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Cell segmentation and counting play a very important role in the medical field. The diagnosis of many diseases relies heavily on
the kind and number of cells in the blood. convolution neural network achieves encouraging results on image segmentation.
However, this data-driven method requires a large number of annotations and can be a time-consuming and expensive
process, prone to human error. In this paper, we present a novel frame to segment and count cells without too many manually
annotated cell images. Before training, we generated the cell image labels on single-kind cell images using traditional
algorithms. These images were then used to form the train set with the label. Different train sets composed of different kinds
of cell images are presented to the segmentation model to update its parameters. Finally, the pretrained U-Net model is
transferred to segment the mixed cell images using a small dataset of manually labeled mixed cell images. To better evaluate
the effectiveness of the proposed method, we design and train a new automatic cell segmentation and count framework. The
test results and analyses show that the segmentation and count performance of the framework trained by the proposed method

equal the model trained by large amounts of annotated mixed cell images.

1. Introduction

The number and kinds of cells in the blood play an impor-
tant role in disease diagnosis in clinical medicine [1]. In this
process, the cell analyzer is used to count the number of cells
according to their different physical properties [2]. However,
this process can be complex and expensive.

The medical image field has been witnessing progressive
advancements in recent decades. Cell segmentation is a pop-
ular research field in this context. Segmentation is to pixel-
wise label the region of interest in an image. Cell images
could be captured by connecting a high-definition camera
to the microscope. For single-kind cell image segmentation,
traditional methods are mainly based on threshold binariza-
tion or edge detection [3], and the watershed algorithm is
typically used for overlapping cell images [4]. However,
due to the different camera parameters and the complexity
of the cell living environment, the above methods are inade-
quate for mixed cell images segmentation [5]. In recent
years, convolution neural network (CNN) has been widely

used in image classification [6], target detection [7], image
denoising [8], semantic segmentation [9], and other tasks
in the field of computer vision. For example, fully convolu-
tion networks are used to extract the characteristics of the
cell images and properly classify them [10].

U-Net [11] is a fully convolutional network (FCN)
semantic segmentation model with a contraction path to
extract features and has an expansion path to localize the
region of interest. The encoder and decoder, along with skip
connections of U-Net, are proved to be more suitable for
biomedical image processing. In [12], Zhou et al. presented
UNet++, a nested U-Net architecture used for medical
image segmentation. Their network semantically extracts
similar feature maps for the encoder and decoder to improve
the performance of the model. Arbelle et al. [13] proposed a
network integrating convolutional long short-term memory
(C-LSTM) with the U-Net. LSTM is used to analyze
dynamic behavior, and U-Net is utilized to capture spatial
properties of the data. Punn et al. [14] trained an inception
U-Net architecture inspired by Google’s inception
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FiGure 1: Flow diagram of auto-CSC.

architecture and the U-Net architecture for semantic seg-
mentation. They replaced the convolution layers in the U-
Net with inception layers to identify the nuclei in micros-
copy cell images.

Deep learning is a method that requires a lot of data to
train models. To train such data-driven models, a huge
amount of data with pixel-wise labels is required. However,
manual labeling data, even with the assistance of experts, is
a laborious and expensive process [15]. In this paper, we
propose a new framework to train the U-Net model without
too many manual annotations. The main contributions of
this paper are as follows:

(1) We propose an automatic and efficient method to
segment single-kind cell images

(2) Experiments demonstrate that the fine-tune U-Net
model trained by the autolabeled single-kind-cell
images offers similar performance with the model
trained by the manual labels

(3) The proposed framework is simple and effective to
segment mixed-kind-cell images

2. Materials and Methods

In this paper, the training sets composed of single-kind cell
images processed by preprocessing are presented to the U-

Net model, and we fine-tuned the learned model by using
manually annotated mixed-kind cell images to segment
and count the mixed-kind cell images. This method is illus-
trated in Figure 1.

2.1. Preprocessing. We generated the cell image labels on
single-kind cell images using traditional algorithms, includ-
ing Gaussian filtering, adaptive thresholding, contour detec-
tion, and morphological processing.

2.1.1. Gaussian Filtering. Due to electromagnetic interference,
a lot of noise is produced in the process of capturing cell
images by electronic equipment. Filtering is a neighborhood
operator, capable of removing noise and enhancing the image
features we need. In this paper, we use a Gaussian filter to pro-
cess the cell images and remove potential noises [16]. The
reduction of noise could improve the accuracy of cell edge
detection. We set the size of the Gaussian kernel to 3x3 and
the Gaussian kernel standard deviation in the row and column
direction to 0.8. .As shown Figure 2, the method is effective.

2.1.2. Adaptive Thresholding. Binarization is an image seg-
mentation algorithm based on thresholds. Firstly, the algo-
rithm calculates one or more gray thresholds according to
the gray level histograms of the image. Then, it compares
the gray value of each pixel in the image with the threshold
and finally divides the pixels into appropriate categories
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FIGURE 3: (a) original cell image, (b) the cell image processed by Suzuki algorithm, and (c) filled cell image (mask image).

according to the comparison results [17]. Binarization is
mainly divided into global thresholding [18] and adaptive
thresholding. Global thresholding segments images according
to a fixed threshold, while adaptive thresholding segments
images according to the local feature of the image [19].

The gray value of different positions of the cell image will
be discrepant due to the influence of the environment and the
variant shooting conditions. We first scan the whole image
with a sliding window (3x3 Gaussian kernel) and then calcu-
late the threshold of each pixel in this window using the
Gaussian function, according to the position of the pixel posi-
tion. Finally, we segment the cell images with the threshold [3].

2.1.3. Contour Detection. The Suzuki algorithm generates the
closed outermost border without a parent border in the
binary image, which is suitable for detecting the contour of
the cells in the image [20]. Considering the influence of
impurities or broken cells in the cell culture solution, we
remove the boundaries of small areas in the gray image.
However, this was only possible after finding the boundaries
of all cells in the single-kind cell image.

Finally, we fill the detected contours to generate the
mask images shown in Figure 3. The original single-kind cell
images and the corresponding mask image (ground truth)
form the training set.

2.1.4. Morphological Processing. Macrophages are a type of
white blood cell of the immune system, and their main func-

tion is to engulf and digest cancer cells, microbes, cellular
debris, and foreign substances. Some macrophages for their
biological characteristic stick together as shown in
Figure 4(a). As a result, macrophage images will be proc-
essed by dilation and erosion methods after contour detec-
tion. In this study, the convolution kernel size is set to
3x3, and the anchor is placed at the kernel center. This con-
volution kernel will slide along the macrophage image from
left to right and from top to bottom. Then, it will calculate
the product of the pixels at the corresponding position of
the window and the convolution kernel. We select the min-
imum value as the pixel of the anchor position when eroding
the image and the maximum value when dilating the image.
That operation is formulated as follows:

dst(x,y)=(x1’1;i,1)1¢0 src(x+x’,y +y’), (1)
di(ey)= mx se(xexyey). )

where dst(x,y) denotes the image after a morphological
operation, src denotes the original image, and (x',y') is
the size of the convolution kernel.

Dilation will be taken after an erosion operation that
would cause the macrophage area to narrow. As can be seen
from Figure 4(b), the adhesive cells can be effectively sepa-
rated after morphological processing.



FiGURE 4: (a) Red boxes indicate adhesive
processing.
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macrophage, and (b) yellow boxes denote separated cell processed by the morphological
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F1GURE 5: The architecture of U-Net (the input image is 512x512 pixels and 3 channels). The boxes denote the feature map. The arrows

mean the different operations.

2.2. U-Net. U-Net is an FCN for biomedical image segmen-
tation trained with labeled images, and the name derives
from the U-shaped structure. U-Net has been widely used
in medical image segmentation since it was proposed in

2015 [11], and its effectiveness has been proved [12, 21].
The U-shaped design of the model makes full use of charac-
teristic information at all levels of the image and has a signif-
icant effect on segmenting medical images with simple
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FiGure 7: Illustration of the dataset used in this study: (a) RBCs, (b) macrophages, and (c) mixed-kind cells.

TaBLE 1: Automatic annotate single-kind cell images results by
using preprocessing.

Gaussian filtering? vV v
Adaptive thresholding? v v v v
Contour detection? V4 vV VA vV
Morphological processing? VA vV
RBCs mIoU (%) 0.7928 0.8142 0.8003 0.8175
Macrophages mIoU (%) 0.6356 0.6843 0.6712  0.6926

semantics and a single structure. U-Net consists of an
encoding path on the left and a decoding path on the right,
as shown in Figure 5.

There are three main modules of this U-shaped network:
an encoder (downsampling) to capture the high-level
abstract information for classifying the semantical meanings,
a decoder (upsampling) to restore the resolution of the fea-
ture map, and a skip connection that can provide more char-
acteristics for the decoder to reconstruct the fine details of
the object. These unique structures make this network suit-

able for the simple semantic, fixed structure, and few num-
ber medical image dataset [22, 23].

Specifically, the network contains 19 convolution layers, 4
max-pooling layers, and 4 upsampling layers (nearest-neigh-
bor interpolation). In this paper, the size of all convolution
kernels is standard: 3x3. The strides and padding are 1 to
avoid altering the image size after convolution. After two con-
volutions, a ReLU function is employed to generate nonlinear
mapping, and a 2x2 max-pooling operation with stride 2 is
conducted for downsampling. The decoding path replaces
max-pooling with the nearest neighbor interpolation method
to upsample the images. In the final layer, a 1x1 convolution
is used to map the 32-channel feature map to 3 channels
(the final predicted image). There is a skip connection between
the same floor of the encoding and the decoding path. The
bottom layer is 4x4 max-pooling and 4x scales upsample.

VGGL16 is often used as the backbone of the object detec-
tion network for feature extraction. VGG16 consists of 13
convolutional layers, each followed by ReLU activation func-
tion, and 5 max-pooling operations, each reducing feature
map by 2. All convolutional layers have 3x3 kernels. To
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F1GURE 8: The fine-tuning result of U-Transfer relative to U-Single. (a) Original image. (b) U-Base. (c) U-Single. (d) U-Transfer.
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F1GURE 9: The high-level feature map ((a) macrophages; (c) RBCs) and the low-level feature map ((b) macrophages; (d) RBCs) in the U-

Single model (top) and U-Transfer model (bottom).

construct U-Net, we remove the fully connected layers and
max-pooling of VGG16 and use the first 12 pretrained con-
volution layers as the convolution layer of the encoder of the
proposed U-Net to improve the ability of feature extraction.
In order to construct the decoder of the proposed U-Net, we
use convolution layer and nearest-neighbor interpolation to
double the size of feature mapping and reduce the number of
channels by half. Then, the output of upsampling is cascaded
with the output of the corresponding part of the decoder.
The feature map generated by convolution operation is
processed to keep the number of channels the same as that
in the symmetric encoder.

2.3. Dataset Description. The red blood cells (RBCs) used in
this research were collected from whole blood extracted
from the tail tip of mice (KM mice, 8 weeks). The mouse
mononuclear macrophage leukemia cell line (RAW264.7)
was purchased from the Cell Resource Center, part of
the Institute of Basic Medical Sciences of the Chinese
Academy of Medical Sciences. Important and distinguish-
ing features of RBCs are their evident discoid shape and
smaller size (5-7 ym approximately). RAW264.7 cells are
adherent cells with an anomalous round morphology and a

size distribution of 13-20 um. Both RBCs and RAW264.7 were
cultured in high glucose Dulbecco’s modified Eagle’s medium
(DMEM) (Hyclone). They were also supplemented with 10%
(v/v) fetal bovine serum (FBS) (M6546-100 ml, Macklin) and
kept at 37°C in a humidified atmosphere of 5% CO,. After
counting the cells with a fully autocell analyzer (Bodboge),
we proportionally mixed two different kinds of it: RBCs and
macrophages. The dataset used in this paper consists of 1000
RBCs images, 1000 macrophage images, and 600 annotated
mixed cell images. All images were captured by connecting a
high-resolution camera (Camera: USB3.0 MicroUH1200,
Ruizhi Image, China, Software: Digital-Camera 6.0) to an
Olympus CKX53 microscope and cropped into 512x512 reso-
lution from 4000x3000. The mixed cell images are annotated
by several experts as shown in Figure 6. Details of the RBCs,
macrophage, and mixed cell images are shown in Figure 7.

3. Results

3.1. Train Details. In this paper, we ran 35000 training iter-
ations in the Python3.7 environment on an NVIDIA
GeForce RTX 2060 GPU with CUDA 10. We used Pytorch
for the proposed network training and testing. Similar to
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FIGURE 10: Segmentation masks obtained using different models: (a) ground truth; (b) U-Transfer; (c) TemausNet; and (d) Mask R-CNN.

[24], the weights in the network are initialized randomly with
(u,0) = (0,v/2/N), where N is the number of nodes. In addi-
tion, we applied rotation, scaling, and gray value augmentation
for improving training results. We then presented the single-
kind-cell images processed by image augmentation to the net-
work in mini-batches of size 4 and trained the network with
back-propagation using adaptive moment estimation (Adam,
B, =0.9, B, =0.999, the learning rate was set as 0.001).

Jaccard index is a metric to compare the similarity and
differences between two samples. If the two sets A and B
are given, the definition of Jaccard index is as follows:

[AnB| _
|AUB|

|ANB|
|A] +|B| - |ANB|

J(A,B) = 3)

Similar to [25], we use the cross-entropy loss function H
to punish the classification error of the model and get the
final loss function by combining (3) and H as follows:

~log (J)- (4)

By minimizing the loss function, we finally get a
3x512x512 feature map, where each pixel denotes the prob-
ability of a class, and each channel signifies the foreground
and background (background is 0, RBCs is 1, and the macro-
phage is 2). We get the final predicted mask images by the
pixel value of each location.

3.2. Evaluation Metrics. Based on Pont-Tuset and Marques
[26], U-Net model can be evaluated with mIoU. The compu-
tation of this metric needs 4 values, that is, true positive
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN). mIoU is calculated as the ratio of TP and (TP + FP
+FN), and the formula is

k

1 P
mloU = : (5)
k+1 ; Z;(:opij + Z?:OPji ~Pii

where p;; is the number of true positive, p;; is the number of
true negatives, p;; is the number of false positives, p;; is the

number of false negatives, and k + 1 is the number of classes
(include background).

TABLE 2: Performance comparison on different methods.

U- uU- U- Mask R- TernausNet
base single transfer CNN
mloU (%) 80.47 71.33 79.73 65.06 77.58
f(;;\;IOU 95.08 92.69  94.85 90.89 94.43
Dice score 0.8869 0.8234 0.8812 0.7660 0.8678

Frequency-weighted intersection over union (FWIoU) is
an improved IoU that considers each class appearance fre-
quency. It is calculated as

) Opijpii

(6)
= Opz]+21 Op]z pn

k
FWIoU = Z
Zz 02] Opl] I:O

where the parameters are the same as (5).

3.3. Experiment. Firstly, we verify the importance of each step
in the preprocessing algorithm through ablation experiments
to demonstrate the effectiveness of our automatic annotation
method. A summary of the result can be found in Table 1.

This research examined the performance of the pro-
posed method for U-Net through three experiments. In
experiment 1 (U-Base), 600 manually labeled mixed cell
images were divided into three parts. Then, we chose 450
images for the training set. Also, 75 images were used for
the validation set, and the other 75 were used for the test
set. We regard the result of the U-Base as the baseline of
the model. In experiment 2 (U-Single), the single-kind-cell
images data were processed using the aforementioned pre-
processing method. Two random images in two single-
kind-cell images datasets (RBCs and macrophages) were
fed into the model for training. Based on the training of
U-Single, in experiment 3 (U-Transfer), we used 50 anno-
tated mixed-kind-cell images as the training set to fine-
tune the model. The tune result of the U-Transfer is shown
in Figure 8. In U-Base and U-Single, the batch size was set
as 4, the epoch was 200, and the learning rate was 0.001.
In U-Transfer, the epoch was 100; the learning rate was
0.0005.
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TaBLE 3: The count result of U-Base, U-Transfer, Mask R-CNN and TernausNet.
Ground truth U-Base U-Transfer Mask R-CNN TernausNet
RBCs 3130 (100%) 2922 (93.35%) 2925 (93.45%) 2232 (71.31%) 3045 (97.28%)
Macrophages 405 (100%) 411 (101.48%) 401 (99.01%) 354 (87.41%) 398 (98.27%)

(©)

FIGURE 11: Count results of (a) the annotated mask image and (b) the predicted image.

As shown in Figure 8, the model in U-Single wrongly
segments some parts of large cells (macrophages) and leads
to the cell edge uneven, while these defects will be overcome
by the adjustment in U-Transfer. The accuracy of the model
in U-Transfer is also improved (e.g., the macrophage in the
top-right corner of the mixed-kind-cell image can be cor-
rectly identified).

Figure 9 shows the extracted feature maps of U-Single
and U-Transfer, respectively. The feature map of each kind
of cell in the fine-tuned U-Transfer model is clearer than
that of U-Single. This indicates that the model is more accu-
rate in the recognition of such cells and has better segmenta-
tion performance.

In order to test the training effect of our proposed
method on different models, we used Mask R-CNN [27]
and TernausNet [28] as comparative experiments and
applied the same training strategy. Mask R-CNN is an
improvement of Faster R-CNN [29], since this model added
a mask prediction branch that demonstrated competitive
performance on instance segmentation. TernausNet replaces
the encoder in the U-Net network with VGG11, which con-
tains 7 convolution layers. Each is followed by a ReLU func-
tion and 5 max-pooling layers. TernausNet can improve the
performance of U-Net by pretrained weights. The compari-
son results of these models for multiclass segmentation are
presented in Figure 10 and Table 2.

The segmentation results of these models illustrate that
the proposed method is effective for all of them. Mask R-
CNN is good at large object segmentation (macrophages),
but it does not accurately do RBCs segmentation. Ternaus-
Net has a stronger recognition ability for targets on the
image boundary than U-Net, but it cannot distinguish the
adjacent objects.

In addition, we also count the cells according to the
training results of the model. The count performance of
the model depends on the segmentation result. After exclud-
ing the small area, false position (FP), we count the number
of cells according to the pixel value and the area. Results are

shown in Table 3 and Figure 11. The count results of U-Base
and U-Transfer were similar. The counting accuracy of
RBCs is low because the RBCs area is small. Also, the RBCs
at the image boundary are not easy to be recognized by U-
Net, so the U-Transfer model fails to count. While the RBCs
segmentation of TernausNet outperforms those from other
models, the accuracy of RBCs count is the best in the 4
models.

Considering the biomedical application, we test the run-
ning frame rate of the proposed auto-CSC during inference.
As for using GPU for acceleration, we realize the auto-CSC
in real time at a speed of 512x512 pixels/25FPS. In addition,
the FLOPs of the proposed U-Net are 3.09M, and the
params are 7.48 m.

4. Discussion

For the image segmentation tasks, the transfer learning
should be considered because it is expensive to collect a large
volume of training datasets (in particular for medical
images) and qualitatively label them. In this paper, we pro-
pose a novel framework to segment and count the mixed-
kind cell images without too many manual annotations.
We train several segmentation models by the proposed
method and discuss the changes of the model after fine-
tuning. The effectiveness of the method is demonstrated by
the training results of 3 different semantic segmentation
models. In short, the method we propose here can automat-
ically process cell datasets and train a model to segment cells.
This novel methodology can greatly reduce the workload of
data annotation without sacrificing the performance of the
model. At present, the cell analyzer is commonly used for
cell counting, but the accuracy of the cell analyzer is about
90% due to the influence of reagent, temperature, pH, volt-
age, current, magnetic field, and other factors. And complex
preparations are needed before using the cell analyzer. So,
the accuracy and speed of our proposed method have
reached a satisfactory level.
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Besides, our method can be used with more advanced
models such as ResNet or LSTM to solve more complex
problems [30]. We believe that this new method puts for-
ward a new idea for data processing and lays a solid founda-
tion for the application of deep learning in medical practices
in the future.

5. Conclusion

In this paper, we propose a novel framework that trains
mixed cell images segmentation model by using a small
amount of manually annotated cell images. The proposed
frame preprocesses the cell image based on the traditional
image processing algorithm and uses U-Net for semantic
segmentation. It is worth mentioning that the FWIoU of
the model is 94.85%, which equals the model trained by large
amounts of annotated mixed cell images. In addition, we
also realize real-time cell counting by this frame and greatly
reduce the workload of doctors. Extensive experiments on
mixed cell images datasets demonstrate the superiority and
effectiveness of our approach.
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