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The renin-angiotensin system plays critical roles in main-
taining normal cardiovascular functions and contributes 

to a spectrum of cardiovascular diseases. Classically, the 
renin-angiotensin system is composed of AGT (angiotensin-
ogen), renin, angiotensin-converting enzyme (ACE), Ang II 
(angiotensin II), and 2 Ang II receptors (AT1 and AT2 recep-
tors).1,2 AGT, a protein with 452 amino acids, is cleaved by 
renin to produce Ang I. Ang I is a decapeptide, which is then 
cleaved by ACE to produce Ang II. Ang II is an octapeptide, 
acting through binding to its receptors, AT1 and AT2 recep-
tors. AT1 receptor is the major receptor for Ang II to regulate 
many physiological and pathophysiological functions.3–6 In 
mice, AT1 receptor has 2 subtypes, AT1a and AT1b, which 
have >90% sequence homology, but distinctive distributions 
and functions.4,7–12 AT1a receptor is important for blood pres-
sure regulation and contributes to atherosclerosis and aortic 
aneurysms,5,13,14 whereas AT1b receptor has no evident contri-
bution to these functions15 but is associated with vasculature 
contractility.16,17 AT2 receptor is abundant during fetal devel-
opment but becomes low in most tissues after birth.18

In the past 2 decades, many new components in this sys-
tem have been discovered. These include ACE2, a homologue 
of ACE, which converts Ang II to Ang(1–7) or converts Ang 
I to Ang(1–9).19,20 The G protein–coupled receptor Mas1 was 
identified as the receptor of Ang(1–7).21

This review highlights some recent publications in ATVB 
that have provided insights into understanding the classic 
components of the renin-angiotensin system and its alternative 
components contributing to cardiovascular functions. We will 
focus on effects of this hormonal system on cardiac dysfunc-
tion, hypertension, atherosclerosis, and aortic aneurysms.22–29

Angiotensinogen
AGT is the only known substrate of the renin-angiotensin 
system to produce all downstream angiotensin peptides. AGT 
regulates blood pressure as demonstrated by multiple mouse 
models, including global AGT-deficient mouse model and 
human AGT and renin transgenic mouse model.30–33 AGT was 
also implicated in atherosclerosis using a transgenic mouse 
model expressing both human angiotensinogen (Agt) and renin 

genes.34 Two recent studies have provided direct evidence 
that AGT regulates blood pressure and contributes to athero-
sclerosis through Ang II–mediated mechanisms.35,36 These 
studies used multiple genetic manipulations, including AGT 
hypomorphic mice, bone marrow transplantation, hepatocyte-
specific AGT-deficient mouse model, and adeno-associated 
viral infection to repopulate the manipulated Agt in vivo. 
These studies demonstrate that hepatocyte-derived AGT is the 
predominant source to regulate blood pressure and promote 
atherosclerosis. A pharmacological approach using antisense 
oligoneucleotides has also opened a door to directly target 
AGT for preventing high blood pressure and atherosclerosis.36

Renin
Renin is the rate-limiting enzyme of the renin-angiotensin 
system and the only enzyme known to cleave AGT. These 
properties make renin a potentially attractive target to inhibit 
the renin-angiotensin cascade and improve Ang II–mediated 
cardiovascular dysfunctions.37,38 Inhibition of renin reduces 
blood pressure and atherosclerosis in animal models.6,36,39–43 
Unfortunately, renin inhibitors in patients with cardiovascular 
diseases have not provided superior beneficial effects beyond 
the well-established ACE inhibitors or AT1 receptor blockers.44

Despite some disappointing findings in human studies 
of renin inhibition, it has not discouraged research to under-
stand renin-related mechanisms of cardiovascular diseases. 
The juxtaglomerular cells of the kidney are the major source 
of renin production and secretion. As an important organ in 
blood pressure regulation and cardiovascular functions, renal 
denervation aiming to reduce sympathetic nerve activity has 
drawn significant attention, although there are conflicting 
findings that need further research.45–48 A recent study using 
pigs discovered that this approach reduced blood pressure 
and improved cardiovascular functions through its influence 
on kidney-brain-heart axis with profound changes of plasma 
renin activity, implicating the involvement of the renal renin-
angiotensin system regulation in the process.49

Angiotensin-Converting Enzymes
In contrast to the rate-limiting and substrate-specific prop-
erties of renin, ACE is not sensitive to Ang II concentration 
changes, and it is an enzyme that cleaves not only Ang I but 
also many other substrates including bradykinin (a vasodila-
tor) and N-acetyl-Ser-Asp-Lys-Pro (a hemoregulatory pep-
tide).50–53 There is a highly consistent literature demonstrating 
that ACE inhibition reduces blood pressure and atherosclero-
sis in animal models.6,54,55 ACE inhibitors are one major class 
for treatment of hypertension, cardiovascular dysfunctions, 
and diabetic nephropathy in patients.56–60 Recent studies have 
also added new mechanistic insights into guiding the use of 
ACE inhibitors. It was found that high serum concentration of 
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homocysteine decreased antihypertensive effect of enalapril, 
an ACE inhibitor, in chronic hypertensive patients.61

ACE is ubiquitously present in many cell types, tissues, 
and organs.62,63 Leukocyte or smooth muscle cell–derived ACE 
contributed to atherosclerosis as demonstrated by bone marrow 
transplantation and cell-specific depletion of ACE, respectively, 
in mouse models,54,64 although their effects were less potent 
than pharmacological inhibition of ACE systemically.6 ACE is 
abundant in endothelial cells.65 However, depletion of ACE in 
this cell type had no effects on atherosclerosis.64 Global genetic 
depletion or pharmacological inhibition of ACE reduced blood 
pressure,6,66 but depletion of ACE in leukocyte, endothelial 
cells, or smooth muscle cells did not affect blood pressure.54,64 
Despite a well-known enzyme discovered half century ago67,68 
with impressive success of its inhibitors in clinical patients,69 it 
is still a long road to define mechanisms by which ACE con-
tributes to multiple cardiovascular functions, including its cel-
lular source that influences blood pressure regulation.

Angiotensin II
As the major bioactive peptide of the renin-angiotensin sys-
tem, there are broad views of mechanistic insights into under-
standing how Ang II contributes to multiple cardiovascular 
physiological and pathophysiological functions. We provide 
a brief review of the following diseases published recently 
in ATVB. For most of these studies, the approach used was 
chronic subcutaneous infusion of Ang II.70,71

Cardiac Dysfunction
Ang II induces several forms of cardiac dysfunction includ-
ing hypertrophy, arrhythmia, and ventricle function failure.72,73 
Basigin is a transmembrane glycoprotein that has multiple 
functions.74 In a mouse model of transverse aortic constriction, 
genetic reduction of basigin led to less cardiac hypertrophy, 
fibrosis, and heart failure.75 Deficiency of smooth muscle stro-
mal interaction molecule 1, an endoplasmic reticulum Ca2+ 
sensor, also prevented Ang II–induced cardiac hypertrophy.76 
These findings are consistent with that renin-angiotensin inhi-
bition is crucial for improving cardiac dysfunction.

Hypertension
There are many factors contributing to hypertension.77–79 Salt 
intake is believed to be a critical factor for high blood pres-
sure.80 Ang II is also a well-recognized contributor to high 
blood pressure.81,82 However, high salt intake suppresses the 
renin-angiotensin system, whereas low dietary salt increases 
Ang II production.83,84 In accord with the paradox between salt 
intake and the renin-angiotensin regulation, dietary salt intake 
in blood pressure regulation and its consequent cardiovascular 
events have also been inconsistent, as reported in both human 
studies and animal models,85–91 implicating complex molec-
ular mechanisms involved in salt versus Ang II–mediated 
hypertension and related cardiovascular dysfunctions.

Batchu et al78 found that Axl, a receptor tyrosine kinase, in T 
lymphocytes exerted a significant role in Ang II–mediated blood 
pressure regulation. This finding is consistent with reports by 
Guzik et al92 and Norlander et al93 that T-lymphocyte–mediated 
immune response contributed to Ang II–induced high blood 

pressure, although this needs to be validated in human studies. 
In addition to immune cells, smooth muscle cells are a critical 
cell type in Ang II–mediated blood pressure regulation. Smooth 
muscle 22α is a cytoskeleton-associated protein in smooth mus-
cle cells. Smooth muscle 22α deficiency in mice reduced Ang II–
induced high blood pressure and senescence of vascular smooth 
muscle cells.93,94 These phenotypes were proposed to be associ-
ated with many mediators including p53-dependent pathway.95 
Activation of the α7 subtype of nicotinic acetylcholine receptors 
(α7nAchR) inhibited Ang II–induced senescence in cultured vas-
cular smooth muscle cells and wild-type mice, but not in mice 
with α7nAchR deficiency. This effect was associated with sirtuin 
1 activity because inhibition of sirtuin 1 abrogated this effect.96 
microRNA-143 and 145 are abundant in vascular smooth muscle 
cells and regulate myogenic tone.97 Depletion of these 2 microR-
NAs did not affect Ang II–induced high blood pressure but caused 
more severe arterial wall disruption, vascular remodeling, and 
inflammation.98 Another recent study identified cellular repressor 
of E1A-stimulated genes as a mediator of Ang II–induced vas-
cular remodeling.99 From these recent studies, we can gather that 
Ang II–mediated hypertension is a complex process that involves 
a large spectrum of molecules and many cell types.

Atherosclerosis
Atherosclerosis is a complex disease involving diverse mecha-
nisms including disordered lipoprotein metabolism, inflam-
mation, endothelial dysfunction, reactive oxygen species, 
and endoplasmic reticulum stress.29,100–103 Animal models are 
a common tool to study these mechanisms and exploring 
potential therapeutic targets. For example, application of drugs 
using nanoparticles holds promise to optimize drug delivery 
and efficacy. In apolipoprotein E–deficient (Apoe−/−) mice fed 
a high-fat diet and infused with Ang II, nanoparticles contain-
ing pioglitazone, an antidiabetic drug that also had peroxisome 
proliferator–activated receptor-γ agonistic effects, was injected 
intravenously on a weekly basis for 4 weeks. Although piogli-
tazone administration did not change atherosclerotic lesion size 
and macrophage content, it reduced Ly-6C high monocytes, 
matrix metalloproteinase activity, and cathepsin activity.104

In addition to mouse models, rabbits have been frequently 
used to study atherosclerosis. In one study, infusion of Ang II 
to Watanabe heritable hyperlipidemic rabbits led to high death 
rate (50% for Ang II 100 ng/kg per minute and 92% for Ang 
II 200 ng/kg per minute) because of acute myocardial infarc-
tion with coronary plaque erosion, rupture, and thrombosis.105 
Because plaque rupture and thrombosis are high-risk compli-
cations in humans,106 this model would be optimal to study 
mechanisms related to the human disease. In another study, 
Honda et al107 infused Ang II to Japanese White rabbits when 
they were fed a high-cholesterol diet and injured using balloon 
catheter to femoral arteries. This procedure also led to athero-
thrombotic occlusions. Ezetimibe, a lipid-lowering drug used 
in patients, profoundly decreased this fatal pathology, provid-
ing rationale to determine its extended effects in patients.107

Thoracic Aortic Aneurysms
Thoracic aortic aneurysms (TAA) manifest as profound dila-
tion of the thoracic aorta, accompanied by compromise of 
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aortic wall integrity, dissection, or rupture.108–112 Many genetic 
disorders are involved in this disease process including fibril-
lin-1,113,114 TGF (transforming growth factor)-β ligands and 
receptors,115–120 smooth muscle cell–specific isoforms of 
α-actin (encoded by Acta2), and myosin heavy chain (encoded 
by Myh11).109 In addition to these genetic manipulations, infu-
sion of Ang II also leads to TAA, predominantly localized to 
the ascending aortic region.121–124

The aortic wall is composed of the intima, media, and 
adventitia. Among the cell types of the aorta, smooth mus-
cle cells are the most abundant cell type and have been the 
most frequently studied cell type in the development of TAA. 
Vascular smooth muscle cell phenotypes are associated with 
aortic aneurysm formation and its pathological process.

Components of TGF-β signaling pathways are important 
for maintaining aortic wall integrity. However, its effects on 
TAA and abdominal aortic aneurysm (AAA) formation are 
controversial. Inhibition of TGF-β by neutralizing antibod-
ies augmented aortic rupture rate and aortic dilation in both 
abdominal and thoracic aortic regions in Ang II–infused 
mice125–127 but attenuated development of TAA in a Marfan 
mouse model.114 To explore the conflicting findings in differ-
ent mouse models and different locations of aortic aneurysms, 
a recent study determined mechanisms of TGF-β signaling 
in Ang II–induced TAA and AAA, combined with smooth 
muscle cell–specific TGF-β receptor 2 deficiency.128 Systemic 
TGF-β neutralization augmented AAA but had no effects on 
TAA. In contrast, smooth muscle cell–specific TGF-β recep-
tor 2 deficiency augmented TAA but had no apparent effects 
on the abdominal aorta.128 This study emphasizes the distinc-
tive mechanisms between TAA and AAA.129

MicroRNA-21 was identified as a critical modulator 
of proliferation and apoptosis of smooth muscle cells dur-
ing development of AAA. Overexpression of microRNA-21 
reduced AAA, and inhibition of this microRNA augmented 
AAA in 2 common mouse models.130 A recent study discov-
ered that in mice with Smad3 heterozygous background, aor-
tic miR-21 expression was increased by Ang II infusion, and 
systemic microRNA-21 deletion exacerbated Ang II–induced 
TAA formation.131 This study, combined with studies using 
TGF-β receptor 2 genetically manipulated mice, provides evi-
dence for the importance of TGF-β–mediated mechanisms in 
the development of TAA.

In addition to components that are important for maintain-
ing the aortic wall structure and integrity, embryonic origins 
of smooth muscle cells determine their phenotypes and func-
tions. Embryonic origins of smooth muscle cells in the aorta 
are complex.132 A recent study provided evidence that smooth 
muscle cells in the ascending aortic region were derived from 
2 embryonic origins, with second heart field contributing to 
the outer layers and cardiac neural crest for the inner medial 
layers.133 This study adds new insights into understanding 
mechanisms of TAA from an evolutionary viewpoint.134

Besides critical roles of smooth muscle cells, inflamma-
tion is a feature of TAA. Contractile dysfunction in smooth 
muscle cells is present in aortas of patients with sporadic TAA 
and dissection and is associated with activation of NLRP3 
(nucleotide oligomerization domain–like receptor family, 
pyrin domain containing 3)-caspase-1 inflammasome.135 A 

recent study reported that NLRP3 or caspase-1 deficiency in 
mice significantly reduced Ang II–induced contractile protein 
degradation and aortic aneurysm formation in both thoracic 
and abdominal aortic regions.135

Abdominal Aortic Aneurysms
AAA is defined as pathological dilation of the abdominal 
aorta. Same as individuals afflicted with TAA, aortic rup-
ture is a fatal consequence of AAA.110,112,136,137 There are three 
commonly used mouse models to study AAA: perfusion of 
elastase into the infrarenal aorta,138 periaortic application of 
calcium chloride,139 or subcutaneous infusion of Ang II.70,140 
Modifications of these mouse models have also provided 
mechanistic insights. For example, coadministration of 
β-aminopropionitrile with Ang II,141,142 coadministration of 
TGF-β–neutralizing antibody with Ang II125 or administration 
of TGF-β–neutralizing antibody to mice with elastase-induced 
AAA,25 or application of calcium chloride with phosphate-
buffered saline onto the infrarenal aorta.143

Hypercholesterolemia augments Ang II–induced 
AAA.144,145 Therefore, Apoe−/− mice and low-density lipopro-
tein receptor–deficient mice are the 2 commonly used mouse 
models for Ang II–induced AAA studies.70,71,140 Although Ang 
II–infused mouse model has become a popular model to study 
AAA, breeding mice to a hypercholesterolemic background 
has hampered its more broad use.146 A recent study provided 
a rapid approach for increasing plasma cholesterol and Ang 
II–induced AAA incidence in C57BL/6 mice by applying a 
gain-of-function mutation of mouse PCSK9 protein using an 
adeno-associated viral method,147 which was also frequently 
used in atherosclerosis studies.148–150

Inflammation and extracellular matrix disruption and 
remodeling are important features of Ang II–induced 
AAA.112,145,151–154 Publications describing Ang II–induced 
AAA were featured in a recent ATVB Highlights,112 includ-
ing molecules that promote inflammation involving not only 
macrophages but also T and B lymphocytes,155–164 oxidative 
stress,165–167 and many other factors.112,145,168

In addition to extensive studies to define molecular 
mechanisms of AAA, some recent studies have emphasized 
the importance of studying sex differences.29,169–171 One study 
used the 4 core mouse model to generate gonadal male mice 
with XX or XY chromosomes. This study found that gonadal 
male mice with an XY chromosome complement exhibited 
diffuse aortic aneurysms, whereas XX chromosome comple-
ment exhibited focal aortic dilation. Orchiectomy attenuated 
Ang II–induced TAA and AAA in male mice.172

Angiotensin II Receptors
AT1a Receptor
AT1a receptor, a subtype of Ang II receptor, is the major 
receptor for Ang II–mediated cardiovascular functions in 
mice. Global deficiency of AT1a receptor ablates atheroscle-
rosis and attenuates Ang II–induced TAA and AAA.5,14,39,173,174 
This effect was not attributed to the presence of AT1a receptor 
on leukocytes39,174 or smooth muscle cells,14,122 whereas endo-
thelial cell–specific depletion of AT1a receptor had modest 
protective effects on Ang II–induced TAA but not AAA and 
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atherosclerosis.14,122 In agreement with these previous studies, 
using a well-established Marfan mouse model with genetic 
disruption of fibrillin-1 expression, Galatioto et al175 found 
that endothelial cell–specific deletion, but not smooth muscle 
cell–specific deficiency, of AT1a receptor modestly attenuated 
TAA development and related aortic rupture.

AT2 Receptor
Although AT2 receptor remains low in most tissues and organs 
postnatally, many studies have reported increased presence of 
AT2 receptor under certain pathophysiological conditions as 
reviewed in a recent article.176 Genetic deletion of AT2 recep-
tor in mice had no effects on general health and develop-
ment177 but promoted angiogenesis within ischemic muscle.178 
A diabetic mouse model with a spontaneous mutation in the 
insulin 2 gene (Ins2+/C96Y) was bred with AT2 receptor–
deficient mouse model. Hindlimb ischemia was induced by 
ligating femoral artery. Depletion of AT2 receptor augmented 
blood flow reperfusion and collateral vessel formation that 
were associated with SH2 domain-containing phosphatase 1 
activity and vascular endothelial growth factor action.179

Alternative Pathways
This section introduces an enzyme, a bioactive peptide, and 
a receptor beyond the classic renin–angiotensin components.

Angiotensin-Converting Enzyme 2
ACE2 prevents atherosclerosis and aortic aneurysms, as dem-
onstrated by deficiency of ACE2 accelerating atherosclerosis 
and Ang II–induced AAA in hypercholesterolemic mice.180,181 
Recently, Moran et al182 reported that ACE2 deficiency in 
Apoe−/− mice augmented incidence of AAA and aortic rup-
ture rate. Of note, deficiency of ACE2 also led to spontaneous 
AAA formation in the absence of Ang II. Resveratrol, a class 
of compounds produced by many plants, increased ACE2 and 
inhibited AAA growth in Ang II–infused mice.

Angiotensin (1–7) and Mas1
Recent studies have implicated that Ang(1–7) has protective 
effects on multiple cardiovascular functions through its inter-
action with Mas1.183 Many studies reported that Ang(1–7)/
Mas1-mediated actions counteracted actions of Ang II.180,184–

186 For example, Ang(1–7) had vasodilation effect that was 
mediated by Mas1, whereas Ang II had potent vasoconstric-
tion effect.187 One study reported that Ang(1–7)-induced 
NO-mediated vasodilation and increased telomerase activity 
of endothelial cells.187 In another study, low dose of Ang(1–7) 
increased angiogenesis and vasodilation through its interac-
tion with Mas1, which had equivalent effects as same low dose 
of Ang II. Among potential mechanisms, ERK1/2 was essen-
tial for Ang(1–7)-induced angiogenesis and vasodilation.186,188

Summary
Although the major renin-angiotensin members were discov-
ered more than a half century ago, this system still attracts a 
large number of research work in different fields. This impli-
cates the importance of this hormonal system in physiological 
and pathophysiological functions but also notes that there are 

many unknowns and conundrums of this system in our knowl-
edge that require more extensive research work.
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