-AuNP

Monomer 60.1% 74.4% 73.3% 64.3%

Oligomer 39.9% 25.6% 26.7% 35.7%

Ratio 1.5:1 2.9:1 2.7:1 1.8:1

The measurement of the hydrodynamic diameter (Hd) by dynamic light scattering
(DLS) of the apoferritin samples displayed an average size near 20 nm, higher than the
size of monomeric ferritin (12 nm), confirming the presence of monomeric and oligomeric
protein species in the starting material (Table 3). Furthermore, in ferritin-AuNP samples,
Hd values increased, thus reconfirming that AuNP synthesis induces oligomeric protein
species, consistent with the results obtained by SEC analysis. Ferritin oligomer formation
related to AuNP synthesis was also observed by native PAGE analysis (Figures S1 and S2).



Pharmaceutics 2021, 13, 1966 7 of 15

Table 3. Monomeric/oligomeric fraction analysis from size exclusion chromatograms.

Sample Hd (nm) Z-Pot (mV)

Apo FTH 18 ± 12 −13.5
Apo FTL 20 ± 9 −13.7

FTH-AuNP 55 ± 29 −10.2
FTL-AuNP 35 ± 16 −7.6

The net electrostatic charge of folded apoferritin (Z-potential) in Tris-HCl buffer at
pH 7 was measured for both types of apo-homopolymer samples, showing a result of nearly
−13 mV (Table 3), representing an overall view of ferritin surface potentials, including
contributions from solvent and tightly bound metal. After AuNP synthesis, the Z-potential
in both homopolymers decreased to −10.2 and −7.6 mV for FTH-AuNP and FTL-AuNP,
respectively. The net charge decrease is caused by the interaction between the protein with
Au ions, and the lowered electrostatic repulsion between ferritin monomers can trigger the
formation of ferritin oligomers. Generally, Z-potential values are not reported in studies
involving metallic nanoparticle synthesis in ferritin, making it difficult to compare our
results with others. Exceptionally, previous studies showed a decrease in Z-potential and
increased Hd in iron-loaded ferritin compared to apoferritin [46,52,53].

Welch et al. demonstrated that ferritin containing H-chains (FTH) is oxidized during
iron loading at its ferroxidase center, and this oxidation results in protein aggregation. The
cysteine at position 90, located at the end of the solvent-facing loop, is critical for ferritin
aggregate formation during iron loading. Additionally, dityrosine moieties are formed
during iron loading, depending on cysteine residue oxidation [54,55]. Our results show
that both FTH and FTL form oligomers, suggesting a possible role of the process of AuNP
synthesis that could indirectly lead to the oxidation of surface-exposed cysteines.

Another suitable explanation for ferritin oligomerization after AuNP synthesis is
that gold interacts with the side chains of certain amino acids, which could potentially
induce small changes in the secondary structure of the protein that could affect the external
surface of ferritin, somehow decreasing the repulsion between protein nanocages mediated
by intermolecular interactions. So far, side-chain conformational changes in the amino
acid that interacts with Au+3 or Au0 have been reported [28,51]. In addition, different
authors have reported the conservation of the secondary structures of ferritin after iron
incorporation to produce magnetoferritin, therefore maintaining the almost intact protein
cage after iron mineralization [56–59]. Identical results were reported by Xiangyou Lui
et al., revealing that ferritin with Pt nanoparticles does not have significant changes in the
secondary structures of the protein, markedly α-helical [60]. On the contrary, Kashanian
et al. [61] reported that the synthesis of cobalt nanoparticles inside apoferritin induces an
increment of near 9% in the α-helical content and a decrease in the β-sheet protein structure
content, thus altering colloidal stability. Therefore, there is not enough evidence supporting
that the formation of oligomeric species after the synthesis of inorganic nanoparticles in
ferritin is related to the conformational changes of the secondary structure.

We studied FT-AuNP samples using TEM to measure the gold nanoparticle size
distribution of each ferritin homopolymer. AuNPs were directly observed, allowing
the measurement of the electron-dense spherical metallic cores, showing that the mean
diameter of the nanoparticles was 6 ± 1.8 nm (N = 833) and 5 ± 1.9 nm (N = 444) nm for
FTH-AuNP and FTL-AuNP, respectively (Figure 4). Although these results cannot directly
demonstrate that AuNPs are inside ferritin’s cavity, the absence of AuNPs with sizes over
9 nm is evidence that AuNPs could be inside the protein, given that the ferritin cavity has a
~8 nm size constraint. Additionally, the negative-stained samples of FTH-AuNP (Figure S3)
showed some electron-dense cores inside the ferritin structure, which had an unchanged
mean diameter of 11.5 ± 0.8 nm (N = 100). No electron-dense cores are observed outside
the protein-stained shell. Nevertheless, the presence of Au atoms on the ferritin surface,
driving the formation of the observed oligomeric species, cannot be excluded.
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3.2. Cell Viability and FT-AuNP Toxicity

We used a proliferation assay to evaluate cell viability after 24-h incubation with
FTH and FTL containing AuNPs. Results indicated that the incubation with the highest
concentration of 0.4 mg/mL (0.8 µM) of FT-AuNPs had a minor effect on the viability of
human HEK293T cells and murine C3H/10T1/2 cells, considered as healthy control cells
(Figure 5). Two other cell lines were tested for viability after incubation with FT-AuNP,
colon cancerous HT29 cells, and neural endothelial BEND3 cells. Both showed more
sensitivity to the treatment, triggering a reduction of cell viability even at 0.2 mg/mL of
FT-AuNP concentration. However, the viability of these two cell lines after doubling the
amount of FT-AuNP never fell below 70%. The increased toxicity observed in the HT29
and BEND3 lines may be caused by a higher level of internalization, showing accumulation
or dose-dependent behavior, as defined by other authors [16,62].

A broad spectrum of toxicities reported for AuNP depends on many factors: shape,
size, capping agent, the cell line used in the viability assay, and exposition time, among
others [63]. In this study, using ferritin for AuNP capping decreases reactivity, reduces
toxicity, and offers a biocompatible carrier. The detected relative toxicity found for FTH-
AuNP and FTL-AuNP could be considered low when compared to other values reported
for AuNP in gold-containing ferritin, which range between 100% to 90% viability in SH-
SY5Y cells (72 h incubation, up to 30 µM [29]), Caco-2, and HepG2 cells (12 h incubation,
up to 10 µM [16]).
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Figure 5. Cell viability after incubation with ferritin Au-NP compared to apoferritin. (a) HEK 293T
cell line, (b) C3H/10T1/2 cell lines, (c) BEND3 cell lines, and (d) HT29 cell lines (mean ± SEM;
n = 9; 3 independent experiments with 3 replications each); MTS assay. Data were analyzed using
a one-way analysis of variance and Tukey’s post hoc test. Statistically significant differences are
indicated (* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant).

3.3. Cell Uptake of FTH and FTL with Gold Nanoparticles

The uptake of FT-AuNP by different cell lines was analyzed after 2 h of incubation by
confocal microscopy (Figure 6A). Qualitatively, the uptake of FTH or FTL containing AuNPs
was higher compared to apoferritin. This uptake enhancement was also observed for
ferritin containing iron oxides (FT-Fe), used as control samples (red channel in Figure 6A).
Image quantification corroborated the differences in cell internalization of the ferritin
samples, which were consistently higher for ferritins containing AuNPs or iron oxides
(Figure 5B). For the HEK 293T cell line, the internalization values varied between 1.1- to 1.8-
fold more than apoferritin and were similar for both homopolymers and metallic contents
(FT-AuNP or FT-Fe). For the C3H/10T1/2 cell line, the FTH homopolymer containing
AuNP and Fe showed higher internalization values (between 2.4 and 2.0, respectively)
than FTL-AuNP and FTL-Fe (1.9 and 1.6, respectively). In BEND3 and HT29 cell lines,
FTH-AuNP was highly internalized, reaching values of 4.9- and 6.4-fold more than FTH,
respectively. FTH-Fe also showed increased internalization rates, with values of 3.3- and
4.7-fold more than FTH in BEND3 and HT29, respectively. In these two cell lines, FTL
containing AuNP or iron oxides showed a lower uptake increase than FTH, with a 2.8- and
2.2-fold increase over apo-FTL, respectively (Figure 6B).



Pharmaceutics 2021, 13, 1966 10 of 15Pharmaceutics 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

 

 
Figure 6. Confocal microscopy results for different cell lines after incubation with FT-AuNP. (a) 
Confocal images of HEK293T, CH3/10T1/2, BEND3, and HT29 were obtained after incubation for 
24 h with H-ferritin (FTH) and L-ferritin (FTL), with or without AuNP or iron oxides (anti FTH or 
FTL in red; (DAPI) nucleus in blue; scale bars: 20 μm). (b) Plots representing fold changes in MFI 
(mean fluorescence intensity) ± SD from more than three independent experiments.  

4. Conclusions 
When comparing the two human ferritin homopolymers, FTH and FTL, our results 

demonstrate that AuNP can be synthesized in both, but nanoparticle synthesis in FTH 
gives slightly bigger nanoparticles and is more efficient than FTL. In addition, 
FTH-AuNP has a higher degree of cellular uptake in three of the cell lines tested com-
pared to FTL-AuNP, which correlates with previously reported TfR1 expression in these 
lines. Inorganic content (AuNP or iron oxides) enhances both homopolymers’ cellular 
internalization, especially in FTH, and AuNP has a higher effect on internalization rates 
than iron oxides in our study. In summary, we show that cellular ferritin uptake seems to 

Figure 6. Confocal microscopy results for different cell lines after incubation with FT-AuNP.
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FTH or FTL in red; (DAPI) nucleus in blue; scale bars: 20 µm). (b) Plots representing fold changes in
MFI (mean fluorescence intensity) ± SD from more than three independent experiments.

The differences in uptake between both homopolymers, FTH and FTL, containing
either AuNP or iron oxides, can be attributed to the availability of their uptake receptors.
H-chains are mainly internalized by transferrin receptor 1 (TR1), which is ubiquitously
expressed and overexpressed in cancerous and vascular endothelial cell lines [64]. On the
other hand, L-chains are internalized by the SCARA5 receptor, which is less abundant
in cells and only expressed in particular cell types [39,65]. Our results are in congruence
with previous TfR1 expression data for the HEK 293T cell-line, which shows low levels
of internalization compared with other cell lines and has been described to have low
levels of TfR1 [31,66]. Additionally, the high internalization observed in the BEND3 and
HT29 cell lines correlates with the previously reported overexpression of TfR1 in these
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cell lines [67,68]. These results are relevant for developing new imaging or drug-delivery
systems based on gold-containing ferritin for brain targeting and cancer treatments where
cells overexpress transferrin receptors.

Notoriously, metallic content also affects the uptake level of both homopolymers.
This observation is best appreciated in cell lines with enhanced uptake, such as BEND3
and HT29, suggesting that apoFTH and apoFTL are poorly internalized by these cell
types; however, the same homopolymers with a metallic content are highly internalized,
although in a much lower level for FTL. The same behavior has been previously observed
by Sunkesula et al. [69], who observed that ferritin iron content modulates its uptake by
the intestinal epithelium. However, this is the first time this observation has been made for
ferritin with other contents, particularly AuNPs.

Cell internalization of ferritin occurs through receptor-mediated endocytosis (RME),
which provides one major pathway for the trafficking of extracellular molecules into the
cell. The first step of RME involves the binding of a ligand to a specific cell surface receptor.
Circulating ferritin needs to overcome this first step to enter the cell successfully. Thus, the
question arising from this investigation is whether there is a difference in receptor binding
between apoferritin and holoferritin, in this case, gold-containing ferritin.

Studies comparing apo and holoprotein structures show that, in most cases, the pro-
teins undergo relatively small conformational rearrangements of their tertiary structure
upon ligand binding/release (root mean square deviations (RMSDs) of the a-carbon from
the native are <1 A◦) [70]. Clark et al. confirmed an inherently different behavior for back-
bones and side chains, where backbones tend to show very little conformational change,
and side chains are frequently pushed into new conformations upon ligand binding [71].
Additionally, molecular dynamics of apo and holo-proteins indicated that, although the
overall protein structure is unchanged by the presence of the ligand, other interaction prop-
erties are significantly affected by ligand binding, such as bound waters. This antecedent
suggests that binding thermodynamics depend not simply on ligand interactions with a
small subset of protein atoms but dynamically on the range of motions coupling water,
protein, and ligand molecules [72,73].

Future work should be directed towards a better understanding of how metallic
content interacts with ferritin to induce an enhancement in its cellular uptake.

4. Conclusions

When comparing the two human ferritin homopolymers, FTH and FTL, our results
demonstrate that AuNP can be synthesized in both, but nanoparticle synthesis in FTH
gives slightly bigger nanoparticles and is more efficient than FTL. In addition, FTH-AuNP
has a higher degree of cellular uptake in three of the cell lines tested compared to FTL-
AuNP, which correlates with previously reported TfR1 expression in these lines. Inorganic
content (AuNP or iron oxides) enhances both homopolymers’ cellular internalization,
especially in FTH, and AuNP has a higher effect on internalization rates than iron oxides
in our study. In summary, we show that cellular ferritin uptake seems to depend on three
independent factors: (a) the protein chain forming the ferritin cage (and probably the
ratio between chains for heteropolymeric ferritins), (b) the presence or absence of metallic
cargo within ferritin, and (c) the presence and abundance of specific receptors on the cell
membrane. The highest ferritin uptake was achieved using AuNP-loaded heavy-chain
ferritin homopolymers in transferrin-receptor-rich cell lines, while apoferritin is always
poorly internalized.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13111966/s1, Figure S1: Native PAGE of ferritin samples, Figure S2: FTH-
AuNP SEC chromatogram (a) and Native PAGE of elution fractions (b), Figure S3: TEM analysis for
FTH-AuNP samples with negative staining.
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