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In transplantation, donor and recipients frequently differ in age. Senescent cells
accumulate in donor organs with aging and have the potential to promote senescence
in adjacent cells when transferred into recipient animals. Characteristically, senescent cells
secrete a myriad of pro-inflammatory, soluble molecules as part of their distinct secretory
phenotype that have been shown to drive senescence and age-related co-morbidities.
Preliminary own data show that the transplantation of old organs limits the physical
reserve of recipient animals. Here, we review how organ age may affect transplant
recipients and discuss the potential of accelerated aging.

Keywords: immunosenescence and inflammaging, immunosenescence, immune aging, senescent cell, passenger
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INTRODUCTION

Organ transplantation is the treatment of choice for end-stage-organ failure. The supply of organs,
however, is limited, resulting in prolonged waiting times with many patients dying or becoming too
ill to be transplanted. Aging demographics have incrementally affected the deceased donor
population with older donors showing the by far largest proportional increase. Organs from
older donors are, at the same time, underutilized, frequently discarded or not even considered (1).

The most obvious strategy that may close the gap between demand and supply may thus be an
optimized utilization of older organs from deceased donors (2, 3). Increased donor age, at the same
time poses a significant risk for adverse outcomes including more frequent rejections due to an
augmented immunogenicity in aging (4, 5). Most relevantly, older organs have shown compromised
long-term graft outcomes with inferior graft survival rates in addition to increased rates of chronic
allograft dysfunction in kidney, heart and lung transplantation (6).

Senescent cells accumulate with aging and have been identified as critical in driving the
immunogenicity of older organs linked to the accumulation of cell-free mitochondrial-DNA that
accelerate alloimmune responses (7). Recent evidence also suggests that senescent cells can induce a
senescent phenotype in adjacent cells, a potential mechanism on how the engraftment of older
organs may facilitate the spread of senescence. Depletion of senescent cells, at the same time, has
been shown to ameliorate a wide range of age‐associated disabilities and diseases (8–12).

Here, we introduce potential mechanisms and consequences of prompting bystander senescence
and discuss clinically relevant aspects of senescent cell spread when transplanting older organs.
Although speculative, age-disparate transplantation may also provide unique opportunities as the
transplantation of young organs may contribute to rejuvenation.
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SENESCENT CELLS ACCELERATE AGING

Cellular senescence is characterized as a stable and terminal state
of growth arrest based on acquired anti-apoptotic pathways
(SCAPS, termed senescent cell anti-apoptotic pathways) that
render senescent cells resistant to apoptosis (13). Thus,
senescent cells accumulate in many tissues with aging (14–16).
Notably, stem cells critical for tissue regeneration have also been
shown to undergo senescence associated with the loss of their
self-renewal capacity considered as a driver of age-related tissue
dysfunction and organismal aging (17–19). Characteristics of
senescent cells include distinct transcriptional signatures with
upregulated genes causing cell cycle arrest, epi-genetic
modifications and a divers non-coding RNA profile (20).
Senescence cells also have a compromised mitochondrial
function (21) and an altered lysosomal activity with
overexpression of endogenous lysosomal beta-galactosidase,
serving as the most widely used biomarker to visualize
senescent cells, termed senescence-associated b-galactosidase
(Sa-b-gal) (22). Of note, high expression of Sa-b-gal is not
always associated with cellular senescence as it has also been
detected in cells undergoing quiescence (23, 24), which – in
contrast to senescence – displays a reversible cell-cycle arrest
required for tissue repair and regeneration.

Senescent cells exhibit a distinct, pro-inflammatory secretome
consisting of cytokines (IL-6, IL-8, TNF-a), chemokines (CCL2,
CCL20) and matrix remodeling enzymes termed the “Senescent
Associated Secretory Phenotype” (SASP) (25). The production of
SASP is a cardinal feature of senescent cells contributing to age‐
related tissue dysfunction, chronic age-associated diseases and
organismal aging, impairing tissue homeostasis and impeding
neighboring cell function (26).

Cellular senescence can be triggered by oncogenic and DNA‐
damaging stressors that induce DNA damage responses, a
signaling pathway in which ATM or ATR kinases block cell-
cycle progression through stabil ization of p53 and
transcriptional activation of the cyclin-dependent kinase
inhibitors p21 (27). Moreover, the cyclin-dependent kinase
inhibitor p16INK4a facilitates cell cycle arrest and can therefore
also be used as a senescent cell marker (28). As a consequence of
DNA damage, senescent cells exhibit increased frequencies of
DNA damage foci containing phosphorylated histone H2A.X
that are preferentially located at the telomeres and thus termed
telomere associated foci (TAF) (29).

Strikingly, senescent cells are capable of auto-inducing a
senescent phenotype in surrounding, non-senescent, bystander
cells via gap junction mediated cell–cell contact and processes
involving reactive oxygen species (ROS). Thus, continuous
exposure of intact fibroblasts to senescent cells resulted in
increased numbers of DNA double-strand breaks (DSBs)
indicating senescence, which had been inhibited when blocking
gap junction-mediated cell–cell contact (30).

SASP appears to play a critical role in driving bystander
senescence. Quantitative proteomics with small molecule screens
in transwell two chamber experiments that co-cultured naive
human fibroblasts with senescent fibroblasts identified various
Frontiers in Immunology | www.frontiersin.org 2
components of the SASP including TGF-b family ligands, VEGF,
CCL2 and CCL20, all capable of inducing paracrine senescence
(31). Moreover, culturing naive fibroblasts with conditioned
medium derived from senescent fibroblasts demonstrated
comparable effects. The senescent phenotype remained
detectable 14 days after splitting both cell lines indicating long-
term effects (31). A broad range of additional SASP components
including IGFBP-7, PAI-1, IL-6 and CXCR2-binding
chemokines (such as IL-8 or GROa) have also been shown to
drive senescence (32–35).

The spread of senescence has also been confirmed in vivo
utilizing transgenic Sos Egfrwa2/+ mice that develop papillomas
with a senescent phenotype within their basal and suprabasal
layers. Although there were no senescent cells in the tissue close
to normal skin, increased frequencies of senescent cells had been
detected in surrounding tissue adjacent to senescent
papillomas (31).
CAN THE ENGRAFTMENT OF OLD
ORGANS PROMOTE SENESCENCE?

We have previously shown that older donor organs bear
increased frequencies of senescent cells (7). Thus, when
transplanting an older organ, an increased number of
senescent cells is transferred to recipients posing the potential
to accelerate senescence. In support of this hypothesis,
intraperitoneal transplantation of relatively small numbers of
senescent cells into young mice resulted into an augmentation of
senescence in visceral adipose tissue associated with a
compromised physical capacity (36). In detail, senescent cells
from luciferase expressing transgenic mice were intraperitoneally
injected and assessed by quantifying SA-bgal+, p16Ink4a+ and
TAF+ cells in visceral adipose tissue. By two months, amounts of
SA-bgal+ and p16Ink4a+ cells but also luciferase negative TAF+

cells had increased, indicating an augmented number of
senescent cells of recipient origin. Consistent with the spread
of senescence, distant tissues including the quadriceps muscles
displayed an increased frequency of the senescent cell markers
such as p16Ink4a, TNF-a, and IL-6 (36). Moreover, autologous
transplantation of senescent cells into healthy knee joints
promoted the development of an osteoarthritis‐like condition
in young mice (37). These observations are consistent with our
own preliminary data showing a compromised physical capacity
in young mice that had received an old cardiac isograft.
Furthermore, when transferring senescent cells into the skeletal
muscle of immunocompromised NOD SCID gamma mice,
increased numbers of senescent cells and augmented SASP-
marker expression including IL‐1a, IL‐1b, IL‐6 and TNF‐a
had been detected (38).

Following organ transplantation, significant numbers of
passenger leukocytes deriving from the transplanted organ
have been shown to disseminate into the recipient tissue (39–
42), supporting the concept that senescence may be transferred
in organ transplantation (Figure 1).
April 2021 | Volume 12 | Article 671479

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Iske et al. Senescence-Transfer Upon Older Organ Transplantation
ISCHEMIA REPERFUSION INJURY AS A
DRIVER OF SASP PROMOTING
SENESCENCE

Ischemia reperfusion injury (IRI) displays an inevitable feature of
organ transplantation promoting a sterile inflammation linked to
the release of various pro-inflammatory cytokines coinciding
with the production of SASP by senescent cells. It appears thus
possible that IRI may aid to the promotion of senescence in
transplant recipients.

The rapid increase in oxygen demand within the ischemic
tissue subsequent to organ reperfusion induces oxidative stress,
mitochondrial damage and electrolyte imbalance associated with
local inflammation including the release of ROS (43), pro-
inflammatory cytokines, in particular TNF-a, IL-1, IL-6 and IL-
8 (44, 45) in addition to various proteases (46). Notably, IL-1a
expression has been shown to induce an inflammasome mediated
SASP activation with the secretion of IL-6 and IL-8 that reinforce
senescent growth arrest (31, 47). It has also been demonstrated
Frontiers in Immunology | www.frontiersin.org 3
that ROS induce senescence by promoting mitochondrial
dysfunction directly through damaging mitochondrial DNA.
Alternatively, ROS may also facilitate senescence in synergy with
modifications of the telomerase reverse transcriptase enzyme in
addition to the activation of p53 and Ras pathways (48). ROS also
inhibit autophagy via p53 activation and the induction of micro-
RNAs, effects that further amplify mitochondrial dysfunction (49,
50). Reconciling these cellular effects of IRI on senescence
induction, a recent study has confirmed that IRI induces
senescence in both cardiomyocytes and interstitial cell
populations of murine hearts both within the infarct and in the
peri-infarct region of the left ventricular myocardium (51).
CAN SENOLYTIC DRUGS INHIBIT THE
SPREAD OF SENESCENCE?

Senolytics are a class of drugs that selectively clear senescent cells
through inhibiting their SCAPs, thus driving them into
FIGURE 1 | Potential Mechanism of Transferring Senescence Following Solid Organ Transplantation. (A) Following IRI pro-inflammatory factors with similarities to
SASP are released that may promote systemic senescence in the recipient. (B) Donor derived, old dendritic cells migrate to recipient lymph nodes following
implantation to initiate alloimmune responses through direct antigen presentation. (C) Via gap junction mediated cell–cell contact old DC may promote senescence in
recipient stroma cells (D) while inducing a senescent phenotype in recipient T cells through the release of SASP-factors.
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apoptosis. According to their targeted SCAP, first generation
senolytics can be subdivided in groups including, i), BCL-2
inhibitors such as navitoclax that inhibit the pro-survival
pathway BCL-2/BCL-xL, ii), PI3AK/AKT inhibitors including
Dasitinib and Quercetin (D & Q) that constrain the synergistic
effects of PI3K and Akt inactivating the apoptosis mediating
proteins Bad, caspase-9 and FKHRL1 and iii), FOXO regulators
such as Foxo4-DRI interfering with the inhibition of p53-
mediated apoptosis (52). In addition, cardiac glycosides have
been shown to exert senolytics activity through targeting the
Na+/K+ Atpase (53, 54) while most recently a BET family protein
degrader targeting the non-homologous end joining and
autophagy has been delineated as a promising novel senolytic
drug (55) (Table 1).

Experimentally, senolytics have been shown to ameliorate a
broad range of age-associated pathologies including diabetes
(62), cardiovascular disease (11, 63), Alzheimer disease (64),
osteoporosis (8) and cancer (55). Moreover, clinical studies
focusing on idiopathic fibrosis, complications of advanced
diabetes, osteoarthritis and Alzheimer have been initiated (65).
Of note, senolytic drugs such as navitoclax that only target a
single SCAP are more likely to exert substantial off-target
apoptotic effects on non-senescent cell types including platelets
and immune cells while eliminating only a restricted range of
senescent cells (58). Thus, efforts have been made to develop
novel senolytic drugs that act on multiple SCAPs, increasing the
specificity for senescent cells while reducing off-target effects.

Routes of application may play an additional role: site specific
delivery of quercetin improved pancreas islet transplant outcome
with enhanced glycemic control by delaying cellular senescence
in a mouse model of diabetes (66). Moreover, combinatorial
treatment with D & Q has been shown to deplete senescent cells
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in old murine donor organs, thus decreasing ischemia
reperfusion derived release of SASP factors which translated
into dampened allo-immune responses, prolonging transplant
survival (7). The clearance of senescent cells in donor organs may
not only exert anti-inflammatory effects but also restrain a
potential transfer of senescence underscoring the therapeutic
potential of these drugs in organ transplantation. As a proof of
concept, administration of D & Q to mice that had received
intraperitoneal injections of senescent cells prevented the spread
of senescence and resulting physical dysfunction (36). Senolytic
treatment of transplant donors may decrease the pool of
senescent cells while a subsequent treatment of the recipient
may ensure sustainable clearance of senescent cells, preventing a
spread of senescence following transplantation. In addition,
senomorphic drugs such as ATM kinase inhibitors (67) and
Janus kinase inhibitors (68) that attenuate SASP may, in turn,
restrain senescence induction through systemic SASP factors
released upon ischemia reperfusion injury when transplanting
older organs (69). Of relevance, not all senescent cells may
promote age-related complications as recent reports have
delineated a physiological hemostatic role of a distinct
senescent endothelial cell population in liver sinusoids (70).
ENVISIONING REJUVENATION WHEN
TRANSPLANTING YOUNG ORGANS INTO
OLD RECIPIENTS

In contrast to the potential of transferring senescence to
recipients, it may also be possible that a young donor organ
may exert rejuvenating effects when transplanted into an old
recipient. We wish to point out that this concept is theoretical at
this point, nevertheless worthwhile to speculate on.

Experimental data have shown that young parabiotic animals
have the capacity to rejuvenate brain, heart and muscle function
of old mice (71–73). Moreover, transferring plasma derived from
young into old mice increased neuronal plasticity of the
hippocampus and improved cognitive functions providing
support for the concept of rejuvenation (74). However,
subsequent studies aiming to delineate soluble factors within
the blood that may mediate rejuvenation have not yielded clear
results (75–77).

Tissue derived factors may be particularly relevant for
exerting rejuvenation. Extracellular vesicles (EVs), for instance,
containing RNAs, proteins, and lipid components that may be
released by transplanted tissue stem cells, have been shown to
promote stem cell plasticity and tissue regeneration (78–82).
Notably, EVs derived from young mesenchymal stroma cells
(MSCs) rejuvenated old endothelial progenitor cells (EPCs) in
vitro, while EVs derived from old MSCs lacked this capacity.
Furthermore, miRNA-126-loaded EVs have been able to
rejuvenate senescent EPCs in vitro (83).

At least in theory, adult stem cells that have been detected in
multiple recipient tissues including muscle, liver, myocardium and
endothelium following hematopoietic stem cell transplantation
(84–86) may support organ function through transdifferentiating
TABLE 1 | Reported senolytic drugs.

Senolytic Drug Target Reference

Dasitinib/Quercetin PI3K/AKT pathway Xu et al. (36)
Fisetin Yousefzadeh et al. (56)
Luteolin/Curcumin Yousefzadeh et al. (56)
17-DMAG HSP90-PI3K/AKT

pathway
Fuhrmann-Stroissnigg
et al. (57)

Navitoclax Zhu et al. (58)
A1331852/A1155463 BCL family Zhu et al. (59)
Panobinostat Samaraweera et al. (60)
FOXO4-DRI P53/FOXO4

interaction
Baar et al. (12)

Catechins Bax/Bcl-2, Nrf2,
PI3K/AKT/mTOR
pathways

Kumar et al. (61)

Cardiac Glycosides
(Ouabain, Proscillaridin
A, Digoxin)

BCL Family and
Na+/K+ ATPase

Triana-Martıńez et al. (54)
Guerrero et al. (53)

BETd NHEJ/autophagy Wakita et al. (55)
PI3K, Phosphoinosit ide 3-kinase; AKT, Protein Kinase B; 17-DMAG, 17-
Dimethylaminoethylamino-17-demethoxygeldanamycin; HSP90, Heat Shock Protein 90’
FOXO4-DRI, Forkhead box protein O4 peptide D-Retro Inverso Isoform; Bax, Bcl-2-
associated X protein; Nrf2, Nuclear factor erythroid 2-related factor 2; mTOR, mechanistic
Target of Rapamycin; Na+/K+ ATPase, sodium–potassium adenosine triphosphatase;
BETd, bromodomain and extra-terminal domain family protein degrader; NHEJ, non-
homologous end joining.
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into dysfunctional recipient tissue. However, there is no evidence
at this time that donor derived MSCs integrated into recipient
tissue following solid organ transplantation.
CONCLUSION

The transplantation of older donor organs is associated with
more frequent acute rejection rates and compromised outcomes
calling for age-specific treatment approaches that may improve
the quality of older organs while reducing immunogenicity. At
the same time transplanting an organ from an old donor may
pose a risk for young recipients. The clinical relevance and
significance of this concept appears obvious and demands
therefore a thorough evaluation. The potential of rejuvenation
when transplanting young donor organs, in turn, are of
theoretical consideration and will also demand a detailed
Frontiers in Immunology | www.frontiersin.org 5
analysis. Critical will therefore be studies that probe either
accelerated aging or rejuvenation in relevant pre-clinical
transplant models utilizing immunosuppression.

Optimizing the use of available organs for transplant
including those from older donors continues to be of critical
importance to close the gap between demand and supply in
organ transplantation. Utilizing senolytic drugs that selectively
deplete senescent cells may constitute a potential approach to
improve the outcomes of older organs while restricting the
spread of senescence.
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