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O P T I C S

Harnessing optoelectronic noises in a photonic 
generative network
Changming Wu1, Xiaoxuan Yang2, Heshan Yu3, Ruoming Peng1, Ichiro Takeuchi3,  
Yiran Chen2, Mo Li1,4*

Integrated optoelectronics is emerging as a promising platform of neural network accelerator, which affords effi-
cient in-memory computing and high bandwidth interconnectivity. The inherent optoelectronic noises, however, 
make the photonic systems error-prone in practice. It is thus imperative to devise strategies to mitigate and, if 
possible, harness noises in photonic computing systems. Here, we demonstrate a photonic generative network as 
a part of a generative adversarial network (GAN). This network is implemented with a photonic core consisting of 
an array of programable phase-change memory cells to perform four-element vector-vector dot multiplication. 
The GAN can generate a handwritten number (“7”) in experiments and full 10 digits in simulation. We realize an 
optical random number generator, apply noise-aware training by injecting additional noise, and demonstrate the 
network’s resilience to hardware nonidealities. Our results suggest the resilience and potential of more complex 
photonic generative networks based on large-scale, realistic photonic hardware.

INTRODUCTION
The current rate of improvement in digital electronics’ energy effi-
ciency (1–3) is lagging behind the fast-growing computational load 
(4, 5) spurred by the widespread implementation of large-scale artifi-
cial neural networks for machine learning and artificial intelligence 
(6–11). Because of its advantages in power efficiency, communi-
cation bandwidth, and parallelism (12–19), analog optical computing 
based on integrated optoelectronic processors (20–25) is once again 
brought into focus as a hardware accelerator for neural networks. 
Photonic neural networks reported to date (17, 20, 22, 23, 26, 27) are 
predominantly hybrid optoelectronic systems in which the photonic 
components are used for linear multiplication and interconnect, 
while nonlinear functions and feedback control are implemented 
electronically. Compared to electronic neural networks using digi-
tal processors, photonic neural networks have higher inaccuracy and 
error rates due to their analog nature and the abundance of opto-
electronic noises in the hardware. The accumulation of computa-
tional errors in large-scale photonic neural networks could severely 
impair their performance (28–30), limiting the computation effec-
tiveness and scalability. Although several offline noise-aware training 
schemes, including injecting noises to layer inputs (29, 31), synaptic 
weights (28, 32), and preactivations (33, 34), have been proposed to 
mitigate analog hardware nonidealities (21, 30, 35, 36), those schemes 
only address discriminative models. In another study, a diffractive 
optics–based network is trained with carefully drafted parametric 
randomness to be robust against optical nonidealities (37, 38). Noise 
in the analog hardware has also been used to facilitate various ma-
chine learning algorithms (39–42). In contrast to discriminative mod-
els, generative neural network models can automatically discover 
and learn regularities or patterns from the training data to generate 

plausible new instances (43–45). So far, a photonic generative network 
has not been reported, and the corresponding noise mitigation strat-
egies have not been explored.

Here, we demonstrate a generative network on the basis of a pho-
tonic computing core consisting of an array of programmable phase- 
change metasurface mode converters (PMMCs) (46). This photonic 
generative network is combined with a discriminator to realize a 
generative adversarial network (GAN) that is trained to generate 
handwritten numbers. We show that the photonic GAN can harness 
and mitigate optoelectronic noises and errors in three ways. First, we 
use the amplified spontaneous emission (ASE) noise to realize an op-
tical true random number generator (RNG) (47, 48), which is used as 
the input to the GAN. This optical RNG efficiently generates random 
numbers at high speed in multiple wavelength channels by slicing the 
ASE spectrum(48–50). Second, we analyze error sources originating 
from the components in the photonic GAN and propose noise-aware 
training approaches by augmenting noises during the training pro-
cess, which improves the network’s performance and robustness. 
Last, we validate the training approaches through experiment and 
simulation and demonstrate that the photonic GAN can benefit from 
the inevitable random errors in practical implementation. Unexpect-
edly, the images generated by nonideal photonic hardware show even 
higher quality than those by ideal, errorless counterparts (i.e., soft-
ware baseline). Our results demonstrate the feasibility and resilience 
of more complex photonic GANs using nonideal optoelectronic hard-
ware. Because the proposed noise-aware training approaches are 
generic, they can be applied to various types of optoelectronic neuro-
morphic computing hardware.

RESULTS
Photonic generative networks in a GAN architecture
A GAN network consists of two subnetwork models (Fig. 1A): a 
generator and a discriminator (49–51). These two models compete 
against each other in a zero-sum game: The discriminator strives 
to distinguish the instances produced by the generator (labeled 
as the “fake” instances) from the real instances in the training data-
set (labeled as the “real” instances); the generator aims to fool the 
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discriminator by producing instances that imitate the real in-
stances. The competition drives both networks to improve their 
capabilities until an equilibrium state is reached, i.e., when the 
fake instances are indistinguishable from the real instances by the dis-
criminator, so the generator is deemed well trained to generate plau-
sible new instances. In this work, we design a prototype photonic 
generator to produce images of the handwritten number “7” using a 
noise-aware offline training configuration: We first train the gener-
ator model on a computer (52) and implement it on the photonic 
platform (Fig. 1B). Here, we only focus on realizing the photonic gen-
erator because the photonic discriminator has been demonstrated 
previously by many groups, including us (16, 17, 20, 46). As shown 
in Fig. 1C, in each layer of the generator, the input data are encoded 
in the power of the optical signals through multiple wavelength chan-
nels, processed by the PMMC photonic tensor core (Fig. 1D), in 
which the kernel matrices are stored. The results are detected by the 
photodetector arrays. Electronic postprocessing is then performed 
to apply nonlinear functions. The results are reencoded into the op-
tical signals and relayed to the next photonic layer. In such an optical 
network, various noises—including optical and electrical noises of 
the optical sources, modulators, and photodetectors—are accumulat-
ing through the processes of programming (i.e., writing) the kernel 
matrices, data encoding, and data transferring (i.e., reading) between 
the layers of the network.

Optical RNG
One key component of the photonic generator is the optical RNG 
that produces the random input. To realize it, we use the ASE noise 
from the erbium-doped fiber amplifiers (EDFAs), which are ubiq-
uitous in fiber-optic communication systems, to generate ran-
dom optical signals at high rates in four parallel channels as shown 
schematically in Fig. 2A. Here, the ASE noise is first filtered with 
wavelength division multiplexing (WDM) demultiplexers and then 
detected with photodetectors. The generated baseband electrical 
currents due to beating between different frequency components are 
the so-called “ASE-ASE beat noises” (53, 54). The DC photocurrent 
is filtered by a DC block, passing only the stochastic photocurrent 
variances to a sampling oscilloscope to generate random numbers 
(see the Supplementary Materials for the theory of the optical RNG). 
Figure 2 (B and C) plots the statistical histogram and a representa-
tive trace of the random numbers (in voltage) generated in a single 
WDM channel, respectively. The probability density function is well 
approximated by a zero-mean Gaussian distribution with a standard 
deviation (SD) of 0.2 V [i.e., N(0, 0.2)]. We further calculate the correla-
tion coefficient of an N = 5 × 104 number long sequence (Fig. 2D), 
which reaches the limit of  1 /  √ 

_
 N    (red line in Fig. 2D), proving the 

randomness of the number sequence. Because of the limited size of 
the photonic tensor core, we need to measure and record the ran-
dom numbers from the RNG and repeatedly input them to the 
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Fig. 1. Photonic GAN network with optoelectronic noises. (A) A GAN architecture is composed of two subnetwork models: a generator and a discriminator. The gen-
erator competes with the discriminator during training and produces new instances after it is trained. (B) The offline noise-aware training and inference processes flow of 
the generator. The process of mapping the trained weight to the hardware during implementation inevitably introduces optoelectronic noise. (C) Decomposition of the 
generator into individual layers. In each layer, the input signals pass through the photonic tensor core and are converted to the electrical domain by photodetectors (PDs). 
After postprocessing, the data are converted back into the optical domain and transferred to the next layer. EOM, electro-optic modulator. (D) Optical microscopic image 
of the photonic tensor core consisting of four input channels. The optical RNG is input to the photonic tensor core through O/E and E/O conversion in our experiment. 
Potentially, the optical RNG can be directly sent into the tensor core using WDM schemes. DEMUX, demultiplexers. (E) The false-colored scanning electron microscopy 
(SEM) image of the photonic tensor core. The Si3N4 waveguide, the GST metasurface, and the Al2O3 protection layer are colored green, red, and blue, respectively. Scale 
bar, 10 m. Inset: The zoomed-in SEM image of the phase-gradient metasurface on the waveguide. Scale bar, 2 m.
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generator during the experiment (see Fig. 1D). In future full-scale 
systems, the filtered ASE noise can be directly used as random opti-
cal inputs to the GAN without electrical sampling (the dashed box 
in Fig. 1D) and detected after the first layer of the network is performed.

Photonic tensor core error analysis
The other key component of the photonic generator is the photonic 
tensor core, which optically performs matrix-vector multiplication 
(MVM). The inset in Fig. 1C shows the schematic of one PMMC 
kernel element of the core that computes multiply accumulate (MAC): 
x ➔ x ∙ w + b, the fundamental operation of MVM. The PMMC con-
sists of an array of Ge2Sb2Te5 (GST) nanoantennas with tapering 
widths (see Fig. 1E for the scanning electron microscopy images), 
forming a phase-gradient metasurface patterned on a silicon nitride 
waveguide (46). The input vector element x is encoded in the power 
of the input optical signal. The corresponding kernel element weight 
w is represented using the TE0/TE1 mode contrast  = TE0 − TE1 at 
multiple intermediate levels between [–1,1], where TE0  (TE1) = 
PTE0 (TE1)/(PTE0 + PTE1) is the mode purity and PTE0 (PTE1) is the 
power of the TE0 (TE1) mode component in the waveguide. Thus, the 
MAC computation is simplified to an incoherent optical transmission 
measurement and can be performed over a broad bandwidth. Figure 2E 

shows the evolution of  during the programming process of using 
optical control pulses to set negative (−0.7), zero (0.0), and positive 
(0.7) values, respectively. We implement the network model on a 
2 × 2 tensor core with four PMMCs (Fig. 1D). The kernel weight 
Wij

l value is mapped to the corresponding mode contrast    ij  l    as    ij  l   =  
W ij  l   ⋅ ( ∣∣ max  l   /  ∣W∣ max  l  ) , where   ∣∣ max  l    is the maximum absolute 
mode contrast and   ∣W∣ max  l    is the maximum absolute kernel weight 
of layer l. Given the limited number of PMMCs on a chip, we re-
peatedly reset the kernel elements on the same devices, which bot-
tlenecks the computing speed. With a sufficiently large tensor core 
in a photonic crossbar array architecture (55–57), one could directly 
map the full kernel matrices to the hardware so the computing speed 
will be much accelerated.

The analog nature of weight programming and data encoding and 
transferring in the photonic neural network limits the precisions of 
MVM calculations and makes the computation error-prone. The com-
putation errors would accumulate through the layers of the network 
and impair the final results. Because in realistic experiments, the com-
putation errors stem from various optoelectronic noises in the system, 
we use the terms of noise and error interchangeably. To quantify the 
noises and errors in our system, we repeatedly program different fixed 
 values and estimate the short-term inaccuracy by measuring the 
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Fig. 2. Optical RNG and kernel programming errors. (A) Schematic of the optical RNG. The ASE noise is spectrally sliced into four wavelength channels using DEMUX 
and then detected with photodetectors. After a DC block, the random electrical signals are sampled by an oscilloscope. a.u., arbitrary units. (B and C) Statistical histograms 
(B) and a representative trace (C) of the generated random numbers. The generated random number follows the Gaussian distribution. (D) Correlation coefficient 
as a function of lag for the random number sequence. A random number sequence with length N = 5 × 104 has a correlation coefficient (blue dots) around the lower 
limit  1 /  √ 

_
 N    (red line). (E) Process of programming the mode contrast of a kernel element using optical pulses. The target  values are −0.7, 0, and 0.7, respectively. 

(F) Histogram of  value distribution when the kernels are repeatedly set to be −0.7, 0, and 0.7, respectively. The SD for each setting is 0.37, 0.67, and 0.68%, respectively. 
(G) Histograms of the error distribution in the experimental measurement (solid) and the simulation (hashed) when assuming the l

ij follow a Gaussian distribution with 
an SD of 5%. Inset: Measured MVM accuracy for 4900 MVM operations in the first layer of the network.
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variation . Figure 2F shows that the SD of 15 programming opera-
tions is less than 0.7%, corresponds to 6 bits in resolution, which is 
one order of magnitude larger than the input encoding error (see 
the Supplementary Materials for more detailed error analysis). Thus, 
the short-term programming inaccuracy  (write error), limited 
by the inaccuracy of the programming optical pulses, is one of the 
dominant error sources. Another error source is the long-term mea-
surement fluctuations (read error), including the noise of photo-
detectors, the variation of the O/E and E/O conversions, and the 
thermo-optic fluctuation of the phase-change material (PCM). These 
errors collectively contribute to an effective error    W ij  l   = ( ∣∣ max  l   /  
∣W∣ max  l  ) ⋅   ij  l    on the kernel element weight   W ij  l   , where    ij  l    is the 
total write error. To estimate the computation error of the overall 
system, Fig. 2G compares the measured MVM error distributions 
with the simulation, which assumes a Gaussian distribution of error. 
The result estimates the overall error    ij  l    to be 5%, corresponding 
to more than 3 bits in resolution, which we subsequently use in the 
noise-aware training and simulation.

Unlike the discriminative network, where the input regularities 
or patterns are well defined, the generator network takes random 
numbers as the input. It would be more susceptible to the effective 
weight setting noise    W ij  l   , which could degrade the quality of the gen-
erated new instances (58, 59). To reveal the noise effect on the GAN, 
we emulate the noisy hardware on a GAN model that is trained using a 
noiseless offline training approach but add a random error Wl

ij [in-
troduced by l

ij with a Gaussian distribution N(0, 0.05)] when us-
ing it to generate images. Figure 3A plots 49 images of 14 × 14 pixels 

generated from simulation using random inputs produced by the 
optical RNG. These images show the handwritten number 7 but with 
very noisy backgrounds, demonstrating that the noise-free training 
algorithm is impaired by the practical weight setting noise (see the 
Supplementary Materials for the detailed comparison between infer-
ence results using accurate and inaccurate kernels).

Therefore, it is necessary to consider hardware noise during train-
ing to realize a GAN that is resilient to realistic noises. Theoretically, 
it has been proven that adding noises to the training data of a neural 
network is equivalent to an extra regularization added to the error 
function (31), which can significantly improve hardware noise tol-
erance in a discriminative neural network. Meanwhile, it was shown 
that introducing noise on kernel weights during training enhances 
the robustness against weight perturbations of multilayer perceptrons 
(28), such that inference accuracy close to the software baseline could 
be achieved. However, previous demonstrations of noise-aware solu-
tions are limited to discriminative networks. For GAN, theoretical, 
simulation, and experimental validations of effective noise-aware solu-
tions are still lacking and require further investigation.

Noise-aware training of the photonic generative model
For our photonic GAN, we propose and experimentally validate two 
noise-aware training approaches, namely, the input-compensatory 
approach (IC-GAN) and the kernel weight-compensatory approach 
(WC-GAN), to improve the network’s tolerance to the effective weight 
setting noise Wl

ij. The IC-GAN approach inflates the SD of 
the random signal input from the experimental value of 0.2 to 0.5 V 
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The FIDs from the experimentally generated images are denoted by the red lines.
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during training. The WC-GAN approach adds l
ij with 5% SD to 

the corresponding weight at each forward-propagation pass but per-
forms noiseless gradient descent in the back-propagation pass (see 
Fig. 1B and the Supplementary Materials for the training procedure 
of these noise-aware training approaches). Figure 3 (B and C) shows 
the experimentally generated images of handwritten number 7 by the 
photonic GAN trained using both approaches. For a fair comparison, 
the random number inputs used for inferences are produced by the 
same optical RNG. Compared to the images generated by the noise 
free–trained GAN (NF-GAN) (Fig. 3A), the images generated using 
both noise-aware approaches display much clearer patterns with lower 
background noise, validating the noise tolerance of the IC-GAN and 
WC-GAN. Furthermore, we observe that the images generated by 
the WC-GAN (Fig. 3C) have richer handwritten-like features than 
those by the IC-GAN (Fig. 3B), with more diverse variations in styles. 
Therefore, we conclude that the WC-GAN is advantageous for prac-
tical implementation using nonideal analog hardware.

DISCUSSION
To quantitatively compare the GAN performance, we use the 
standard metric of Frechet inception distance (FID), which eval-
uates both the fidelity and diversity of the generated images by com-
paring the feature distribution in the generated images with images 
from the training dataset. The lower the FID score, the better per-
formance of the GAN (51). In Fig. 3D, the FIDs of the images gen-
erated by the NF-GAN (36, 51, 60), the IC-GAN, and the WC-GAN, 
respectively, are compared, assuming either ideal (FIDideal) or noisy 
(FIDnoisy) hardware (see the Supplementary Materials for detailed 
steps to calculate the FID). The FIDnoisy (hashed bars in Fig. 3D) is the 
lowest for the WC-GAN and the highest for the NF-GAN, consistent 
with the observation in Fig. 3 (A to C). The impact of hardware noise 
FID = FIDnoisy − FIDideal is plotted in Fig. 3E. The noise-aware 
WC-GAN and IC-GAN show two notable benefits. First, the FIDideal 
(solid bars in Fig. 3D) for the WC-GAN is lower than the NF-GAN 
[e.g., the software baseline (61)], indicating that introducing noises 
during training helps GAN to learn better. Such a gain is absent in dis-
criminative networks, where the inference accuracies of the noise-
aware trained model cannot exceed the software baseline (29, 30, 33, 34). 
Second, unexpectedly, the noise impact results (Fig. 3E) show that, 
unlike the NF-GAN, the WC-GAN and IC-GAN implemented on 
the photonic hardware with practical noise (hashed bars in Fig. 3D) 
perform even better in inference than the noiseless hardware (solid 
bars in Fig. 3D). In contrast, a discriminative network’s inference 
accuracy always decreases with more noisy hardware (37, 38). This 
unexpected gain in performance suggests photonic neural networks’ 
potential in generative models despite the inevitable optoelectronic 
noises and errors.

Optical computation in this work is performed at a low speed of 
4000 operations per second (4 KOPS), limited by the use of the low-
speed variable optical attenuators (VOAs) to encode data and the 
small-scale 2 × 2 tensor core. However, the state-of-the-art integrated 
photonic transmitters and photodetectors can drive the system at many 
10s of Gbits/s. The size of the photonic core can be further scaled up 
to a much larger array. Assuming a moderate data rate of 10 Gbits/s 
and four WDM channels, the computing density of a photonic tensor 
core can reach an upper-bound value of 25 TOPS/mm2 (tera opera-
tions per second per square millimeter), significantly higher than 
that of the state-of-the-art digital electronics. To predict whether the 

noise-aware approaches performance gain is scalable, in simulation, 
we train a larger-scaled GAN to generate images of all 10 number 
digits using ideal or noise-aware approaches under various levels 
of writing errors. Figure 4A shows the FID score of the results as 
a function of l

ij. Here, the curvature regularization approach 
(CR-GAN), which evolves from the WC-GAN, is used to improve 
the GAN robustness further (see the Supplementary Materials for 
more details about the CR-GAN). The comparison shows that the 
CR-GAN performs better than the NF-GAN at every error level. 
Note that, under our present realistic noise level of 5% (Fig. 3G), the 
FID of CR-GAN is still below the software baseline, whereas the 
NF-GAN’s FID is higher than the baseline. For both approaches, 
with the increasing noise level, the FID first drops until reaching a 
minimum at ~2.5% noise and then increases. To explain this, we fur-
ther examine the images generated by CR-GAN at three noise levels: 
0, 5, and 10% in Fig. 4 (B to D). The comparison shows that the in-
creasing hardware noise in GAN would improve the diversity [eval-
uated by the SD of the percentage of each number classes in the 
generated images (58); see the Supplementary Materials for more de-
tails] but, at the same time, reduce the fidelity of the generated images 
(58). The trade-off results in a minimal FID at ~2.5% noise, as shown 
in Fig. 4A. Throughout the full range of noise levels, the noise-aware 
approach consistently improves the GAN over the noiseless approach.

In conclusion, we demonstrate a photonic generative network on 
the basis of phase-change photonics, which is used to form a GAN 
network and harnesses the intrinsic noise sources in the photonic 
system. Unlike the previously demonstrated discriminative networks 
that suffer from the hardware noise, our experimental and simulation 
results show that the photonic generative network not only can tolerate 
but also can benefit from a certain level of hardware noise after train-
ing by noise-aware training approaches. Our finding expands the 
current implementation of photonic neural networks to generative 
models (62), in which the inevitable and ubiquitous optoelectronic 
noises and errors can be mitigated and even leveraged in intelligent 
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range of FID over five individual tests. The FID is lower for CR-GAN at every noise 
level. At the measured noise level of 5% (black dashed line), the FID for CR-GAN is 
below the software baseline (solid green line), while the FID for the NF-GAN is 
above it. (B to D) 50 images (size, 14 × 14) generated by CR-GAN assuming effective 
mode contrast setting noise of (B) 0%, (C) 5%, and (D) 10%.
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ways. We emphasize that the proposed noise-aware training ap-
proaches are generic and thus applicable to various types of opto-
electronic neuromorphic computing hardware. The improved noise 
resilience of the model also implies their scalability in large-scale 
photonic neural networks with tightly cointegrated electronics and 
photonics.

MATERIALS AND METHODS
PMMC design and fabrication
The PMMC consists of a phase-gradient metasurface made of GST 
thin film on silicon nitride waveguides. The metasurface is designed 
to convert the incident TE0 mode into the TE1 mode when GST is in 
the crystalline phase while maintaining the TE0 mode when GST is 
in the amorphous phase. The PMMC is fabricated by depositing a 
30-nm-thick GST film using a sputtering tool on an oxidized sili-
con substrate with 330-nm-thick silicon nitride film. The GST film is 
then patterned into the metasurface using standard electron beam 
lithography and inductively coupled plasma etching processes. A 
218-nm-thick Al2O3 layer is deposited with atomic layer deposition 
to cap the GST conformally.

Measurement setup
The measurement set up to operate the photonic tensor core is shown 
in fig. S2. The input optical signals are carried by four different wave-
lengths using four tunable continuous wave lasers. The signal am-
plitudes are controlled by VOAs with a 1-kHz operation speed. An 
additional control laser coupled with a 1 × 4 optical switch is used 
to optically program the kernel weight into each GST PMMC. The 
control pulses are generated with a 12-GHz electro-optical modula-
tor and amplified by a low noise EDFA. The energy of each control 
pulse is further tuned using another VOA. The input signals and the 
control pulses are coupled into the photonic device via integrated 
grating couplers with a coupling efficiency of ~20%. The input sig-
nals propagate forward through each input channel, while the control 
pulses propagate in the opposite direction through the TE1 detection 
waveguides. The optical power in TE0 mode is combined on-chip 
using integrated Y junctions and detected. The optical power in the 
TE1 mode is collected and combined off-chip. The mode power con-
trast is measured to give the MVM results.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm2956
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