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Abstract: Cell proliferation and sexual reproduction require the faithful segregation of chromosomes.
Chromosome segregation is driven by the interaction of chromosomes with the spindle, and the
attachment of chromosomes to the proper spindle poles is essential. Initial attachments are frequently
erroneous due to the random nature of the attachment process; however, erroneous attachments
are selectively eliminated. Proper attachment generates greater tension at the kinetochore than
erroneous attachments, and it is thought that attachment selection is dependent on this tension.
However, studies of meiotic chromosome segregation suggest that attachment elimination cannot
be solely attributed to tension, and the precise mechanism of selective elimination of erroneous
attachments remains unclear. During attachment elimination, chromosomes oscillate between the
spindle poles. A recent study on meiotic chromosome segregation in fission yeast has suggested that
attachment elimination is coupled to chromosome oscillation. In this review, the possible contribution
of chromosome oscillation in the elimination of erroneous attachment is discussed in light of the
recent finding.

Keywords: spindle; kinetochore; microtubule; chromosome oscillation; Aurora B kinase; tension;
centromere

1. Introduction

During mitotic cell division, replicated chromosomes termed sister chromatids become
attached to opposite spindle poles (referred to as bi-oriented attachment) and separate from
each other (equational segregation), leading to the formation of two genetically identical
daughter cells (Figure 1a, mitosis) [1]. During the first division of germ cells (meiosis
I), homologous chromosomes attach to opposite spindle poles and separate from each
other (reductional segregation) (Figure 1a, meiosis I). Subsequently, sister chromatids un-
dergo equational segregation (meiosis II), resulting in the formation of haploid gametes.
In both equational and reductional segregations, chromosomes interact with the spindle
in a random manner initially, resulting in the frequent attachment of chromosomes to
improper poles (Figure 1b) (reviewed in References [2,3]). These erroneous attachments
are eliminated, and the chromosomes reattach to the spindle. Each chromosome repeats
the attachment and detachment processes, until it becomes properly attached to the spin-
dle; however, the mechanism by which improper attachments are eliminated is not fully
understood.

Chromosomes interact with the spindle at the kinetochore, a protein complex as-
sembled on the centromere (Figure 1a). It is widely believed that the selection of proper
attachments is dependent on tension generated at the kinetochore [2–6]. During mitosis,
when sister chromatids are correctly bi-oriented and pulled toward opposite poles, tension
is generated at the kinetochores as sister chromatids are held together by a protein complex
called cohesin [7]. However, when the sister chromatids become improperly attached to
the same pole (referred to as mono-oriented attachment), sufficient tension is not gener-
ated. Likewise, during meiosis I, the bi-oriented attachment of homologous chromosomes
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generates tension, as homologous chromosomes are linked by a recombination product
called chiasma, while erroneous mono-oriented attachments do not. It has been proposed
that the tension causes the stabilization of otherwise unstable, and readily eliminated,
attachments [2,4]. This model is supported by the observation that mono-oriented ho-
mologous chromosomes remain attached to the spindle at meiosis I when anti-poleward
forces are exerted on the chromosomes with an ultra-fine needle (Figure 1b, meiosis I) [4].
This evidence is compelling, and tension-dependent attachment stabilization has been the
underlying principle guiding current research into chromosome segregation.
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Figure 1. Chromosome segregation in mitosis and meiosis I, and correction of chromosome attachment to the spindle.
(a) Chromosome attachment to the spindle and chromosome segregation during mitosis and meiosis I. In mitosis, sister
chromatids are attached to both spindle poles by microtubules (MTs) that extend from the poles via kinetochores assembled
on centromeres, resulting in segregation of the sister chromatids to opposite poles (mitosis). In meiosis I, homologous
chromosomes linked by chiasmata are attached to opposite poles, resulting in segregation of the homologous chromosomes
(meiosis I). (b) The relationship between elimination of improper attachments and tension generated at the kinetochores.
When both sister chromatids in mitosis or homologous chromosomes in meiosis I are attached to the same pole, insufficient
tension is generated and attachment is unstable (mono-oriented attachment). As a result, chromosomes become detached
from the spindle (detachment). The chromosomes again interact with the spindle MTs. When they are bi-oriented, tension is
generated, resulting in stabilization and retention of the attachments (bi-oriented attachment). When anti-poleward forces
are exerted on mono-oriented homologous chromosomes by an ultra-fine needle, chromosome detachment does not take
place (meiosis I, lower row). Blue arrows indicate MT detachment from kinetochores, the purple arrow indicates the force
exerted by the needle, and black arrows indicate transition of the attachment state. For simplicity, only one kMT attached to
each single kinetochore is shown.
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However, the elimination of erroneous attachment may be more complicated. In
meiosis I, the establishment of tension-dependent attachments does not fully account
for attachment selection. In addition, live-cell imaging has revealed that, following the
interaction of the kinetochores with spindle microtubules (MTs), chromosomes repeatedly
oscillate between the spindle poles until chromosomes undergo segregation [8–11]. Despite
the concomitant occurrence, attachment elimination has not been considered in the con-
text of chromosome oscillation in many published studies, and the relationship between
elimination of attachments and chromosome oscillation remains unclear. In this review,
I introduce a recent study on attachment establishment during meiosis I in fission yeast,
which suggests a link between chromosome oscillation and the elimination of erroneous
attachments [12], and I discuss the possible contribution of chromosome oscillation in
attachment elimination.

2. Tension-Dependent Attachment Establishment and Chromosome Dynamics during
the Establishment

First, a brief overview of the mechanisms of tension-dependent attachment establish-
ment and chromosome oscillation is described. Their mechanisms have been reviewed in
greater detail elsewhere [3,6,10,11,13–19].

2.1. The Current Model for the Tension-Dependent Attachment Establishment

In the current model, Aurora B kinase, which is enriched at the inner kinetochore/
centromere region underneath the outer kinetochore, is thought to play a central role in the
tension-dependent establishment of attachments. Aurora B weakens kinetochore–MT inter-
action by phosphorylating kinetochore components, and it has been proposed that attach-
ment establishment is dependent on tension-dependent spatial separation of attachment
sites from the Aurora B–enriched region [15,20–25] (Figure 2). Under tension, kinetochore–
MT attachment sites are spatially separated from the Aurora B–enriched region, and this
tension-dependent separation, together with the action of PP1 phosphatase [26–29], im-
pedes Aurora B–dependent phosphorylation of kinetochore components, stabilizing the
attachment (Figure 2, bi-oriented). By contrast, the proximity of tensionless attachment sites
to the Aurora B–enriched region leads to phosphorylation of kinetochore components, re-
leasing kinetochore-interacting MTs (kMTs) from the kinetochore (Figure 2, mono-oriented).
In vertebrates, Aurora A kinase additionally contributes to kinetochore phosphorylation-
dependent elimination of erroneous attachments [30,31].

In addition to erroneous mono-oriented attachment (all kinetochores attached at a
single spindle pole), a single sister chromatid or sister chromatids become erroneously
bi-oriented during mitosis or meiosis I, respectively (referred to as merotelic attachment)
(Figure 2, merotelic) [32,33]. Elimination of these merotelic attachments can also be ex-
plained by the tension-dependent spatial separation model; merotelic attachments cause
distortion and stretching of the kinetochore, resulting in the proximity of attachment sites
to the Aurora B–enriched region and the subsequent elimination of attachments (Figure 2,
merotelic) [20,23,34].
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B–enriched region occurs when associated sister kinetochores are attached to opposite poles at meiosis I (meiosis I, mero-
telic). Dotted boxes show kinetochore–MT interactions, and the predicted positions of kinetochores and the Aurora B–
enriched region. Red arrows indicate Aurora B–dependent kinetochore phosphorylation. For simplicity, only one kMT 
attached to each single kinetochore is shown. 
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Figure 2. The current model of Aurora B–dependent elimination of improper attachments. Aurora B kinase is enriched
at the inner centromere region, where sister chromatids associate with one another (red regions in dotted boxes). Bipolar
attachment of sister chromatids in mitosis, or homologous chromosomes in meiosis I, causes stretching of centromeric chro-
matin and spatial separation of the kinetochore from the Aurora B–enriched region (bi-oriented). When sister chromatids or
homologous chromosomes are attached to the same pole in mitosis or meiosis I, respectively, centromeric chromatin does not
stretch, and the kinetochores are juxtaposed with the Aurora B–enriched region (mono-oriented). This juxtaposition causes
phosphorylation of kinetochore components and elimination of attachments. When a single kinetochore is concomitantly
attached to opposite poles in mitosis, the improper attachment site of the kinetochore approaches the Aurora B–enriched
region (mitosis, merotelic). Similar spatial proximity of improper attachment sites to the Aurora B–enriched region occurs
when associated sister kinetochores are attached to opposite poles at meiosis I (meiosis I, merotelic). Dotted boxes show
kinetochore–MT interactions, and the predicted positions of kinetochores and the Aurora B–enriched region. Red arrows
indicate Aurora B–dependent kinetochore phosphorylation. For simplicity, only one kMT attached to each single kinetochore
is shown.

2.2. Chromosome Oscillation during Attachment Establishment

Kinetochores initially interact with the lateral surface of spindle MTs and then at the
MT ends, resulting in bi-oriented attachment of chromosomes (Figure 3a) (e.g., see Ref-
erences [8,35,36]). Upon spindle interaction, chromosomes instantly start back-and-forth
movements between the spindle poles, and these oscillatory movements continue until the
chromosomes undergo segregation. Oscillatory movements of the chromosomes that are
laterally interacting with the spindle MTs depend on the poleward and anti-poleward slid-
ing of kinetochore-localized MT motors, such as kinesin and cytoplasmic dynein [36–44].
On the other hand, oscillatory movements of MT end-interacting chromosomes are driven
by disassembly of kMTs, and the Ndc80 and Dam1/DASH kinetochore complexes (Ska
complex in vertebrates) couple kMT disassembly with kinetochore movements [45–66]. In
S. pombe, kinetochore-localized kinesin-8 motors also contribute to the kMT disassembly
dependent kinetochore movements [64,67–72]. In metazoans, anti-poleward forces (polar
ejection forces) generated by kinesin motor-dependent MT interactions with chromosome
arms additionally aid chromosome oscillation [73–78].
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Figure 3. The process of attachment establishment and the mechanism of oscillation of bi-oriented chromosomes. (a) The
process of chromosome attachment to the spindle in mitosis. Sister chromatids initially interact laterally with MTs extending
from the spindle pole (spindle MT) and repeat poleward and anti-poleward movements (lateral attachment). MT shortening
promotes the interaction of the kinetochore with the end of the MT (end-on attachment). After end-on attachment of one
kinetochore, the other kinetochore interacts with MTs extending from the other pole, resulting in bi-oriented attachment
of sister chromatids (bi-oriented attachment). Blue arrows show movement of chromosomes. (b) MT dynamics and
oscillation of bi-oriented chromosomes in mitosis and meiosis I. During poleward movements of bi-oriented chromosomes,
kinetochore-interacting MTs (kMTs) that extend forward of moving chromosomes (leading kMTs) undergo disassembly and
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shortening, generating pulling forces that drive chromosome movements. The kMTs extending rearward of the chromosomes
(trailing kMTs) undergo assembly and elongate. Initial switching of assembly/disassembly dynamics of kMT is induced
stochastically or by length-dependent MT disassembly factors. Subsequent changes in tension across the bi-oriented
centromeres induce switching of kMT dynamics and the reversal of chromosome movements. Upon reversal, two transition
states arise: In one state, both kMTs undergo disassembly and shorten, increasing tension and causing centromeric
chromatin, to stretch (transition state, centromere stretch); in the other state, both kMTs undergo assembly and elongate,
decreasing tension and allowing centromeric chromatin to relax (transition state, centromere relaxation). Circles indicate
the assembly/disassembly states of kMT ends. For simplicity, only one kMT attached to each single kinetochore is shown.
(c) MT-binding properties (upper panels) and MT end-tracking activity (lower panels) of kinetochore proteins that are
phosphorylated (left panels) or non-phosphorylated (right panels) by Aurora B kinase. Red arrows indicate movements of
the kinetochore proteins. The phosphorylated kinetochore proteins can move toward the minus or plus ends, and follow
both assembling and disassembling ends. The unphosphorylated kinetochore proteins do not move on MTs and cannot
follow assembling MT ends, but MT disassembly dependent release of kinetochore proteins from MT ends enables the
kinetochore proteins to follow disassembling MT ends through MT dissociation and association processes.

The oscillation of MT end-interacting bi-oriented chromosomes requires the coordinated
switching of assembly/disassembly dynamics of kMTs (reviewed in References [10,11])
(Figure 3b). During chromosome movement, leading kMTs shorten and move centromeres
forward, while trailing kMTs elongate. Switching of assembly/disassembly dynamics
of either the leading or trailing kMTs induces the coordinated switching of other kMTs
and the reversal of centromere movements [79]. Various in vitro, in vivo, and in silico
studies have demonstrated that initial switching is induced either stochastically or by MT
length-dependent disassembly factors, and that changes in tension across the bi-oriented
centromeres causes subsequent switching of other kMTs [8,70–72,80–90] (Figure 3b, transition
state).

Like the establishment of chromosome attachment, chromosome oscillation is regu-
lated by Aurora B kinase. It was shown that the introduction of an Ndc80 variant whose
Aurora B phosphorylation sites were replaced with alanine inhibited chromosome oscil-
lation but allowed poleward movement of centromeres [91,92]. This demonstrates that
Aurora B–dependent kinetochore phosphorylation is required for chromosome oscilla-
tion but not for poleward chromosome movements. Consistently, Aurora B–dependent
kinetochore phosphorylation is crucial during the chromosome oscillation stage but not
during anaphase, where chromosomes move solely poleward (reviewed in Reference [13]).
In support of the dispensability of Aurora B–dependent phosphorylation for poleward
chromosome movements, in vitro studies have demonstrated that non-phosphorylated
kinetochore components can follow disassembling MT ends and couple MT disassembly
with cargo movements [49,61,93–95]. Aurora B–dependent phosphorylation weakens MT
affinity of the kinetochore components and allows their bi-directional, diffusion-like sliding
on MTs [61,93,94,96–98]. Perhaps, bi-directional sliding of the phosphorylated kinetochores
allows chromosome oscillation by enabling kinetochores to follow both assembling and
disassembling MT ends, but strong non-mobile interaction of the non-phosphorylated kine-
tochores would allow only MT disassembly–dependent poleward centromere movements
(Figure 3c) [50].

3. Problems with the Tension-Dependent Spatial Separation Model during Meiosis

Although numerous studies have provided evidence that supports a tension-dependent
spatial separation model, the mechanism by which attachment is established in meiosis
remains unclear. In the fission yeast Schizosaccharomyces pombe, sister centromeres split
upon bi-oriented attachment [99,100], enabling the sister kinetochores to readily face in
opposite directions during meiosis I (Figure 4a). In this situation, the Aurora-enriched
region would remain away from the attachment sites. Moreover, in mouse oocytes, tension
generated at the kinetochores does not correlate with proper attachment, and attachment
sites under tension are not spatially separated from the Aurora-enriched region [101].
Therefore, the tension-dependent spatial separation model does not fully account for the
elimination of erroneous attachments during meiosis I.
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Figure 4. A problem with the tension-dependent spatial separation model and attachment elimination by chromosome
oscillation. (a) A problem with the tension-dependent spatial separation model at meiosis I in fission yeast. Because
sister centromeres separate from each other after their bi-oriented attachment, orientation of kinetochores/centromeres
easily changes. Consequently, erroneous attachment sites do not approach the Aurora B–enriched region, preventing
the phosphorylation of kinetochore components by Aurora B. (b) The model for oscillation-dependent elimination of
improper attachments at meiosis I (meiosis I) and in mitosis (mitosis). During poleward movements of erroneously attached
chromosomes, kMTs extending forward shorten, whereas those extending rearward elongate. Unsynchronized switching of
assembly/disassembly dynamics of kMTs generates occasions, in which chromosome association-dependent pulling (purple
arrows) exerts a minus end-directed load on assembling kMT ends (red circles), leading to kMT detachment. Such situation
cannot occur at proper attachment sites (see Figure 3b). Meiosis I/merotelic: simultaneous bi-oriented attachments of one
sister chromatid pair and homologous chromosomes; meiosis I/mono-oriented: mono-oriented attachment of homologous
chromosomes; mitosis/merotelic: simultaneous bi-oriented attachments of a single chromatid and both sister chromatids;
mitosis/mono-oriented: mono-oriented attachment of both sister chromatids. Circles indicate the assembly/disassembly
states of kMT ends. For simplicity, only one kMT attached to each single kinetochore is shown.
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4. The Intimate Relationship between Attachment Elimination and
Centromere Oscillation

The very recent study by Wakiya et al. demonstrated the intimate relationship between
elimination of erroneous attachment and centromere oscillation during meiosis I chromo-
some segregation in S. pombe [12]. It is well-known that the connection of homologous
chromosomes by the chiasma is essential for the bi-oriented attachment of homologous
chromosomes during meiosis I. However, it has also long been known that the chiasma is
essential for mono-oriented attachment of sister chromatids [34,100,102–105]. It was found
that the spindle assembly checkpoint (SAC) factor Mad2, which delays anaphase onset
to correct erroneous attachment, and the S. pombe Aurora B kinase Ark1 are crucial for
chiasma-dependent mono-oriented attachment of sister chromatids. In the presence of
chiasmata, Mad2 and Ark1 promoted elimination of bi-oriented attachments of sister chro-
matids, whereas, in the absence of chiasmata, they promoted elimination of mono-oriented
attachments. These results indicated that the chiasma changed attachment-correction pat-
terns by enabling error-correction factors to eliminate the bi-oriented attachment of sister
chromatids, which is otherwise not subject to elimination.

Although a decrease in tension is thought to cause attachment elimination, an exam-
ination of inter sister centromere distances failed to demonstrate a significant reduction
in tension across sister centromeres in chiasma-forming cells and rather suggested that
a subset of bi-oriented sister centromeres was under greater tension in the presence of
chiasmata. A further investigation of centromere dynamics demonstrated that the chiasma
coordinates homologous centromere oscillation. These observations raised the possibility
that coordinated chiasma-dependent homologous centromere oscillation contributes to
the elimination of bi-oriented attachments of sister chromatids. Analyses of cells lacking
the kinetochore component Dam1 has provided evidence supporting this possibility. In
cells containing a deletion of the dam1 gene (dam1∆), correction of erroneous attachments
was compromised, as observed in mad2- or ark1-mutant cells; bi-oriented attachment of
sister chromatids increased in the presence of chiasmata, but it conversely decreased in the
absence of chiasmata. Detailed analysis of centromere dynamics demonstrated that the
dam1∆ mutation did not compromise spindle elongation-dependent chromosome segrega-
tion (anaphase B) but completely abolished homologous centromere oscillation together
with anaphase poleward centromere movements (anaphase A), both of which depend on
kMT disassembly. The coincidental impairment of attachment correction and homologous
centromere oscillation observed in dam1∆ cells supported the possibility that chromosome
oscillation contributes to attachment elimination.

5. The Possible Contribution of Centromere Oscillation to Attachment Elimination

By what mechanism could coordinated centromere oscillation contribute to attachment
elimination? In chiasma-forming cells, when homologous chromosomes oscillate with
one of sister chromatid pairs improperly bi-oriented, stochastic, and/or length-dependent
switching of assembly/disassembly dynamics of kMTs perhaps gives assembling kMT
ends a chance to experience a chiasma-dependent minus end-directed load specifically
at improper attachment sites (Figure 4b, meiosis I, merotelic). Wakiya et al. proposed
that the application of the minus end-directed load to assembling kMTs results in their
detachment [12]. Detachment of kMTs may result from bringing of the kMT ends to the
Aurora-enriched region. Alternatively, kMT detachment may result from the intrinsic weak
resistance of the kinetochore attachment to the assembling kMT ends against a minus
end-directed load. In support of the latter possibility, a XMAP215/Dis1 family kinetochore
component in budding yeast, Stu2, attached to assembling MT ends can withstand a tensile
force of ~4 pN under a plus end-directed load [106], while Xenopus XMAP215 can withstand
a force of only ~1 pN under a minus end-directed load [107].

Oscillation-dependent attachment elimination could also be responsible for the elim-
ination of merotelic attachments of a single chromatid (Figure 4b, Mitosis, merotelic).
Coordinated, cohesin-dependent oscillation of sister centromeres could eliminate merotelic
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attachments in mitosis in the same way that a coordinated oscillation of homologous chro-
mosomes eliminates bi-oriented attachments of sister centromeres. Supporting this idea,
a loss of sister chromatid cohesion has been shown to cause merotelic attachment [108].
In this scenario, the elastic kinetochore/centromere structure, which is important for var-
ious kinetochore functions including kinetochore–MT interaction, SAC regulation, and
force generation [44,109–113], may be crucial for the elimination of merotelic attachments.
Upon merotelic attachment, stretching of the kinetochore and centromere chromatin repo-
sitions the bi-oriented attachment sites so that they face in opposite directions on opposing
sides [32,114]; this positioning may contribute to the efficient application of a minus end-
directed load to improper attachment sites during centromere oscillation.

Notably, this model can also account for the elimination of erroneous mono-oriented
attachments (Figure 4b, mono-oriented). During poleward movement of chromosomes,
the switching of kMT assembly/disassembly dynamics could cause the application of a
minus end-directed load to assembling kMT ends, resulting in kMT detachment. When
this poleward chromosome movement is blocked, by physical intervention with an ultra-
fine needle, for example [4], kMT detachment may not occur due to a lack of the minus
end-directed load.

In the oscillation-dependent model, a decrease in overall tension is not the direct cause
of attachment elimination, but a tension decrease is still crucial for attachment elimina-
tion. There is no doubt that tension increases as the number of bi-oriented attachments
increases [115,116]. A gradual elevation of tension may incrementally decrease the phos-
phorylation levels of kinetochore components (e.g., see References [25,116–118]). The
incremental dephosphorylation of kinetochores may gradually increase the MT binding
affinity of kinetochores, as seen for dephosphorylation-dependent increase in MT binding
affinity of Ndc80 [97]. An alternative but not mutually exclusive possibility is that increased
tension alters the phosphorylation state of kinetochores. Kinetochore phosphorylation is
regulated by PP1 phosphatases and Aurora B kinase [26–29]. Antagonistic actions of these
enzymes perhaps maintain the phosphorylation state of kinetochores during metaphase,
but once tension exceeds some threshold, kinetochores become irreversibly and completely
dephosphorylated [119–122]. In either case, upon establishment of bi-oriented chromosome
attachment, tension converts the dynamic metaphase-like attachment into an anaphase-like,
non-eliminable attachment that allows only poleward movements, linking attachment es-
tablishment with the metaphase-to-anaphase transition. In the model, a decrease in tension
would increase kinetochore phosphorylation, making the kinetochore more susceptible to
attachment correction. This would account for the promotion of attachment correction by
reduced tension [123,124].

6. Future Direction

The mechanisms of attachment establishment and metaphase centromere oscillation
have been extensively studied at the molecular level. However, the relationship between
attachment establishment and centromere oscillation is poorly understood. It is apparent
that attachment establishment must be studied in the context of centromere oscillation
because these processes take place concurrently. The recent study of S. pombe suggested
that centromere oscillation contributes to attachment elimination. However, whether cen-
tromere oscillation directly contributes to attachment elimination remains to be elucidated.
In dam1∆ cells of S. pombe, for instance, the lack of centromere oscillation may result in
loss of tension at the kinetochores, thereby impairing selective elimination of erroneous
attachments, and centromere oscillation may not directly contribute to elimination. To
validate this model further, it will be important to understand the details of the relationship
between attachment elimination and centromere oscillation. In this regard, the effects of
phospho-mutations at the Aurora B–phosphorylation sites of kinetochore components on
attachment correction and centromere oscillation should be intensively studied, as Aurora
B regulates these processes. Furthermore, it would be inevitable to investigate whether
kinetochore attachment to the assembling MT ends is indeed weak against the minus
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end-directed load, using single-molecular techniques. Undoubtedly, understanding the
relationship between attachment establishment and centromere oscillation will contribute
to our understanding of faithful chromosome segregation, which is essential for the stability
of eukaryotic genomes.
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