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Multiobjective evolutionary algorithms (MOEAs) with higher population diversity have been extensively presented in literature
studies and shown great potential in the approximate Pareto front (PF). Especially, in the recent development of MOEAs, the
reference line method is increasingly favored due to its diversity enhancement nature and auxiliary selection mechanism based on
the uniformly distributed reference line. However, the existing reference line method ignores the nadir point and consequently
causes the Pareto incompatibility problem, which makes the algorithm convergence worse. To address this issue, a multiobjective
evolutionary algorithm based on the adaptive cross-reference line method, called MOEA-CRL, is proposed under the framework
of the indicator-based MOEAs. Based on the dominant penalty distance (DPD) indicator, the cross-reference line method can not
only solve the Pareto incompatibility problem but also enhance the population diversity on the convex PF and improve the
performances of MOEA-CRL for irregular PF. In addition, the MOEA-CRL adjusts the distribution of the cross-reference lines
directly defined by the DPD indicator according to the contributing solutions. Therefore, the adaptation of cross-reference lines
will not be affected by the population size and the uniform distribution of cross-reference lines can be maintained. The MOEA-
CRL is examined and compared with other MOEAs on several benchmark problems. The experimental results show that the
MOEA-CRL is superior to several advanced MOEAs, especially on the convex PF. The MOEA-CRL exhibits the flexibility in
population size setting and the great versatility in various multiobjective optimization problems (MOPs) and many-objective
optimization problems (MaOPs).

1. Introduction

Multiobjective optimization problems (MOPs), which have
more than one conflicting objective to be optimized, can be
defined as

minimize F(x) � f1(x), f2(x), . . . , fm(x) ,

subject to x ∈ Ω,
(1)

where F⊂Rm is the objective vector, m is the number of
objectives, Rm is the objective space, x� (x1, . . ., xn)T ∈Rn is
the candidate solution, and Ω � 

n
i�1[ai, bi]⊆Rn is the n-

dimensional feasible search space. F: Ω⟶ Rm defines m
real-valued objective functions and indicates a mapping

which is from the feasible search space to the objective space.
Let x1, x2 ∈Ω come to two solutions in the feasible search
space. Next, if and only if fi (x1)≤ fi (x2) for each i� 1, 2, . . .,
m and fi (x1)≠ fi (x2) for ∃ j ∈ {1, 2, . . .,m}, this shows that x1
dominates x2. If there is no any x⊂Ω which makes F (x)
dominates F (x∗), x∗ will be called a global Pareto-optimal
solution. The number of Pareto-optimal solutions is gen-
erally more than one in a multiobjective optimization
problem, and the set of the Pareto-optimal solutions is
named as the Pareto-optimal set. The Pareto-optimal set
reflects the geometry of the Pareto front (PF) [1].

In recent years, many multiobjective evolutionary al-
gorithms (MOEAs) have been proposed for solving
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multiobjective optimization problems in various fields [2–5].
In general, MOEAs have two main tasks: (1) ensuring the
convergence pressure to drive populations to PF and (2)
enhancing the diversity to spread populations evenly to PF
[6]. If the two tasks can be accomplished well together, the
approximation of PF will be better.

Although the existing MOEAs have been proved to be
effective in many practical applications [7], they still have
troubles in some complex multiobjective optimizations. The
imbalance of convergence and diversity are the major issues
since most MOEAs are designed on the principle of “con-
vergence first and diversity second.” For instance, SPEA2 [8]
and NSGA-II [9] reach the convergence based on non-
dominated relations, and the niche technology is used to
decrease the crowding population for higher diversity.
Meanwhile, the MOEAs based on decomposition such as
MOEA/D [10] also choose the nondominated solutions
firstly, instead of protecting the solutions with higher di-
versity in priority.

The imbalance of convergence and diversity makes it
difficult to provide searches on different levels in the ob-
jective space. Most parts of the objective space are easier to
be searched than the rest. If the nondominated solutions are
not uniformly distributed, the candidate solutions may be
remained far away from each other and the population may
be in danger of losing diversity. In particular, it is difficult to
generate feasible solutions in the untapped objective space
by genetic factors since the remote parents cannot generate
good offspring solutions efficiently in multiobjective opti-
mization [11, 12]. In fact, some dominant feasible solutions
can enhance the population diversity and use them ap-
propriately can increase the pressure of choice in high-di-
mensional MOPs. In this sense, the diversity is as important
as the convergence and should be emphasized in multi-
objective optimization.Therefore, the studies on the method
of diversity enhancement have been conducted to ensure a
good approximation of PF. Some methods of diversity
enhancement are used in the following three main types of
EMO algorithms.

The first type of MOEAs is established on the funda-
mentals of Pareto dominance theory. The MOEAs selecting
the population of next generation by Pareto dominance
theory prefer nondominated individuals. The Pareto dom-
inance theory itself does not promote the preservation of
individuals with the diversity in the objective space, so the
crowded strategy, niche theory, and other auxiliary strategies
for diversity enhancement are proposed in order to gain the
expansion of the objective space and enhance diversity. In
NSGA-II, the diversity is improved by the crowded distance
[9], and the crowded strategy has been extended to multiple
strategies [13]. Corne et al. [14] proposed PESA-II based on
regional selection strategies to improve diversity. Horn et al.
[15] proposed NPGA based on dynamic niche strategy to
enhance diversity.

The second type of MOEAs is built on the concept of
decomposition. In MOEA/D [16], each candidate solution is
linked with a subproblem and every subproblem is opti-
mized by the information from its neighbors. Most of the
decomposition-based MOEAs enhance the diversity by a

uniform distribution of weight. There are two main forms of
decomposition-based MOEAs. One is to decompose the
initial MOPs into a series of single-objective optimization
problems (SOPs), such as MOGLS [17], CMOGA [18],
MSOPS-II [19], MOEA/D [16], and RVEA [20]. The other is
to transform the initial MOPs into multiple more simplified
MOPs through the way of dividing the objective space into
multiple subspaces, such as MOEA/D-M2M [21], IM-
MOEA [10], NSGA-III [11], and SPEA/R [22]. It is worth
noting that the uniformity of weight distribution can en-
hance the diversity when a uniformly distributed weighting
strategy is adopted, but the strategy may be failed in some
special PFs. Therefore, the method of adaptive weights have
been proposed in [23] to improve diversity in some special
PFs. The method of adaptive weights have also been used in
NSGA-III [11] to enhance the diversity.

The third category is known as the indicator-based
MOEAs. The indicator-based theory guides the selection
process by integrating the convergence and diversity into a
single indicator. The advantage comparison method pro-
posed by Sun et al. [24] enhances the diversity of evolu-
tionary algorithms based on an inverted generational
distance (IGD) indicator with the rank value and selection
mechanism. Liu et al. [25] proposed a comparison algorithm
that enhances the diversity of evolutionary algorithms based
on the GD indicator. The comparison algorithm is not af-
fected by the comparison order of individuals, so those
solutions with good diversity can get more attention. Re-
cently, AVREA [26] has adopted the adaptive reference line
method and the achievement scalarizing function (ASF) as a/
the secondary selection indicator, which efficiently enhance
the diversity of AVREA.

In addition, many reference line methods have been
widely used to enhance the diversity of MOEAs in recent
years. For instance, MOEAs based on the nondominated
sorting method (NSGA-III [11]) use a group of reference
lines and choose those solutions being closer to the reference
lines to enhance the diversity. Yuan et al. [27] offered an
MOEA based on the reference line method that adopted a
diversity enhancement mechanism similar to NSGA-III by
measuring the distance between the origin and the pro-
jection of the candidate solution on the reference line.
Furthermore, a method (RVEA) was proposed in [20] to
adaptively modify the reference vector position based on the
scale of the objective function to balance the diversity and
the convergence. Recently, Sun et al. [28] proposed a MOEA
based on reference lines. By the reference line method, the
poles located on the coordinate axis in the objective space
can be detected in order to construct a hyperplane. In
particular, the boundary reference line is generated by
linking the origin with the reference points on the axis,
which improves the distribution of candidate solutions in
the objective space.The boundary reference line is combined
with the internal reference line, which divides the objective
space into multiple subspaces. Subsequently, the selection
for candidate solutions by reference lines enhances the di-
versity of the proposed algorithm. Due to the nature of the
reference line method for the diversity enhancement and the
auxiliary selection mechanism based on the uniformly
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distributed reference line, the reference line method is in-
creasingly favored by MOEAs.

In general, the reference line method is constructed by
ideal points and reference points. However, the existing
reference line methods seldom take into account the in-
fluence of the nadir point although the objective space of
each generation is often limited between the ideal point and
the nadir point. Therefore, the influence of the nadir point
cannot be ignored. In addition, when dealing with the
problems with convex PFs, the reference line method can
cause Pareto incompatibility problems, which makes the
convergence of the algorithm worse. Considering the ex-
citations and the defects of reference line, we propose the
method based on adaptive cross-reference line. Compared to
the existing reference line method, the main new contri-
butions of this work can be summarized as follows:

(1) The concept of the cross-reference line is proposed,
and a new MOEA called MOEA-CRL is proposed. It
inherits the advantages of the ideal point reference
line in convergence, adding the nadir point reference
line to enhance diversity. The ideal point reference
line is combined with the nadir point reference line
to divide the objective space into multiple subspaces,
and the unique contributing solution preserved in
each subspace to ensure the uniform distribution of
the Pareto solution set. Compared with the existing
reference line methods, the proposed cross-reference
line method performs better in terms of diversity.

(2) Based on the cross-reference line, a dominant
penalty distance (DPD) is proposed to solve the
Pareto incompatibility problem caused by the ref-
erence line method. Compared with the existing
reference line indicators, the DPD indicator com-
bines the properties of the ideal point reference line
and the nadir point reference line, which not only
solves the Pareto incompatibility problem but also
improves the performance of the MOEA-CRL on the
convex PF.

(3) The cross-reference line adaptation method is pro-
posed to improve the performance of MOEA-CRL
for irregular PFs. The cross-reference line adaptation
method not only achieves the uniform distribution
by uniformly sampling points on the unit hyperplane
but also adaptively adjusts the distribution of the
cross-reference lines according to the contributing
solutions. Compared with the existing reference line
adaptive method, it adjusts the distribution of the
cross-reference lines according to the contributing
solutions directly defined by the DPD indicator, so
the adaptation of the cross-reference line can be not
affected by the population size, and the uniform
distribution of the cross-reference lines can be
maintained.

The rest of this paper is organized as follows. In Section
2, the PBI reference line method is analyzed in detail, and the
Pareto incompatibility problem is raised. In Section 3, new
reference line methods and evaluation indicators are

explored to avoid the Pareto problem on the premise of fully
considering the complementarity between the nadir point
and the ideal point. In Section 4, the details of the proposed
MOEA-CRL are mainly described. The empirical results of
MOEA-CRL compared with existing MOEAs are given in
Section 5. In the end, the conclusions and the future work
are set out in Section 6.

2. Related Work

2.1. Reference Method Based on MOEAs. In the MOEAs
based on decomposition, the existing reference line method
is more advanced compared with the reference point method
[29]. Especially, for the convex PF, the reference line method
can effectively enhance the diversity of candidate solutions
close to the coordinate axes. As the two examples given,
Figure 1 shows the objective space of the two-objective
optimization problems with the concave PF and the convex
PF. Both examples contain five candidate solutions located
on the convex PF and the concave PF, and three of them
closest to the three reference points are considered as
contributing solutions. If a candidate solution is closest to a
reference point and the reference point is also closest to a
candidate solution, the candidate solution is defined as a con-
tributing solution of the reference point. It should be noted that,
as shown in Figure 1(b), two pole-solutions close to the coor-
dinate axis cannot be regarded as the contributing solutions.

In order to improve the evaluation limitations of the
reference point method, the reference point-based method
has been developed into various reference line methods [29].
The distance between a candidate solution and a reference
point is replaced by the distance between a candidate so-
lution and a reference line. Therefore, a candidate solutions
close to the coordinate axis can be evaluated fairly by the
reference line method. As shown in Figure 2, the reference
line is generated based on each reference point and the ideal
point Z∗ separately. The distance between the candidate
solution p and the reference line can be expressed as

dis � F(p)sin Z
∗
r

���→
, F(p) , (2)

where F(p) denotes the Euclidean distance between the

candidate solution and the ideal point and Z
∗
r

���→
denotes the

vector from the ideal point to the reference point.

2.2. PBI Reference Line Method Based on Ideal Points. The
aggregation function is used as a fitness value function that
weighs the merits of an individual. The aggregation function
is usually a function of the individual x in the objective space
under the condition of a given weight. The optimization of
each subproblem is regarded as the optimization of the
aggregation function. The PBI aggregation function is a
variant of the method based on the intersection of
boundaries, which aims to find the intersection point be-
tween the Pareto front and a set of lines [30]. Studies have
shown that PBI aggregation functions with appropriate
penalty parameter values can generate more uniform can-
didate solution sets, but the performance of PBI highly
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depends on the setting of penalty parameters that control the
balance between convergence and diversity [31].

The aggregate optimization equation of the PBI function
gpbi is [32]

Minimize gpbi(x | λ) � d1 + θd2, (3)

where

d1 �
(f(x) − z)Tλ

λ
,

d2 � f(x) − z − d1
λ
λ

 ,

(4)

where f (x) is a candidate solution, z is the ideal point, and λ
is the vector of the reference line.

PBI also uses the obtained ideal point z as the criterion to
decompose the objective space. θ is the parameter of PBI,
and its range is θ≥ 0. Figure 3 shows the d1 and d2 of the

solution x of a weight vector λ� (0.5, 0.5)T in the two-di-
mensional objective space. In the PBI method, a candidate
solution with a small d1 is first considered as a better
candidate solution close to the Pareto front. In addition, the
distance d2 from the weight vector λ is considered. Finally,
gpbi is calculated by adding the value of d2 multiplied by θ to
d1. In summary, a candidate solution with a small d1 and d2 is
considered as a better candidate solution. The balance be-
tween d1 and d2 in gpbi is controlled by the parameter θ.
Therefore, the PBI method evolves a candidate solution
toward z by minimizing gpbi.

2.3. Pareto Incompatibility. The Pareto incompatibility
problem means that the individual’s reference line evalua-
tion results may face conflicts with the results of the non-
dominated relationship during the iteration process. The
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Candidate solutions
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(b)

Figure 1: Illustration of the example containing 5 candidate solutions which are on a concave PF and a convex PF. (a) Concave PF.
(b) Convex PF.
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Figure 2: Reference line based on ideal points.
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Figure 3: PBI reference line method [32].
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reference line method of the PBI aggregation function can
effectively improve the diversity of candidate solutions near
the coordinate axis in convex PF by increasing the value of
the parameter θ so that the influence of d2 is much larger
than the influence of d1. This method not only maintains the
diversity of candidate solutions for convex PF close to the
coordinate axis, but also quickly obtains the candidate so-
lution p with the smallest gpbi. However, the reference line
method using only ideal points causes Pareto incompati-
bility. Figure 4 shows an example to illustrate the problem of
Pareto incompatibility.

It can be clearly seen from Figure 4 that this simple
example is a two-objective minimization problem, where the
reference point set is {(2, 4), (5, 2)}, and the candidate so-
lution set A� {(3, 5), (8, 4)} and the candidate solution set
B� {(3, 6), (10, 4)}. The candidate solution set B� {(3, 6), (10,
4)} is the smallest distance d2 from the reference line, so the
candidate solution set B is the best. However, according to
Pareto dominance theory, (3, 5) in solution set A dominates
(3, 6) in candidate solution set B, and (8, 4) in solution set A
dominates (10, 4), so candidate solution set A is better than
candidate solution set B. Therefore, the PBI aggregate
function may cause the judgment of the merits of the so-
lution set to be contrary to Pareto dominance theory.

2.4. Complementarity of the Nadir Point and the Ideal Point.
The setting of the reference point in the aggregation function
plays a key role in the performance of MOEA/D. In fact,
different types of reference points may have different effects
on the exploration behavior of MOEA/D. Most MOEA/D
improvements use ideal points as reference points. As
mentioned in [33], when diversity is easy to maintain, the
method using only ideal points will be effective, and only
using ideal points is more helpful to promote candidate
solutions to approximate PF. In [34], MOEA/D uses ideal
point and a set of reference points evenly distributed along
the convex PF to ensure good population diversity. In
[32, 35], MOEA/D attempts to introduce the nadir point as a
reference point. In [32], the reverse PBI function is pro-
posed, and the nadir point is used to solve the reverse PBI to
maximize the value of the aggregate function, which im-
proves the search performance of MOEA/D. In [35], if the
candidate solutions obtained in the boundary area after
several generations are less than the PF intermediate area,
the reference point will change from the ideal point to the
nadir point. Recently, Wang et al. [36] studied the effect of
the difference between the ideal point and the nadir point on
the performance of the algorithm and showed that they can
complement each other.

AsWang et al. [36] pointed out, the use of the ideal point
z∗ and the nadir point znad in the Chebyshev function has an
important influence on the distribution of the optimal so-
lution on the PF. In particular, in the case where the ideal
point z∗ is used as a reference point, the optimal solutions of
the subproblems of convex PF and concave PF are shown in
Figures 5(a) and 5(b), respectively. It can be clearly seen that
the optimal solution density of the central part of the convex
PF is much larger than that of the concave PF, but it is

opposite near the PF boundary. Compared with the ideal
point z∗, if the nadir point znad is used as a reference point,
the distribution directions of the optimal solutions on these
PFs are reversed, as shown in Figures 5(c) and 5(d), re-
spectively. Since the final population distribution obtained
by using the ideal point z∗ and the nadir point znad is
complementary, using them as reference points at the same
time may improve their performance, making them ap-
proximate convex PF and concave PF. In addition, if the
nadir point znad is not used as a reference point, youmay face
greater diversity risks when it is not easy to maintain
diversity.

3. The Proposed Cross-Reference Line Method

3.1. Cross-Reference LineMethod. The cross-reference line is
formed by matching the ideal point reference line and the
nadir point reference line one by one. As shown in Figure 6,
based on the nadir point and each reference point, the nadir
point reference line is constructed, and based on the ideal
point and each reference point, the ideal point reference line
is constructed. The ideal point reference line and the nadir
point reference line corresponding to each reference point
intersect at this reference point and form an angle area in the
feasible area. The boundary of the angle area is composed of
an ideal point reference line and a nadir point reference line
and the Pareto front edge being sandwiched. The candidate
solution approaches the Pareto front under the pressure of
convergence. With each generation of calculation, the
candidate solution tends to move into the included angle
area, which is called the attraction area.

It is worth noting that if a reference line is defined as the
line between the ideal point and the nadir point, the distance
between the candidate solution on the reference line and the
ideal point reference line and the nadir point reference line is
zero. Therefore, it will have an absolute advantage and break
the fairness of candidate evaluation. In order to solve this
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Figure 4: Example of Pareto incompatibility.
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problem, the connection between the ideal point and the
nadir point is defined as the penalty line of the cross-ref-
erence line, and a certain additional penalty value is added to
the candidate solutions that fall on the connection line.
Therefore, the candidate solution on the penalty line can
only be considered as a contributing solution to other cross-
reference lines near the penalty line.

3.2. DPD Evaluation Indicator Based on Cross-Reference Line
Method. The DPD evaluation indicator of the cross-refer-
ence line method is based on the ideal point reference line
distance d∗ and the nadir point reference line distance dnad.
Among them, the equation of the ideal point reference line
distance d∗ and the nadir point reference line distance dnad is
as follows:

d∗ � F(p)sin Z
∗
r

���→
, tFn(p) ,

dnad � F(p)sin Z
nad

r
�����→

, tFn(p) ,

(5)

where F(p) represents the Euclidean distance from the ideal

point or reference point to the candidate solution p, Z
∗
r

���→

represents the vector from the ideal point to the reference

point, Z
nad

r
�����→

represents the nadir reference point vector, and
F(p) represents the vector from the ideal point or the nadir
point to the candidate solution p.

Based on the cross-reference line method, the dominant
penalty distance (DPD) indicator is defined as the maximum
value of the ideal point reference line distance (d∗) and the
nadir point reference line weighted distance (dnad). The
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Figure 5: Optimal solution distribution on PF when ideal point z∗ and nadir point znad are used as reference points.
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weighting factor μ is used to verify the effectiveness, ensure
effective enhancement of diversity, and improve the per-
formance of MOEA-CRL. The equation of the cross-refer-
ence line DPD indicator of the nondominated candidate
solution p is as follows:

DPDp � max d∗, μdnad( , (6)

where d∗ is the distance from a candidate solution to the
ideal point reference line, μ is the weight coefficient, and dnad
is the distance from a candidate solution to the nadir point
reference line.

Taking the weighting factor μ� 1 as an example, the DPD
indicator is dealing with different types of PF problems, as
shown in Figure 7. According to (6), the angle area between the
boundary line of μ� 1 and the vertical line of the nadir point
reference line is dominated by the distance d∗ of the nadir point
reference line. The angle area between the boundary line of
μ� 1 and the vertical line of the ideal point reference line is
dominated by the ideal point reference line distance dnad.

The basic idea of the DPD indicator proposed in this
paper is to combine the nadir point and the ideal point and
use the cross-reference line as the evaluation reference. This
method can not only effectively improve the diversity of
candidate solutions near the coordinate axis in convex PF
but also ensure the convergence under Pareto’s dominance
theory. As shown in Figure 8, the evaluation method of the
DPD indicator based on cross-reference lines is shown.
According to the definition of the contributing solution, the
nondominated candidate solutions with the smallest DPDp
value in Figure 8 are the contributing solutions.This idea can
be regarded as the combination of the Pareto theory of
advantages and the distance evaluation between the cross-
reference line and the candidate solution.

3.3. Convergence andDiversity of the Cross-ReferenceMethod.
The cross-reference line method enables MOEAs to ensure
good convergence and diversity when dealing with various

types of PF problems. As shown in Figure 9, taking weight
coefficient μ� 1 as examples, multiple sets of examples
showing the two-objective minimization problem of con-
cave PF, convex PF, and linear PF are shown. If there is a
candidate solution corresponding to a reference point with
the smallest DPD value and the candidate solution corre-
sponding to the reference point has the smallest DPD value,
then this candidate solution is referred to as the reference
point contributing solution. In this paper, if a candidate
solution p has the smallest DPDp to a cross-reference line
and the cross-reference line also has the smallest DPDp to the
candidate solution p, the candidate solution is defined as a
contributing solution of the cross-reference line. According
to DPD evaluation indicator equation (6) and the uniformly
distributed reference point set, each of reference points has
the unique contributing solution from all candidate solu-
tions. Therefore, the contributing solution of a reference
point will tend to be close to the boundary of μ� 1 as the
iterative search proceeds. In short, the contributing solution
tends to be close to both the nadir point reference line and
the ideal point reference line.

As shown in Figure 10, taking weight coefficient μ� 1 as
examples, multiple sets of examples showing the two-ob-
jective minimization problem of concave PF, convex PF, and
linear PF are shown. Each reference point in the reference
point set matches the nadir point and the ideal point, so that
the feasible search area is divided into multiple subspaces.
According to DPD evaluation indicator equation (6) and the
uniformly distributed reference point set, each of subspaces
has unique contributing solution, thus ensuring the diversity
and uniform distribution of the cross-reference line method.

The cross-reference line method is an improvement to
the reference line method, inheriting the advantages of the
ideal point reference line in terms of convergence and
adding the nadir point reference line to enhance diversity.
The cross-reference line is the combination of the ideal point
reference line and the nadir point reference line to divide the
objective space into multiple subspaces, and unique
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Figure 6: The cross-reference line method.
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Figure 7: Cross-reference line DPD indicator under different PF when μ� 1.
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candidate solution with the best convergence is kept in each
subspace to ensure uniform distribution of the Pareto so-
lution set.

3.4. Convergence and Diversity of Cross-Reference Method.
As shown in Figure 11, the weighting factor μ� 1 is used as
an example, and other parameters are the same as those in
Figure 4. The distance d∗ of the candidate solution (3, 6) to
the ideal point reference line is smaller than the distance dnad
to the nadir point reference line, so the DPD indicator of
(3, 6) is dominated by dnad. The distance d∗ from the
candidate solution (3, 5) to the ideal point reference line is
greater than the distance dnad from the nadir point reference
line, so the DPD indicator of (3, 5) is dominated by d∗. It can
be calculated that the DPD value of (3, 6) is greater than (3, 5),
so (3, 5) in the candidate solution set A is the best. (8, 4) and
(10, 4) can be compared in the same way. In summary, it can
be seen that candidate solution set A is superior to candidate
solution set B. According to the dominance theory, (3, 5) in
solution setA dominates (3, 6) in candidate solution set B, and
(8, 4) in solution set A dominates (10, 4) in candidate solution
set B. Therefore, candidate solution set A is superior to
candidate solution set B. Therefore, the judgment of the DPD
evaluation indicator on themerits of the candidate solution set
is the same as Pareto’s dominance theory.

According to DPD evaluation indicator equation (6) and
the uniformly distributed reference point set, each of sub-
spaces has unique contributing solution and the contrib-
uting solutions of each subspace are jointly influenced by the

ideal point reference line and the nadir point reference line.
Therefore, Pareto incompatibility can be effectively avoided.
The cross-reference line method not only solves the Pareto
incompatibility but also can quickly obtain the non-
dominated candidate solution p by calculating the DPDp
indicator.

4. The Proposed Algorithm

In this section, we first describe the overall framework of the
proposed MOEA-CRL in detail. Then, the case study on the
implementation of the adaptive cross-reference line method
is demonstrated in detail. Finally, the environment selection
based on the DPD indicator is illustrated in detail, and the
differences on environment selection between MOEA-CRL
and other MOEAs are analyzed.

4.1. The General Framework of MOEA-CRL. In this section,
the general framework of the MOEA-CRL will be elaborated
through employing the cross-reference line method and the
DPD indicator on the existing fundamentals of MOEAs.The
cross-reference lines are formed by the intersection of the
ideal point reference lines and the nadir point reference
lines. As shown in Algorithm 1, the computing flow is di-
vided into two steps. The first step is to initialize, and the
second is to optimize.

The initialization provides preparation for MOEA-CRL.
Firstly, a random initialized population is generated
according to the initial parameters, which include the
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Figure 9: Convergence and diversity of the cross-reference line method under different PF when μ� 1.
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number of objectives M, the variable number D, the pop-
ulation size N, the maximum evolution generations, and so
on. Secondly, the initial population is sorted according to the
efficient nondominated sort (ENS) [37], and the non-
dominated solution set is copied to the initial archive A.
Thirdly, the hyperplane is built based on initial archiveA and
the points on the hyperplane are uniformly sampled.
Therefore, the uniform distribution of the initial reference
point are insured.

The optimization is the core of the MOEA-CRL. The
mating pool is established according to the tournament
selection strategy. The DPD is used as an evaluation indi-
cator to calculate the fitness value fitnessp of each candidate
solution p to select individuals in the mating pool. The
equation of distribution fitnessp can be expressed as

fitnessp � DPDmax − DPD
p 

P, R′
 , (7)

where DPDmax represents the maximum value of DPD in
the population, R′ represents the updated reference point
set, p represents a candidate solution, and P represents the
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Figure 10: Cross-reference line method under different PF when μ� 1.
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total population. The establishment of the mating pool
and the individual selection process based on the cross-
reference line method and DPD indicator are operated in
detail in Algorithm 2. It can be divided into two steps. In
the first step, each individual is normalized and the fitnessp
of each individual is calculated separately. In the second
step, the individual selection is employed by the tour-
nament selection strategy, which can randomly select two
candidate solutions for comparison and then retain the
individual with the larger fitnessp. In general, the mating
pool with the number of N/2 is obtained, and a new
population O with the number of N is obtained after the
mutation operation.

4.2. The Cross-Reference Line Adaptation. The adaptive
cross-reference line method is a key step in the optimization.
As shown in Algorithm 3, the method contains six opera-
tions: (1) deleting the duplicate candidate solutions (the
absolute error of each objective value of the two candidate
solutions is less than the given precision ε, which is defined
as the repeated candidate solution. In the paper, the pre-
cision is ε� 1e− 6.) and dominant solutions in the archive A,
(2) updating the ideal points and nadir points, (3) nor-
malizing the archive A and the reference point R and cal-
culating the DPD indicator for each candidate solution, (4)
calculating the contributing solution set and effective ref-
erence points, (5) updating the archive A, and (6) updating
the reference point R′ of the cross-reference lines to update
the cross-reference lines.

In the second step of Algorithm 3, the update of the ideal
point and the nadir point depends on the archive A for each
generation, which provides the support for the normaliza-
tion of different objective functions and calculation of the
DPD indicator. In the third step of Algorithm 3, the archive
A and the reference points are normalized to the same
interval M

i�1[0, znad
i − z∗i ], so the influence of the difference

objective functions is eliminated, which is convenient to
compare. In addition, the calculation of the reference line
distance according to the DPD indicator is shown in Al-
gorithm 4, and the specific equation is shown (6).

In the fourth step of Algorithm 3, the contributing
solutions will be calculated, and finally the contributing
solution set is obtained. The contributing solution must
satisfy that the solution p has the smallest DPDp for a cross-
reference line. Through the calculation of the DPD evalu-
ation indicator, all contributing solutions are copied from
Acon to the new archive A′, and the remaining space of A′ is
filled up by candidate solutions from A\A′ one by one until
A′ reaches its maximal size of min (|R|, |A|), where at each
time, the candidate solution p having the maximum value of
minp1∈A\A;p2∈A′ arccos (f (p1), f (p2)) in A\A′ is copied to A′,
with arccos (f (p1), f (p2)) indicating the acute angle between
p1 and p2 in objective space. In this way, the archive always
contains a number of nondominated solutions with good
distribution. It is worth noting that these nondominated
solutions with good distribution, which are noncontributing
and selected into A′, will serve as supplement for subsequent
reference point updates.

The fifth and sixth steps of Algorithm 3 are the key of the
cross-reference line adaptation method. Firstly, the valid
reference point set Rvalid is obtained. The valid reference
points must satisfy two conditions at the same time: (1) the
solution p has the smallest DPDp for the cross-reference line
and (2) the cross-reference line with the solution p has the
smallest DPDp. The calculation of the DPD indicator will be
affected by the distance between the candidate solution p to
the ideal point reference line and the nadir point reference
line at the same time and is calculated according to (6).
Subsequently, the valid reference point set Rvalid is copied
into the reference point set R′. Finally, the remainder of R′ is
complemented by the candidate solutions in the new archive
A′ until |R′|�min (|R|, |A′|) is satisfied. The complementary
strategy is to calculate the maximum value of minr∈R′ arccos
(f (p), r), and the remaining part of R′ is the candidate
solutions in A′ corresponding to these maximum values.

Figure 12 shows the adaptive update process of the
reference point set R and the archive A. Firstly, four con-
tributing solutions are obtained by calculating the DPD
indicator of the candidate solutions to each reference point
as indicated in Figure 12(a). Secondly, the four contributing
solutions and the other two noncontributing solutions are

Input: N (population size), NR (number of reference point and archive size), M (number of objective)
Output: P (final population)
(1) P⟵ Ramdom Initialize (N, M);
(2) R⟵ Uniform Reference Point (NR, M);
(3) A⟵ P;
(4) [Z∗, Znad]⟵ A;
(5) R′ ⟵ R;
(6) while termination condition not fulfilled
(7) P′ ⟵ Mating Selection (P, R′, Z∗, Znad);
(8) O⟵ Variation (P′, N);
(9) [A, R′, Z∗, Znad]⟵ Update RefLines (A∪O, R, Z∗, Znad);
(10) P⟵ Environment Selection (P∪O, R′, N, M, Z∗, Znad);
(11) end
(12) return P;

ALGORITHM 1: General framework of MOEA-CRL.

Computational Intelligence and Neuroscience 11



copied into the new archive A′ as illustrated in Figure 12(b),
where the two noncontributing solutions are nondominated
solutions with good distribution and elected into A′

according to the maximum value of minp1∈A\A; p2∈A′ arccos (f
(p1), f (p2)) in A\A′. Thirdly, the cross-reference lines which
the contributing solution have the smallest DPD for are

Input: R (set of initial reference points), A (Initial archive), Z∗ (ideal point), Znad (nadir point)
Output: R′ (set of new reference points), A′ (new archive), Z∗′ (new ideal point), Znad′ (new nadir point)
(1) Duplicate candidate solutions are deleted in A;
(2) Dominated candidate solutions are deleted in A;
(3) for i� 1 to M do
(4) if minp∈A fi (p)<Z∗
(5) Z∗′ ← minp∈A fi (p);
(6) else
(7) Z∗′←Z∗;
(8) end if
(9) if max p∈A fi (p)>Znad then
(10) Znad′←maxp∈A fi (p);
(11) else
(12) Znad′←Znad;
(13) end if
(14) f1i (p)← fi (p)−Z∗, ∀p ∈ A∪P;
(15) f2i (p)← fi (p)−Znad, ∀p ∈ A∪P;
(16) Ri←R∗i (Z

nad′ − Z
∗′);

(17) DPD (f (p), Ri) ←max (Caldis (fi (p), Ri), μ∗Caldis (fi (p), Ri));
(18) end for
(19) Acon← {p ∈A| ∃r ∈R: DPD (f (p), r)�minp∈A DPD (f (p), r)};
(20) A′←Acon;
(21) while |A′|<min (|R|, |A|) do
(22) p← argmaxp1∈A\A′ minp2∈A′ arccos (f (p1), f (p2))
(23) A′←A′ ∪ {p};
(24) end
(25) Rvalid← {r ∈R| ∃r ∈Acon: DPD (f (p), r)�minr′∈R DPD (f (p), r′)};
(26) R′←Rvalid;
(27) while |R′|<min (|R|, |A|) do
(28) p← argmaxp∈A′\R′ minr∈R′ arccos (f (p), r);
(29) p′← projection (p, hyperplane);
(30) R′←R′ ∪ {f (p′)};
(31) end
(32) return A′, R′, Z∗ and Znad;

ALGORITHM 3: Update RefLines (R, A, Z∗, and Znad).

Input: P (population), R′ (set of new reference points), Z∗ (ideal point), Znad (nadir point), M (number of objective)
Output: P′ (parents for variation)
(1) for i� 1 to M do
(2) fi(p)←fi(p)minq∈Pfi(q), ∀p ∈ P;
(3) end
(4) the fitness of each candidate solution is calculated;
(5) P′←ϕ;
(6) for i� 1 to |P| do
(7) Two candidate solutions p and q are selected randomly from P;
(8) if fitnessp> fitnessq then
(9) P′←P′∪ p ;
(10) else
(11) P′←P′∪ q ;
(12) end if
(13) end for
(14) return P′;

ALGORITHM 2: Mating selection (P, R′, Z∗, and Znad).
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Figure 12: Illustration of the process of reference point adaptation. (a) Based on the DPD indicator, the four candidate solutions all meet the
conditions of the contributing solution. (b)The four contributing solutions and two noncontributing solutions are copied to the new archive
A′. (c) The four reference points satisfying the conditions of the valid reference point are copied into the valid reference point set Rvalid.
(d) The four valid reference points from Rvalid and the projection points of the two candidate solutions in the new file A′ on the hyperplane
are copied to the set of reference points R′.

Input: P (population), R (set of reference points)
Output: Distance (perpendicular distance from the candidate solution to the reference line)
(1 )/∗O denotes the coordinate origin of P/
(2 )for i� 1 to |N| do
(3 ) for j� 1 to |R| do
(4 ) Distance (i, j)←F(pi)sin(Orj

��→
, tFn(pi));

(5 ) end for
(6 )end for
(7 )return Distance;

ALGORITHM 4: Caldis (P and R).
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copied into the valid reference point set Rvalid as shown in
Figure 12(c). Finally, the projection points of the two
candidate solutions in the new file A′ on the hyperplane and
four valid reference points are copied into R′ as shown in
Figure 12(d).

The adaptation of reference points not only ensure their
own uniformity but also reflect the geometric property of the
PF. Therefore, after updating the reference points, the cross-
reference lines can also adaptively update to improve the
performances of MOEA-CRL for irregular PF.

4.3. Environmental Selection Based on DPD Indicator. The
environment selection based on the DPD indicator presents
as shown in Algorithm 5. Being similar to most MOEAs,
MOEA-CRL uses an elite strategy to make environmental
choices for each generation. It is worth noting that after
normalization and ENS, the smallest k-th generation whose
individual number reaches N needs to be selected to enhance
diversity, and the DPD indicator is employed for the
selection.

Although the selection of most decomposition-based
evolutionary algorithms is guided by a set of reference
points, the reference lines in MOEA-CRL have different
purposes. In the MOEA-CRL, the cross-reference lines are
adopted to calculate the DPD indicator to evaluate candidate
solutions, but each candidate solution is associated with
unique reference point in the decomposition-based MOEAs.
Therefore, the population size of MOEA-CRL can be un-
equal to the number of reference points and is not neces-
sarily the same as the method proposed by Das and Dennis
[37].

In addition, MOEA-CRL adjusts the distribution of the
cross-reference lines according to the contributing solutions
directly defined by the DPD indicator, so the adaptation of
the cross-reference line can be not affected by population
size, and the uniform distribution of cross-reference lines
can be maintained. Regardless of the size of the population,
MOEA-CRL is always able to obtain uniformly distributed
candidate solutions, providing the flexibility for population
size settings. This conclusion is further evidenced by the
empirical results in Section 5.4.

5. Experimental Results and Analysis

In this section, the sensitivity analysis of the DPD weight
coefficients is firstly conducted. It not only proves the val-
idity of the cross-reference line method but also offers the
best weight coefficient μ of the MOEA-CRL. Subsequently,
the parameters are set in detail. In Section 5.3, the proposed
MOEA-CRL is compared with four existing popular
MOEAs, including MOEA/D [16], NSGA-III [11], RVEA
[20], and KnEA [38]. Finally, the sensitivity analysis of the
population size of the MOEA-CRL was performed.

In the experiment, 19 test problems from three widely
used test suites, including DTLZ1-DTLZ7 [39], WFG1-
WFG9 [40], MaF3, MaF11, and MaF15 [41], were used to
verify the algorithm in this paper. DTLZ1-DTLZ7 and
WFG1-WFG9 are the problems of the quantity of scalable

objectives, which are used to test the performances of the
MOEAs on various MOPs and MaOPs. MaF3, MaF11, and
MaF15 possess highly irregular “convex” PFs which can be
used to test the performances of algorithms on the highly
irregular “convex” PF.

5.1. Sensitivity Analysis ofWeight Coefficients of MOEA-CRL.
In the MOEA-CRL, the maximum of the ideal point ref-
erence line and the nadir point reference line is selected as
the DPD indicator, so the choice of the DPD weight coef-
ficient μ significantly affects the performance of the MOEA-
CRL. The ideal point reference line determines the con-
vergence performance of the MOEA-CRL, and the sup-
plement of the nadir point reference line not only solves the
Pareto incompatibility but also enhances diversity. The
weighting coefficient μ changes the fairness of the ideal point
reference line distance and the nadir point reference line
penalty distance, which will affect the convergence and
population diversity of MOEA-CRL. Therefore, the weight
coefficient μ is an important factor that determines the
performance of MOEA-CRL. A suitable μ is set to meet
requirements of the convergence and diversity, which helps
to enhance the flexibility of the MOEA-CRL for different
MOPs and MaOPs.

In this section, in order to study the effect of the weight
coefficient μ on the performance of MOEA-CRL, the dif-
ferent μ values are employed for performance comparison.
In the experiment, μ was set to 1e− 6, 0.25, 0.5, 0.75, 1, 2.5, 5,
and 7.5, respectively. μ was set to 1e− 6 to prove the role of
the nadir point reference line and further prove the effec-
tiveness of the cross-reference line method. In order to
research the effect of the weight coefficient μ on the proposed
MOEA-CRL, the test problems select three kinds of test
problems “linear,” “convex,” and “concave” according to the
feature of the PF, such as DTLZ1, DTLZ2, and MaF3. The
DTLZ1, DTLZ2, and MaF3 were tested with 3 objectives. In
addition, the other parameter settings ofMOEA-CRL are the
same as in Section 5.2. A box-plot of the DPD indicator
obtained for the eight μ cases among the three test problems
is indicated in Figure 13.

It can be seen from Figure 13 that the mean DPD with
the weight coefficient μ� 1e− 6 is larger than the mean DPD
with μ� 0.25. The results show that the complement of the
nadir point reference line even can increase the convergence
pressure, which can improve the convergence performance
of MOEA-CRL, in the case of a specific weight coefficient μ.
It can be seen from Figure 13(a) that the mean DPD does not
change significantly as the weight coefficient μ changes,
which can be found that the weight coefficient μ has little
influence for linear PF. As illustrated in Figure 13(b), the
mean DPD changes drastically. When the weight coefficient
μ> 0.25, the mean DPD increases as μ increases. It is par-
ticularly noteworthy that when μ> 1, the mean DPD in-
creases dramatically. This indicates that when the weighting
coefficient μ is so large that the convergence performance of
the MOEA-CRL is significantly deteriorates for concave PF.
The reason is that the population convergence pressure will
gradually decrease for concave PF as the weight coefficient μ
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increases. It is shown in Figure 13(c) that the mean DPD
with the weight coefficient μ� 1e− 6 is the biggest. This
indicates that the complement of the nadir point reference
line can enhance convergence for convex PF. It proves that it
is valid to employ the nadir point reference line in the cross-
reference line method as a strategy for evaluation. Fur-
thermore, Figure 13(c) illustrates that the convergence
performance of MOEA-CRL with the weight coefficient
μ� 0.25 is optimal compared with other cases. Therefore, in
the work of this paper, the weight coefficient μ is set to 0.25.

5.2. Experimental Settings. In order to compare fairly with
existing advanced algorithms, this article uses general pa-
rameter settings, as follows:

(1) Setting of the reference point. The reference point
generation of MOEA/D, NSGA-III, and RVEA is on
the basis of the two-layer method proposed by Das
and Dennis [37]. Table 1 makes a list of the number
of reference points in the test experiment for each
objective quantity, in which p1 and p2 represent the
number of divisions of each objective of the

Input: P (population), R′ (set of new reference points), N (size of
population), M (number of objective), Z∗ (ideal point), Znad (nadir point)
Output: Q (population for next generation)
(1) for i� 1 to M do
(2) fi (p)⟵ fi (p)−minq∈A fi (q), ∀p ∈ P;
(3) end
(4) Front←Non-Dominated Sort (P);
(5) k← Satisfiedmin |∪ki�1Fronti|≥N;
(6) Q←∪k−1

i�1 Fronti;
(7) while |Frontk|>N− |Q|
(8) p← argmaxp ∈ Frontk DPD (Frontk\{p}, R′);
(9) Frontk← Frontk\{p};
(10) end
(11) Q←Q∪ Frontk;
(12) return Q;

ALGORITHM 5: Environmental selection (P, R′, N, M, Z∗, and Znad).
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Figure 13: Sensitivity tests for DPD weight coefficient μ.
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boundary layer and the inner layer, respectively. For
fair comparison, MOEA-CRL also uses the same
number of preset reference points listed in Table 2,
and the population size of all MOEAs is the same as
the number of reference points.

(2) Relevant parameter settings of the competition al-
gorithm. In MOEA/D, the size of neighborhood T is
set to 1/10 of the population size, and the aggregate
function used by the algorithm is the Chebyshev
method.The penalty parameter α of RVEA is set to 2,
and the reference point adaptive frequency fr is set to
0.1. The preset parameter Tof KnEA is 0.5. There are
no additional parameters for NSGA-III.

(3) Genetic operation. The crossover operators in all
experiments in this experiment are analog binary
crossovers, and the mutation operators are poly-
nomial mutations [42].The distribution indicators of
the crossover operators and the mutation operators
are both set to 20, and the crossover probability and
the mutation probability are set to 1.0 and 1/D,
respectively, in which D represents the number of
decision variables.

(4) Performance indicators. The convergence and the
diversity of the solution sets are indicated by the IGD
and the hyper-volume (HV). In the HV calculation,
all individuals of the population have been nor-
malized, then the normalized HV value is calculated
with a reference point (1.1, 1.1, . . ., 1.1). The MOEA
with a larger HV value has better performance than
the other. In addition, in order to reduce the com-
putational complexity and improve the computa-
tional efficiency, the Monte Carlo estimation method
is adopted for problems with the objective number is
5 and 10, and the number of sampling points re-
quired for the calculation is set to 1,000,000. In the
DPD calculation, approximately 5,000 uniformly
distributed points are sampled at the PF by the two-
layer method proposed by Das and Dennis [37]. All
tests were run 30 times independently, and the mean
and standard deviation of eachmetric were recorded.
The results of the experiment were statistically an-
alyzed by the Wilcoxon rank sum test with a sig-
nificance level of 5%, as Tables 3 and 4, where the
symbol “+” indicates that the result of the other
MOEA is significantly better, the “−” indicates that
the result of the other MOEA is significantly worse,
and “≈” indicates the similar performance ofMOEA-
CRL.

5.3. Comparisons between MOEA-CRL and Existing MOEAs.
Table 3 lists the comparison of the mean values of the IGD
results on the test problems with 3 objectives between
MOEA-CRL and four popular MOEAs. It can be seen from
the evaluation results of the mean value of the IGD in Table 3
that the MOEA-CRL proposed in this paper is superior to
the other four MOEAs in dealing with test problems for 3

objectives. Among 10 test problems with regular PFs, 9 test
problems except DTLZ4 obtained the best solutions by
MOEA-CRL.Themean value of the IGD ofMOEA-CRLwas
slightly larger than RVEA on DTLZ1 and NSGA-III on
WFG6. The MOEA-CRL also shows the good performance
on the test problems with 9 irregular PFs. Especially, on the
MaF3, MaF11, and MaF15 problems with three concave PF,
MOEA-CRL shows the best performance.

Figure 14 plots the nondominated solution sets for each
algorithm that obtained on DTLZ1, DTLZ2, and MaF3
problems with three objectives, which are the mean values of
the IGD after 30 runs. It can be further observed from
Figure 14 that the MOEA-CRL obtains a uniformly dis-
tributed nondominated solution set on DTLZ1, DTLZ2, and
MaF3. It can be seen that the proposed MOEA-CRL can not
only perform well on the linear PF and concave PF, but also
on the convex PF in MOPs. Specifically, most popular
MOEAs perform well for the linear and concave PF such as
DTLZ1 and DTLZ2, but the population diversity will de-
teriorate significantly on the test problems with convex PF
and the Pareto solution sets lost the uniform distribution. As
shown in Table 3 and Figure 14, it indicates that MOEA-CRL
performs good convergence and diversity for MOPs, espe-
cially on the convex PF.

Table 4 lists the HV values gained by the MOEA-CRL and
the four popularMOEAs on the test problemswith 5 objectives
and 10 objectives. Overall, MOEA-CRL achieved the best
performance 16 times in a total of 38 experiments, while
MOEA/D, NSGA-III, RVEA, and KnEA achieved the best
performance 5, 6, 6, and 5 times, respectively. The evaluation
results show that the overall performance of MOEA-CRL in
dealing with MaOPs is better than the other four MOEAs, but
the performance of MOEA-CRL deteriorates with the increase
of dimension. For the regular Pareto test problems with 10
objectives, the advantage of MOEA-CRL is not significant. For
the 9 irregular Pareto test problems, MOEA-CRL is compet-
itive. Especially, MOEA-CRL performs better on the three
concave PF test problems,MaF3,MaF11, andMaF15. Since the
introduction of the nadir point will bring the performance gain
on the convex PF more obvious, the cross-reference line
method performs better on the convex PF than other multi-
objective algorithms.

Figure 15 plots the nondominated solution sets for
each algorithm that obtained on DTLZ1, DTLZ2, and
MaF3 with 10 objectives, which are the mean values of the
HV after 30 runs. The parallel coordinate is a way of data
visualization. Multiple vertical and parallel coordinate
axes represent multiple dimensions, and the scale on the
dimension represents the corresponding value on the
objective. Each sample corresponds to a value in each
dimension, and a connected polyline represents the
sample. It can be further observed from Figure 15 that the
MOEA-CRL obtains the uniformly distributed non-
dominated solution sets on DTLZ1, DTLZ2, and MaF3.
The MOEA-CRL can still effectively enhance the pop-
ulation diversity. Specifically, MOEAs other than MOEA/
D can maintain diversity and obtain the good uniformity
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Table 1: Settings of the number of reference points for each number of objectives, where p1 and p2 denote the numbers of divisions on each
objective for the boundary layer and the insider layer, respectively.

Number of objectives (M) Parameter (p1, p2) Number of reference points/population size (N)
3 13, 0 105
5 6, 0 210
10 3, 2 275

Table 2: Settings of the number of objectives, the number of decision variables, and the maximal number of generations for each test
problem.

Test problem M D Pareto front
Regular Pareto front
DTLZ1 3, 5, 10 M−1 + 5 Linear
DTLZ3 3, 5, 10 M−1 + 10 Concave
DTLZ2, 4 3, 5, 10 M−1 + 10 Concave
WFG4-9 3, 5, 10 M−1 + 10 Concave
Irregular Pareto front
DTLZ5-6 3, 5, 10 M−1 + 10 Mostly degenerate
DTLZ7 3, 5, 10 M−1 + 20 Disconnected
WFG1 3, 5, 10 M−1 + 10 Sharp tails
WFG2 3, 5, 10 M−1 + 10 Disconnected
WFG3 3, 5, 10 M−1 + 10 Mostly degenerate
MaF3 3, 5, 10 M−1 + 10 Convex
MaF11 3, 5, 10 M−1 + 10 Convex disconnected
MaF15 3, 5, 10 20∗M Convex large scale

Table 3: Statistical results (mean values and standard deviations) of IGD value obtained by MOEA/D, NSGA-III, RVEA, KnEA, and
MOEA-CRL on DTLZ1-DTLZ7, WFG1-WFG9, MaF3, MaF11, and MaF15 with 3 objectives.

Problem M D MOEA/D NSGA-III RVEA KnEA MOEA-CRL

DTLZ1

3

7 2.8508e− 2 (4.30e− 6)
−

1.8979e− 2 (4.28e− 6)
≈

1.8978e− 2 (5.63e− 6)
≈

5.0030e− 2 (2.51e− 2)
−

1.8977e− 2
(2.29e− 5)

DTLZ2 12 6.9661e− 2 (5.68e− 5)
−

5.0301e− 2 (4.52e− 7)
−

5.0301e− 2 (4.21e− 7)
−

6.6663e− 2 (2.44e− 3)
−

4.6814e− 2
(5.07e− 5)

DTLZ3 12 1.0106e− 1 (1.20e− 1)
−

5.0394e− 2 (1.67e− 4)
−

5.0355e− 2 (7.33e− 5)
−

1.0817e− 1 (2.89e− 2)
−

4.7075e− 2
(1.21e− 4)

DTLZ4 12 2.3255e− 1 (3.36e− 1)
−

1.3215e− 1 (1.86e− 1)
＋

5.0300e− 2 (4.47e− 7)
≈

1.5318e− 1 (2.69e− 1)
＋

2.2800e− 1
(2.42e− 1)

WFG4

3 12

2.7142e− 1 (6.38e− 4)
−

2.0405e− 1 (3.67e− 5)
−

2.0800e− 1 (2.21e− 3)
−

2.4949e− 1 (7.34e− 3)
−

1.9326e− 1
(4.61e− 4)

WFG5 2.8760e− 1 (9.10e− 4)
−

2.1444e− 1 (3.75e− 5)
−

2.1580e− 1 (6.17e− 4)
−

2.6120e− 1 (1.07e− 2)
−

2.0682e− 1
(2.34e− 4)

WFG6 2.9642e− 1 (1.27e− 2)
−

2.1871e− 1 (8.11e− 3)
≈

2.2604e− 1 (1.00e− 2)
−

2.8667e− 1 (1.28e− 2)
−

2.1759e− 1
(1.29e− 2)

WFG7 2.7206e− 1 (6.18e− 4)
−

2.0414e− 1 (5.96e− 5)
−

2.0612e− 1 (9.83e− 4)
−

2.4178e− 1 (9.90e− 3)
−

1.9289e− 1
(3.86e− 4)

WFG8 3.1847e− 1 (6.38e− 3)
−

2.6527e− 1 (2.75e− 3)
−

2.8098e− 1 (5.23e− 3)
−

3.3436e− 1 (7.90e− 3)
−

2.6066e− 1
(2.48e− 3)

WFG9 2.7920e− 1 (3.28e− 2)
−

2.0537e− 1 (7.59e− 4)
−

2.0722e− 1 (1.72e− 3)
−

2.2643e− 1 (6.75e− 3)
−

1.9470e− 1
(8.91e− 4)

＋/−/≈ 0/10/0 1/8/1 1/8/1 1/9/0

DTLZ5

3

12 1.2417e− 2 (1.51e− 6)
−

1.1730e− 2 (1.24e− 3)
−

5.8469e− 2 (1.08e− 3)
−

1.0462e− 2 (2.65e− 3)
−

5.7501e− 3
(3.73e− 4)

DTLZ6 12 1.2419e− 2 (7.06e− 7)
−

1.7437e− 2 (2.69e− 3)
−

5.9099e− 2 (3.01e− 3)
−

4.7828e− 3 (3.60e− 4)
−

4.2868e− 3
(3.45e− 5)

DTLZ7 22 2.4700e− 1 (8.06e− 2)
−

7.0580e− 2 (2.35e− 3)
＋

1.0489e− 1 (3.58e− 3)
＋

8.4509e− 2 (7.48e− 2)
＋

2.0368e− 1
(1.79e− 1)

WFG1

3

12 2.1051e− 1 (1.22e− 2)
−

1.3620e− 1 (2.39e− 3)
＋

1.5393e− 1 (6.17e− 3)
−

1.8632e− 1 (7.92e− 3)
−

1.4766e− 1
(2.95e− 3)

WFG2 12 2.1674e− 1 (1.53e− 3)
−

1.5105e− 1 (1.13e− 3)
≈

1.6491e− 1 (5.59e− 3)
−

1.8398e− 1 (8.28e− 3)
−

1.5058e− 1
(9.94e− 4)

WFG3 12 4.1686e− 2 (3.12e− 4)
＋

8.8550e− 2 (6.34e− 3)
＋

2.1668e− 1 (8.51e− 3)
−

9.6049e− 2 (8.33e− 3)
−

8.9822e− 2
(8.87e− 3)
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Table 3: Continued.

Problem M D MOEA/D NSGA-III RVEA KnEA MOEA-CRL
Convex

MaF3

3

12 1.5083e− 1 (9.68e− 2)
−

4.3564e− 2 (3.22e− 4)
−

3.8402e− 2 (4.17e− 4)
−

1.4269e− 1 (6.04e− 2)
−

3.4876e− 2
(8.30e− 4)

MaF11 12 2.1673e− 1 (1.60e− 3)
−

1.5147e− 1 (9.71e− 4)
≈

1.6463e− 1 (4.37e− 3)
−

1.8721e− 1 (9.46e− 3)
−

1.5082e− 1
(1.11e− 3)

MaF15 5 4.5845e− 1 (2.10e− 1)
−

3.6301e− 1 (1.82e− 1)
−

9.0510e− 1 (2.23e− 1)
−

5.1952e− 1 (1.64e− 1)
−

2.6890e− 1
(3.57e− 2)

＋/−/≈ 1/8/0 3/4/2 1/8/0 1/8/0

Table 4: Statistical results (mean values and standard deviations) of HV value obtained byMOEA/D, NSGA-III, RVEA, KnEA, andMOEA-
CRL on DTLZ1-DTLZ7, WFG1-WFG9, MaF3, MaF11, and MaF15 with 5 objectives and 10 objectives.

Problem M MOEA/D NSGA-III RVEA KnEA MOEA-CRL

DTLZ1
5 9.0873e− 1 (8.52e− 2) −

9.7979e− 1 (1.56e− 4)
≈

9.7984e− 1 (1.55e− 4)
≈ 6.2616e− 1 (1.64e− 1) −

9.7988e− 1
(1.63e− 4)

10 9.7273e− 1 (5.32e− 3) −
9.8648e− 1 (3.26e− 2)

−

9.9967e− 1 (1.88e− 5)
≈

0.0000e+ 0 (0.00e+ 0)
−

9.9973e− 1 (1.10e− 4)

DTLZ2
5 7.1112e− 1 (5.08e− 4) −

8.1269e− 1 (4.52e− 4)
−

8.1252e− 1 (4.48e− 4)
−

7.9064e− 1 (3.54e− 3)
−

8.1626e− 1
(9.62e− 4)

10 6.2665e− 1 (2.70e− 2) −
9.4539e− 1 (3.51e− 2)

−

9.6963e− 1 (1.72e− 4)
−

9.5650e− 1 (4.53e− 3)
−

9.7102e− 1 (1.70e− 3)

DTLZ3
5 4.3566e− 1 (1.27e− 1) −

7.7543e− 1 (2.88e− 3)
＋

7.7757e− 1 (1.36e− 3)
＋ 3.9573e− 1 (1.31e− 1) −

7.3975e− 1
(3.36e− 3)

10 6.4046e− 1 (1.97e− 2) −
3.3590e− 1 (4.26e− 1)

−

9.6443e− 1 (9.40e− 3)
＋

0.0000e+ 0 (0.00e+ 0)
−

9.6234e− 1
(2.68e− 1)

DTLZ4
5 2.7690e− 1 (1.65e− 1) −

7.3262e− 1 (6.50e− 2)
＋

7.7683e− 1 (1.68e− 2)
＋

7.6308e− 1 (4.31e− 3)
＋

7.2000e− 1
(5.17e− 2)

10 6.2169e− 1 (2.11e− 2) − 9.6721e− 1 (1.24e− 2) −
9.6984e− 1 (1.99e− 4)

−

9.5637e− 1 (4.37e− 3)
−

9.7165e− 1 (1.51e− 3)

WFG4
5 6.2968e− 1 (8.71e− 4) −

8.0469e− 1 (8.35e− 4)
−

8.0565e− 1 (1.10e− 3) ≈ 7.8730e− 1 (2.17e− 3)
−

8.0575e− 1
(1.74e− 3)

10 5.8107e− 1 (5.61e− 2) −
9.4578e− 1 (3.92e− 3)

＋
9.4326e− 1 (3.57e− 3)

＋
9.5750e− 1 (1.56e− 3)

＋ 9.1518e− 1 (5.08e− 3)

WFG5
5 5.9294e− 1 (1.98e− 2) −

7.6126e− 1 (3.68e− 4)
＋

7.6092e− 1 (4.04e− 4)
＋

7.4495e− 1 (2.82e− 3)
＋

7.3465e− 1
(2.49e− 3)

10 5.3478e− 1 (1.75e− 2) −
8.9907e− 1 (6.43e− 4)

＋
8.9790e− 1 (1.17e− 3)

＋
8.9664e− 1 (8.14e− 4)

＋
8.4566e− 1
(3.56e− 3)

WFG6
5 5.5065e− 1 (3.13e− 2) −

7.4242e− 1 (1.58e− 2)
＋

7.4662e− 1 (1.44e− 2)
＋ 7.2041e− 1 (1.03e− 2) ≈ 7.2008e− 1

(1.20e− 2)

10 4.7917e− 1 (9.01e− 2) −
8.6935e− 1 (1.66e− 2)

≈
8.6291e− 1 (2.01e− 2)

≈
8.6854e− 1 (1.59e− 2)

≈ 8.7014e− 1 (1.72e− 2)

WFG7
5 6.2952e− 1 (1.76e− 3) −

8.0771e− 1 (6.15e− 4)
＋

8.0685e− 1 (6.00e− 4)
＋

7.9537e− 1 (2.41e− 3)
＋

7.9284e− 1
(1.74e− 3)

10 6.1632e− 1 (3.69e− 2) −
9.4638e− 1 (2.02e− 2)

＋
9.4552e− 1 (2.93e− 3)

−

9.5737e− 1 (6.09e− 3)
＋

9.4268e− 1
(2.70e− 3)

WFG8
5 3.2668e− 1 (1.10e− 2) −

6.9440e− 1 (3.44e− 3)
−

6.9749e− 1 (1.55e− 3)
≈

6.6088e− 1 (4.04e− 3)
−

6.9786e− 1
(2.26e− 3)

10 5.2900e− 1 (2.26e− 2) −
8.3115e− 1 (2.65e− 2)

−

7.4198e− 1 (7.45e− 2)
−

8.1031e− 1 (5.88e− 2)
−

8.5967e− 1
(2.09e− 2)

WFG9
5 4.1801e− 1 (7.01e− 2) −

7.6559e− 1 (4.98e− 3)
＋

7.6952e− 1 (3.01e− 3)
＋

7.6796e− 1 (3.00e− 3)
＋

7.4665e− 1
(4.89e− 3)

10 5.3897e− 1 (5.22e− 2)
－

8.6420e− 1 (4.42e− 2)
＋

8.7342e− 1 (1.19e− 2)
＋

9.0581e− 1 (3.21e− 2)
＋ 8.3182e− 1 (1.92e− 2)

＋/−/≈ 0/20/0 10/8/2 10/5/5 8/10/2
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of nondominated solution sets in test problems on DTLZ1
and DTLZ2 with the 10 objectives. However, the MOEA-
CRL obtained a uniform distribution in test problem on
MaF3 with the 10 objectives and the performance of other
four MOEAs significantly deteriorates. Therefore, MOEA-
CRL can maintain better population diversity on MaOPs
as shown in Table 4 and Figure 15, especially on the
convex PF. It should be noted that the convergence of
MOEA-CRL deteriorates significantly as the dimension
increases. The reason is that the nadir point reference lines
are employed to enhance the diversity, which results in a
decline of the convergence pressure.

Through the sensitivity analysis of the weight coefficient
of the 3-objective problem, it can be concluded that the use
of the nadir point does not weaken the convergence but
increases the convergence pressure. However, as the

objective dimension increases, the use of the nadir point will
indeed cause the deterioration of convergence and even the
failure to converge.

5.4. Sensitivity Analysis of Population Size. In the experi-
ment, the population size N is set as same as the number of
reference points since the reference points are generally
associated with each candidate solution in most decom-
position-based MOEAs. The number of reference points
depends on the method of Das and Dennis [37].

The population size setting of MOEA-CRL proposed in
this paper is flexible, and the number of reference points has
less influence on it. The number of candidate solutions can
be less than the number of reference points and also can be
larger.

Table 4: Continued.

Problem M MOEA/D NSGA-III RVEA KnEA MOEA-CRL

DTLZ5
5 1.0968e− 1 (8.30e− 3) ≈ 1.0483e− 1 (1.62e− 2)

≈ 9.1890e− 2 (1.22e− 3) −
7.1580e− 2 (2.93e− 2)

−

1.0808e− 1
(5.72e− 3)

10 9.7922e− 2 (3.20e− 4)
＋

2.8809e− 2 (3.32e− 2)
−

9.0906e− 2 (1.34e− 4)
＋

3.5304e− 2 (3.14e− 2)
−

8.2365e− 2
(2.16e− 2)

DTLZ6
5 9.4634e− 2 (6.13e− 3) ≈ 5.7651e− 2 (4.09e− 2)

−

9.9670e− 2 (4.73e− 3)
≈

9.1029e− 2 (2.57e− 3)
−

9.2650e− 2
(2.20e− 2)

10 9.8124e− 2 (2.62e− 4)
＋

3.0230e− 3 (1.66e− 2)
−

9.2019e− 2 (9.23e− 4)
＋

0.0000e+ 0 (0.00e+ 0)
−

9.1491e− 2 (3.74e− 2)

DTLZ7
5 1.7168e− 1 (5.33e− 2) −

2.3157e− 1 (9.31e− 3)
＋

2.1343e− 1 (8.52e− 3)
−

2.4843e− 1 (1.07e− 2)
＋

2.2732e− 1
(3.03e− 3)

10 4.5806e− 3 (7.31e− 3) −
1.7116e− 1 (7.07e− 3)

＋
1.3371e− 1 (2.42e− 2)

＋
9.1243e− 2 (2.89e− 2)

＋
7.4082e− 2
(2.95e− 2)

WFG1
5 9.4334e− 1 (7.14e− 2) −

9.7370e− 1 (2.11e− 2)
−

9.8276e− 1 (2.89e− 2)
≈ 9.9246e− 1 (1.41e− 3) −

9.9835e− 1
(1.60e− 2)

10 5.0234e− 1 (1.69e− 1) −
9.4008e− 1 (4.39e− 2)

＋
9.9015e− 1 (2.42e− 2)

＋
9.9756e− 1 (8.35e− 4)

＋
7.4040e− 1
(5.17e− 2)

WFG2
5 9.6566e− 1 (3.42e− 2) −

9.9555e− 1 (8.56e− 4)
−

9.9404e− 1 (1.15e− 3) −
9.9320e− 1 (7.41e− 4)

−

9.9683e− 1
(7.33e− 4)

10 9.9648e− 1 (2.10e− 3)
＋

9.9700e− 1 (1.46e− 3)
＋

9.8471e− 1 (4.33e− 3)
−

9.9306e− 1 (1.47e− 3)
＋ 9.9191e− 1 (2.27e− 3)

WFG3
5 9.1998e− 2 (3.47e− 4) −

1.6765e− 1 (1.32e− 2)
≈

1.5967e− 1 (1.56e− 2)
≈

7.7484e− 2 (1.82e− 2)
−

1.6083e− 1
(1.27e− 2)

10 7.5376e− 2 (7.87e− 3)
＋ 2.4516e− 4 (1.34e− 3) −

0.0000e+ 0 (0.00e+ 0)
−

0.0000e+ 0 (0.00e+ 0)
−

4.0606e− 2
(7.87e− 3)

MaF3
5 9.9646e− 1 (1.07e− 4) −

9.9870e− 1 (2.01e− 3)
−

9.9895e− 1 (4.31e− 4)
−

8.8686e− 1 (1.27e− 1)
−

9.9975e− 1
(7.14e− 4)

10 9.9993e− 1 (4.54e− 5) ≈ 2.9125e− 1 (4.53e− 1)
−

9.8343e− 1 (5.59e− 2)
−

0.0000e+ 0 (0.00e+ 0)
−

9.9997e− 1
(1.30e− 1)

MaF11
5 9.7508e− 1 (2.07e− 2) −

9.9583e− 1 (5.38e− 4)
−

9.9397e− 1 (1.11e− 3) −
9.9299e− 1 (8.84e− 4)

−

9.9751e− 1
(5.92e− 4)

10 9.3320e− 1 (6.36e− 2) −
9.9641e− 1 (2.18e− 3)

−

9.8256e− 1 (4.48e− 3)
−

9.9284e− 1 (8.14e− 4)
−

9.9818e− 1
(2.03e− 3)

MaF15
5 2.9995e− 2 (1.11e− 2)

＋
0.0000e+ 0 (0.00e+ 0)

−

2.4759e− 2 (1.06e− 2)
＋

0.0000e+ 0 (0.00e+ 0)
−

1.0571e− 2
(5.05e− 3)

10 3.0314e− 11 (1.16e− 10)
−

0.0000e+ 0 (0.00e+ 0)
−

1.9696e− 7 (2.48e− 7)
−

0.0000e+ 0 (0.00e+ 0)
−

2.6803e− 7
(2.42e− 10)

＋/−/≈ 5/10/3 4/12/2 5/10/3 4/14/0
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MOEA-CRL with different population sizes was
tested on DTLZ1, DTLZ2, and MaF3 with three objec-
tives. Figure 16 exhibits the nondominated solution sets
of MOEA-CRL with population sizes of 35, 70, 105, 140,

and 175, and the number of reference points is always set
to 105. It can be shown that the Pareto solution sets
obtained by MOEA-CRL are always uniformly distrib-
uted regardless of the population sizes. Therefore,
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MOEA-CRL provides greater flexibility for population
size setting.

6. Conclusions and Remarks

In this paper, an evolutionary algorithm based on the adaptive
cross-reference linemethod, calledMOEA-CRL, is proposed to
inherit the advantages of the ideal point reference line for better
convergence and add the nadir point reference line for higher
diversity. Especially, on the convex PF, MOEA-CRL solves the
Pareto incompatibility problem and significantly enhances the
population diversity. Furthermore, this paper proposed the
DPD indicator based on the cross-reference lines. The prop-
erties of the ideal point reference line and the nadir point
reference line are combined to solve the Pareto incompatibility
problem as well as improve the performance of the MOEA-
CRL on the convex PF. Based on the DPD evaluation strategy
of the cross-reference line method, MOEA-CRL retains unique
solution with the best convergence in each attraction region as
a nondominated solution, which ensures that the Pareto so-
lution set is distributed evenly. Finally, this paper proposed a
cross-reference line adaptation method in order to enhance the
performance of MOEA-CRL in dealing with the irregular
problems.

The experimental results show the superiority of MOEA-
CRL on the convex PF. It also has the competitiveness due to
the adaptability of cross-reference lines while solving those
MOPs and MaOPs with other types of PFs. Remarkably, the
cross-reference line method is only used to calculate the
DPD indicator. Therefore, the population size is irrelated to
the number of the cross-reference lines, and subsequently,
the population size setting is flexible. The proposed MOEA-
CRL proves that the adaptive cross-reference line method is
prospective for significantly improving the diversity espe-
cially in the convex PF.

In fact, the experimental results also clearly illustrate that
the performance of MOEA-CRL deteriorates significantly
with the increase of dimensions. That means that the cross-
reference line method still poses the challenges in dealing
with some research issues such as high-dimensional dete-
rioration and more complex convex PF problems.
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