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Stroke poses a serious threat to human health and burdens both society and the
healthcare system. Standard rehabilitative therapies may not be effective in improving
functions after stroke, so alternative strategies are needed. The FDA has approved
vagus nerve stimulation (VNS) for the treatment of epilepsy, migraines, and depression.
Recent studies have demonstrated that VNS can facilitate the benefits of rehabilitation
interventions. VNS coupled with upper limb rehabilitation enhances the recovery of
upper limb function in patients with chronic stroke. However, its invasive nature limits its
clinical application. Researchers have developed a non-invasive method to stimulate the
vagus nerve (non-invasive vagus nerve stimulation, nVNS). It has been suggested that
nVNS coupled with rehabilitation could be a promising alternative for improving muscle
function in chronic stroke patients. In this article, we review the current researches in
preclinical and clinical studies as well as the potential applications of nVNS in stroke. We
summarize the parameters, advantages, potential mechanisms, and adverse effects of
current nVNS applications, as well as the future challenges and directions for nVNS in
cerebral stroke treatment. These studies indicate that nVNS has promising efficacy in
reducing stroke volume and attenuating neurological deficits in ischemic stroke models.
While more basic and clinical research is required to fully understand its mechanisms of
efficacy, especially Phase III trials with a large number of patients, these data suggest
that nVNS can be applied easily not only as a possible secondary prophylactic treatment
in chronic cerebral stroke, but also as a promising adjunctive treatment in acute cerebral
stroke in the near future.

Keywords: non-invasive vagus nerve stimulation, transcutaneous cervical VNS, transcutaneous auricular VNS,
rehabilitation, stroke, parameters

INTRODUCTION

It is estimated that there will be approximately 200 million stroke patients in the world by 2050
(Brainin et al., 2020). Despite extensive therapeutic advances in recent years, stroke including
ischemic and hemorrhagic (roughly 87 and 13%) (Kuriakose and Xiao, 2020), is still a leading cause
of disability and a significant health problem worldwide. Approximately 60% of patients who suffer
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stroke only partially recover or are unable to recover within
6 months (Lee et al., 2015). Therefore, it is paramount to develop
novel complementary treatment approaches that can be easily
applied and do not interfere with established protocols including
thrombolysis and thrombectomy.

During stroke rehabilitation, developing effective and
evidence-based therapies to reduce impairment, improve
functional activities, and enhance participation in activities are
important goals. Neurostimulation techniques have been used
increasingly in clinical and fundamental neuroscience. Vagus
nerve stimulation (VNS), a Food and Drug Administration
(FDA)-approved addition to medication for the treatment of
partial epilepsy, depression, and primary headache disorders,
is one potential therapy (Ben-Menachem, 2002; Yuan and
Silberstein, 2016; Carreno and Frazer, 2017). It has also
recently been recognized that VNS has the potential to enhance
the recovery from neurological injuries, including stroke
(Khodaparast et al., 2014, 2016; Capone et al., 2017; Dawson
et al., 2021). The VNS-REHAB study, which was recently
published in the Lancet, supports the use of VNS as a new
therapeutic option for limb paralysis caused by an ischemic
stroke (Dawson et al., 2021). In clinical practice, two methods
of stimulation are used: invasive vagus nerve stimulation
(iVNS) and non-invasive vagus nerve stimulation (nVNS)
(Mertens et al., 2018; Wang et al., 2021c). nVNS are non-
invasive devices that have been developed to stimulate the vagus
nerve transcutaneously. By which, unique risks and adverse
events associated with implants such as medical care, infection,
peritracheal hematoma, damaged vocal cords, and dyspnea are
precluded or reduced (Ben-Menachem et al., 2015; Zhao X.-P.
et al., 2019; Li et al., 2020b). Furthermore, nVNS delivery systems
may be more suitable for emergency patients who have suffered
bursts of ischemic stroke. These systems may not require a
surgical procedure, thereby improving patient safety.

As nVNS continues to rapidly grow in popularity and
application in stroke, the field generally lacks a consensus
on optimum initial time, stimulation cites, and stimulation
parameters. The question of whether the nVNS can have the same
effects in stroke recovery, as well as the underlying mechanisms
and future research directions, needs to be addressed further.
Therefore, this critical review aims to explore the reported
studies on nVNS in stroke to present narrative accounts of
its therapeutic potential and mechanisms of action that may
facilitate its therapeutic effects. The abbreviations in this review
are listed in Table 1.

VAGUS NERVE STIMULATION

History and Clinical Application of Vagus
Nerve Stimulation
Vagus nerve stimulation has a history dating back to the
19th century when James Corning examined the anti-seizure
effect of manual stimulation of the vagal nerve in epileptic
patients (Lanska, 2002). There are two methods of stimulation
in clinical practice, invasive vagus nerve stimulation (iVNS)
and non-invasive vagus nerve stimulation (nVNS). According
to an international consensus published recently, there are four

TABLE 1 | Abbreviations.

Abbreviations

Auricular branch of the vagal nerve ABVN Middle cerebral artery
occlusion

MCAO

Autonomic nervous system ANS Myeloperoxidase MPO

Blood brain barrier BBB Non-invasive vagus
nerve stimulation

nVNS

Blood oxygen level dependent BOLD Non-invasive VNS nVNS

Brain-derived neurotrophic factor BDNF Norepinephrine NE

Central nervous system CNS Nucleus tractus
solitarious

NTS

Cholinergic anti-inflammatory
pathway

CAP Percutaneous auricular
VNS

paVNS

Dentate gyrus DG Peroxisome
proliferator-activated
receptor γ

PPARγ

Dynamic contrast enhanced MRI DCE-MRI Post-stroke insomnia PSI

Electromyogram EMG Spreading
depolarization

SD

Endothelial nitric oxide synthase eNOS Tight junction protein TJP

Food and Drug Administration FDA Transcutaneous
auricular vagus nerve
stimulation

taVNS

Fugl-meyer assessment-upper
extremity

FMA-UE Transcutaneous
cervical vagus nerve
stimulation

tcVNS

Function independent measure FIM Transcutaneous vagus
nerve stimulation

tVNS

Functional magnetic resonance
imaging

fMRI Traumatic brain injury TBI

Growth differentiation factor 11 GDF11 Tumor necrosis factor α TNF-α

Human high mobility group 1 HMGB1 Upper limb fugl-meyer UFM

Hypothalamic–pituitary–adrenal
axis

HPA Vagus nerve VN

Interleukin IL Vagus nerve stimulation VNS

Invasive vagus nerve stimulation iVNS Vascular endothelial
growth factor

VEGF

Ischemia/reperfusion I/R Wolf motor function
test

WMFT

Matrix metalloproteinase MMP α7 nicotinic
acetylcholine receptor

α7nAchR

currently accepted VNS modalities: cervically implanted VNS
(iVNS), transcutaneous cervical VNS (tcVNS), transcutaneous
auricular VNS (taVNS), percutaneous auricular VNS (paVNS)
(Farmer et al., 2020). In iVNS, a pulse generator is implanted
beneath the skin in the upper chest, along with electrodes
connected to the left vagal nerve (Goodnick et al., 2001; Pruitt
et al., 2016; Dawson et al., 2021). Systems for delivering nVNS
utilize the distribution of vagal afferents through the skin, either
at the external ear (taVNS) or in the neck (tcVNS) (Straube et al.,
2015; Gaul et al., 2016; Genheimer et al., 2017; Burger et al., 2019).

Following decades of trials conducted on animals and
humans. iVNS was approved by the FDA for the treatment
of medically refractory partial epilepsy in 1997 (Morris et al.,
2013) and severe, recurrent unipolar depression and bipolar
depression in 2005 (Young et al., 2020). iVNS Therapy also
received Conformite Europeenne (CE) marking in Europe
for the treatment of epilepsy and treatment-resistant or
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treatment-intolerant depression (DeGiorgio and Krahl, 2013;
Young et al., 2020). Invasive surgeries and their unwanted
side effects of iVNS have led to the development of a new,
completely non-invasive stimulation way. nVNS has received
special attention from basic, clinical, and translational studies
due to its comparable benefits to iVNS, ease of use, higher
accessibility, and fewer side effects (Ben-Menachem et al., 2015;
Frangos et al., 2015; Marin et al., 2018). nVNS entered clinical
treatment in 1997, its clinical effectiveness and its physiological
action are similar but with greater tolerability and fewer patients
reporting side effects (Redgrave J. et al., 2018). tcVNS has also
been approved by the FDA to treat migraines (Martelletti et al.,
2018) and cluster headaches (Gaul et al., 2016; Marin et al., 2018).

In such a long period of clinical practice, hundreds
of thousands of patients have been treated for various
neurological disorders, such extensive experience has provided
many opportunities to explore new clinical applications for VNS
in other neuropsychiatric disorders except epilepsy, migraines,
depression. And Among the most intriguing potential directions
of VNS is the treatment of stroke. Recent randomized controlled
trials have also shown that combined with rehabilitation
therapy, iVNS and nVNS may benefit upper limb recovery
after stroke (Khodaparast et al., 2014; Capone et al., 2017;
Dawson et al., 2021).

Anatomic Basis for Non-invasive Vagus
Nerve Stimulation
The vagus nerve (VN) is a mixed cranial nerve composed of
80% sensory fibers (afferent) and 20% motor fibers (efferent).
It is located on both the left and right sides of the body,
acting as a two-way channel between the central nervous system
and the autonomic nervous system (ANS), transmitting sensory
and motor information between the systems. Its afferent fibers
transmit visceral and somatic information from the body to the
brainstem and thus providing a unique pathway to the brain
(Groves and Brown, 2005; Kaniusas et al., 2019; Farmer et al.,
2020). While its efferent fibers originate in the dorsal motor
nucleus (to supply the heart, lungs, esophagus, and stomach)
and in the nucleus ambiguous (to innervate the muscles in
pharynx and larynx). Most of afferent fibers of VN terminate
in the nucleus tractus solitarius (NTS) in the lower medulla
(e.g., for visceral afferents, heart, taste, and aorta), whereas
others terminate in the nucleus spinalis of the trigeminal nerve,
like some laryngeal and pharyngeal afferents (Trevizol et al.,
2015; Yuan and Silberstein, 2016). The right part of the vagus
nerve is more closely associated with the cardiac atria and
innervates the sinoatrial node that controls heart rate; whereas
the left part of the vagus nerve is typically associated with
the ventricles of the heart and innervates the atrioventricular
node that controls contraction force (Guiraud et al., 2016).
The vagus nerve is therefore essential in the maintenance of
homeostasis and parasympathetic system function, regulating
inflammatory, cardiovascular function, and gastric emptying
efferent effects.

According to Erlanger and Gasser, the VN consists of A-, B-,
and C-fibers with corresponding conduction velocities (Yuan and

Silberstein, 2016). Based on anatomical research, as the VN passes
caudally through their ganglia, it divides into four branches:
the auricular branch, the meningeal branch, the sympathetic
branch (joint with the superior cervical sympathetic ganglion),
the pharyngeal branch, and the laryngeal branch (Ruffoli et al.,
2011; Yuan and Silberstein, 2016; Kaniusas et al., 2019). The
auricular branch of the vagus nerve (ABVN) is the only branch
of vagus nerve that reaches the body surface. As the ABVN forms
a cutaneous receptive field in the pinna, which is roughly located
in the 1–1.5 mm gap between the skin and the auricular cartilage
(Bermejo et al., 2017). ABVN can be found in both the cymba and
cavum conchae, however, cymba conchae are 100% dominated
by ABVN (Peuker and Filler, 2002). The ABVN afferent fiber
enters the vagal trunk via the jugular ganglion and projects NTS,
where the integration of autonomic neurons occurs. The conchae
collect afferent information and activate the caudal ventrolateral
medulla and dorsal motor nucleus to control central autonomic
activity (Butt et al., 2020; Wang et al., 2021b). This is why the
conchae have the ability to manage bodily functions. Yakunina
et al. (2017) found that stimulation of the auricular canal could
activate the vagus nerve pathway to the maximum extent, so this
location might be the best anatomical location for transcutaneous
vagus nerve stimulation.

During the first half of the twentieth century, researchers
began studying the NTS of the vagus nerve, the main afferent
transmission from the vagus nerve to the central nervous system,
and its projections to the cortex. The areas of the brain that are
activated by nVNS depending on the focus have been speculated
in various studies. Empirical measures, such as fMRI, EEG,
and MEG, are critical to confirm proposed hypotheses (Schulz-
Stübner and Kehl, 2011; Colzato et al., 2018; Jongkees et al., 2018).
Burger and Verkuil (2018) suggest that nVNS engages limbic
areas, such as the hippocampal and amygdala, while Yuan and
Silberstein (2016) suggest that stimulation of the vagus nerve
influences the distribution of hypocretin and orexin in people
with cluster headache, and Jacobs et al. (2015) suggest that
nVNS enhances memory by increasing locus coeruleus activity.
With fMRI. Kraus et al. (2007) demonstrated that non-invasive
vagus nerve stimulation results in prominent changes in cerebral
activity with marked deactivation in temporal and limbic regions.
fMRI studies have shown that nVNS increases neural activity
more than sham stimulation in the left prefrontal cortex, right
caudate, mid-cingulate and cerebellum (Badran et al., 2018).
It also decreases functional connectivity between the posterior
cingulate cortex and the lingual gyrus (Zhao B. et al., 2019), and
suppresses processes to generate tinnitus (Yakunina et al., 2018;
Yakunina and Nam, 2021).

Stimulation of the vagus nerve may also increase synaptic
plasticity in central networks after injury (Meyers et al., 2018;
Collins et al., 2021). When the vagus nerve is stimulated
electrically, the neuromodulatory effect is immediately triggered.
A VNS pulse rapidly activates noradrenergic locus coeruleus
and cholinergic nucleus basalis, two key neuromodulators in
the brain (Morrison et al., 2021). When these pro-plasticity
neuromodulators are simultaneously released with neural activity
related to rehabilitation, synaptic plasticity in task-specific
circuits is promoted.
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In general, VN activity correlates with wellbeing, health,
relaxation, and even emotions like empathy, while it is negatively
correlated with risk factors such as morbidity, mortality, and
stress (Thayer et al., 2010; Zulfiqar et al., 2010; Farmer et al.,
2020). VN thus plays a critical role in brain-body interactions.
These complex interactions naturally cause interest in artificial
stimulation for therapeutic purposes.

NON-INVASIVE VAGUS NERVE
STIMULATION IN ANIMAL MODELS OF
STROKE

In the review of nine animal studies (Ay et al., 2016; Jiang et al.,
2016; Ma et al., 2016; Yang et al., 2018; Zhao X.-P. et al., 2019; Li
et al., 2020b,a; Lindemann et al., 2020; Zhao et al., 2022; Table 2),
most manuscripts have settled on a frequency of 20 or 25 Hz that
has been shown to be more biologically active both in implanted
functional neuroimaging as well as in taVNS optimization trials
(Raedt et al., 2011; Hays et al., 2014; Thompson et al., 2021).
The FDA approved areas of 20 to 30 Hz stimulation frequencies
because studies had shown that frequencies of 50 Hz and above
can cause severe and irreversible damage to the vagus nerve
during VNS (Groves and Brown, 2005). Table 2 shows that
three studies used the cervical branch of the vagus nerve and
six studies used the ABVN as stimulation locations. In rodent
models, although the lateral differences are not clear and may
differ depending on the parameters used, most of these studies
used the left vagus nerve for stimulation.

The tcVNS was initiated at variable times (30 min to
24 h) after cerebral ischemia in rats and mice. The ability
of tcVNS to activate the NTS was assessed using c-Fos
immunohistochemistry. tcVNS activates the vagus nerve fibers
and stimulates its main afferent relay nuclei in the brainstem
(NTS) (Ay et al., 2016). The main effects and mechanisms of
nVNS illuminated in animal research are summarized below.

Reducing Infarct Size and Improving
Neurological Outcome
Several animal studies have demonstrated that nVNS could
reduce the cerebral infarction volume and improve the
neurological deficit remarkably in rats with cerebral ischemia
(Ay et al., 2016; Zhao X.-P. et al., 2019; Li et al., 2020b;
Lindemann et al., 2020; Zhao et al., 2022). In these studies, nVNS
provided approximately a 25–50% reduction in infarct size, which
was similar to previously reported reductions achieved by iVNS
(Ay et al., 2011; Sun et al., 2012). Ay et al. (2016) tested the
effect of tcVNS at different initiated time after middle cerebral
artery occlusion (MCAO) on tissue and functional outcome by
changing the therapeutic window up and down by 1 h each
time until a comparable effect size with 30-min stimulation was
achieved. They found that the effect of tcVNS on infarct size was
consistent when stimulation was initiated up to 4 h after MCAO.
Furthermore, the improvement in forelimb function was so long-
lasting that it continued even after the stimulation had stopped,

consistent with results obtained in aged ischemic stroke rats
treated with iVNS and rehabilitative training (Hays et al., 2016).

Promoting Angiogenesis
After focal cerebral ischemia, the newly formed collateral
blood vessels can improve perfusion of the surrounding tissues
and promote recovery of nervous system functions. Recent
studies have suggested that angiogenesis, almost in parallel
to neurogenesis, participates in the recovery of neurological
function after ischemic stroke (Song et al., 2019; Alrafiah
et al., 2021; Wang et al., 2021a). It was proposed that VNS
increased hippocampal progenitor cell proliferation in the adult
rat dentate gyrus, so that such progenitor cells contribute to
the healing of damaged neurons from ischemic injury (Lu
et al., 2017). It would appear that this plasticity is involved
in VNS’s efficacy as a treatment for ischemic stroke. In
cerebral ischemic rats, taVNS enhanced the expression of
angiogenic factors, including BDNF, eNOS, and VEGF, and
increased endothelial proliferation, stimulated angiogenesis, and
increased microvessel density surrounding the infarct area
(Zhang et al., 2017). Another study has shown that taVNS
promotes endothelial cells proliferation 7 days after cerebral
ischemia, and that taVNS enhances expression of ALK5 in
endothelial cells (Ma et al., 2016). The effects of taVNS on post-
stroke recovery, as well as up-regulation of cerebral GDF11,
and down-regulation of splenic GDF11, indicate brain-spleen
communication. Following a stroke, the brain releases ischemic
signals, the activated spleen released its GDF11 reserves into the
blood circulation, allowing it to deposit in the damaged brain.
These results indicate that taVNS may enhance the recovery after
stroke by increasing GDF11 concentrations in the vasculature
(Ma et al., 2016).

Regulating Blood Brain Barrier
Permeability
The breakdown of the Blood Brain Barrier (BBB) and the
subsequent brain edema are two of the key components
of neurological dysfunction in stroke. They are associated
with poor clinical outcomes during and after ischemic
stroke (Cai et al., 2014). A significant association
between stroke progression and BBB breakdown has been
demonstrated. As early BBB permeability can be reversed
with treatment, it would make sense that the VNS could
be involved in regulating cerebral edema after stroke
(Gaul et al., 2016).

According to a study, the use of taVNS during MCAO
significantly reduced the permeability of the BBB after ischemia
and reperfusion measured by DCE-MRI 24 h after stroke.
taVNS treated rats with ischemic hemispheres demonstrated
significantly lower levels of serum IgG leakage as detected by
IHC after MRI, consistent with the findings described above
(Yang et al., 2018). BBB integrity is maintained primarily
by ECs sealed at tight junctions, astrocyte endfeet, pericytes,
and extracellular matrix. In reperfusion injury, proteases are
involved in the biphasic opening of the BBB. A number of
mechanisms have been proposed to account for the degradation
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TABLE 2 | Stimulation location, parameters, and therapeutic effects for all studies of nVNS in rodent models of stroke.

Authors Rodent
models

Device Initial
time

Parameters Stimulation
side and sites

Stimulation
duration

Effects Results and
conclusion

Zhao et al.,
2022

Rat, I/R (right
ICA)

taVNS, tcvns
(Hanshi

Electroacupuncture
Instrument, Nanjing

Hanshi Co. Ltd.)

24 h
post-
stroke

10 Hz, 1 mA, Pulse
width (not
described)

Bilateral concha
auricularis

region or rat
tragus

30 min/session,
7 days

Levels of
acetylcholine, IL-1β,
IL-6, and TNF-α↓;

Cx43
phosphorylation↓

Improves motor
function

Li et al.,
2020a

Rats, MCAO/R
(right)

taVNS (Grass
Model S48

stimulator, Grass
Technologies,

Warwick,
United States)

30 min
post-
stroke

20 Hz, 0.5 mA,
0.5 ms, square

wave

Left cavum
concha

60 min/session,
twice daily,
14 days,
28 days

PPAR-γ↓;
BDNF, VEGF,

P-eNOS↑

Decreases
neurological deficit
scores, neuronal

damage, and infarct
volume. Increases

microvessel density
and endothelial cell

proliferation.

Lindemann
et al., 2020

Rats, MCAO
(left)

tcVNS, iVNS
(External

transcutaneous
stimulator,

electrocore Inc.)

30 min
post-
stroke

iVNS: 25 Hz,
0.5 mA, 0.3 ms

tcVNS:25 Hz,1 ms,
5 kHz sine waves.

Left vagus
nerve (ivns), left
cervical vagus
nerve (tcvns)

iVNS: 60 min;
tcVNS: 2 min,
repeated after

15 min

Spreading
depolarizations

frequency↓

Improves behavioral
tests. Reduces

infarct volume. Both
iVNS and nVNS

reduce the
frequency of SDs.

Li et al.,
2020b

Rats, MCAO/R
(right)

taVNS
(Grass Model S48
stimulator, Grass

Technologies,
Warwick,

United States)

30 min
post-
stroke

20 Hz, 0.5 MA,
0.5 ms, square

Left cavum
concha

60 min/session,
twice

daily,14 days,
28 days

α7nAchR
expression↓;

Activation of the
BDNF/cAMP/PKA/p-

CREB
pathway

Enhance axonal
plasticity through
activation of the

BDNF/cAMP/PKA/p-
CREB

pathway

Zhao X.-P.
et al., 2019

Mice,
MCAO/R (right)

tcVNS
(gammacore;

Lectrocore, LLC,
Basking Ridge, NJ,

United States)

1 d
before
MCAO

25 Hz, 1 ms, 5 kHz
sinewaves

average voltage
of 15 V

Right cervical
vagus nerve

60 min M2 phenotype
microglia : Arg-1+

cells↑; IL-17A↓;
(TUNEL + NeuN+)

cells↓

Reduces infarct
volume. Improves

neurological
outcomes.

Reduces neurons
apoptosis. Promotes

microglial M2
polarization.

Yang et al.,
2018

Rats, MCAO
(right)

taVNS
(gammacore;

Lectrocore, LLC,
Basking Ridge, NJ,

United States)

30 min
post-
stroke

25 Hz, 1 ms, 5 kHz
sinewaves

average voltage
of 15 V

Left cervical
vagus nerve

50 min TJPs: ZO-1↑
BBB transfer rate,

serum IgG leakage↓;
MMP-2/9 ↓

Reduces infarct
volume. Protects

Blood-brain barrier.

Ma et al.,
2016

Rats, MCAO/R
(right)

taVNS
(Grass Model S48
stimulator, Grass

Technologies,
Warwick,

United States)

30 min
post-
stroke

20 Hz, 0.5 mA,
0.5 ms, square

Left cavum
concha

60 min/session,
twice daily,24 h,
3 days,7 days

upregulate cerebral
GDF11 and

downregulate splenic
GDF11; increase

expression of ALK5 in
ECs; stimulate

proliferation of ecs.

Prompts neuro
behavioral recovery

Stimulated
proliferation of

endothelial cells.

Jiang et al.,
2016

Rats, MCAO/R
(right)

taVNS
(Grass Model S48
stimulator, Grass

Technologies,
Warwick,

United States)

30 min
post-
stroke

20 Hz, 0.5 mA,
0.5 ms, square

Left cavum
concha

60 min/session,
2–3 weeks

Microvessel density
and endothelial cell

proliferation↑;
BDNF, eNOS and

VEGFs↑

Prompts neuro
behavioral recovery
and angiogenesis.
Reduces infarct

volume.

Ay et al.,
2016

Rats, MCAO
(right)

tcVNS
(gammacore;

electrocore, LLC).

30 min
post-
stroke

25 Hz, 1 ms, 5 kHz,
12 V sine waves

Right vagus
nerve in the

neck

60 min DecreaseIba-1,
CD68, and TNF-α
positive cells and

increase the number
of HMGB1 positive

cells.

Reduces infarct
volume. Improves
neurological score.

Inhibits
ischemia-induced
immune activation.

of tight junction proteins (TJPs). Matrix metalloproteinases
(MMPs) are degrading enzymes that disrupt TJPs, leading
to BBB disruption during ischemic stroke. In the ischemic

hemisphere, taVNS inhibited BBB breakdown, as evidenced
by decreases in TJP cleavage, ZO-1, occludin, and claudin-
5 in endothelial cells. Additionally, it protected tight junction
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proteins in microvessels from disruption and reduced MMP-
2/9 expressions in astrocytes around compromised vessels
(Yang et al., 2018). In addition, taVNS improved BBB
integrity after cerebral cortex microinfarcts as well as in
rat models of cortical dysplasia and traumatic brain injury,
indicating that it may be useful in the effects on BBB after
ischemic stroke.

Inhibiting Neuroinflammation
Researchers believe that VNS can potentially modulate
inflammation via a broader vagal neural network (Yuan
and Silberstein, 2016). Recent studies suggest that VNS may
act as a neuromodulator to activate certain innate, protective
pathways in the central nervous system (CNS). VNS may exert its
anti-inflammatory properties in a variety of diseases through its
afferent fibers (activating the HPA pathway) and efferent fibers
(activating the CAP pathway).

The vagus nerve system suppresses the release of
proinflammatory cytokines. It was found that VNS reduced
plasma levels of TNFα, IL-1β, IL-6, and MPO in colitis rats
through the autonomic neural pathway (Sun et al., 2013). There
have been animal and clinical studies exploring the efficacy
of nVNS in the treatment of inflammation. A study found
that taVNS reduced IL-6 and TNF-α release and prevented
endotoxemia in mice (Hong et al., 2019). Lerman et al. (2016)
found that tcVNS reduced levels of cytokines and chemokines
in the blood of healthy people. Meanwhile, Clancy et al. (2014)
reported that taVNS decreased sympathetic nerve activity
in healthy people.

Through alpha-7 nicotinic acetylcholine receptors
(α7nAChRs), central immune activation (e.g., macrophage
accumulation and microglial activation) can influence
acetylcholine levels and cause anti-inflammatory effects
(Kalkman and Feuerbach, 2016). The α7nAChR subunit is
required for the CAP to limit cytokine production, according to
Wang et al. (2003). The cholinergic anti-inflammatory response
is induced by the α7nAChR. Acetylcholine is released when
the vagus nerve is stimulated, inhibiting the anti-inflammatory
pathway via the α7nAChR on activated macrophages and
other cytokine-producing cells. Finally, TNF and other pro-
inflammatory cytokines that play a role in inflammation are
suppressed (Oke and Tracey, 2009). Recent studies have also
found that taVNS has anti-inflammatory effects in both the
peripheral and central nervous systems, which are mediated
through α7nAChRs (Zhao et al., 2012; Corsi-Zuelli et al., 2017).
taVNS has also been reported to have neuroprotective effects
against ischemic cerebral injuries via an anti-inflammatory
mechanism (Li et al., 2020b).

Microglia are central nervous system resident macrophages
that perform a variety of tasks such as synaptic organization,
phagocytosis of apoptotic cells, and neuronal excitability
regulation (Sasaki, 2017; Baig et al., 2022). Ischemia triggerS
resting microglia to the M1 phenotype causing damage to
functioning neural cells including neurons and astrocytes (Hu
et al., 2012). Activation of microglia to the M2 phenotype,
on the other hand, can stop the inflammatory process by
producing anti-inflammatory cytokines like IL-4 and IL-10

(Hu et al., 2012; Liu et al., 2016; Zhao X.-P. et al., 2019). As
a result, microglial M2 polarization could be a new target for
fighting inflammation after cerebral I/R injury. Zhao X.-P. et al.,
2019) demonstrated that tcVNS attenuated cerebral ischemic
injury by promoting microglial M2 polarization. Intranasal
administration of recombinant IL-17A dampened the tcVNS
induced M2 polarization of microglia and its neuroprotective
effects, which suggests that the effect of tcVNS might occur
through IL-17A signaling inhibition. tcVNS inhibits microglia
activation and normalizes altered cytokine levels after MCAO by
reducing the number of Iba-1, CD68, and TNF-α positive cells
and increasing HMGB1 positive cells (Ay et al., 2016). These
findings underline that anti-inflammatory mechanisms play an
important role in ischemic neuroprotection by nVNS.

Facilitating Post-stroke Axonal Plasticity
Axonal plasticity plays an important role in neurofunctional
recovery after stroke. The neurofunctional recovery that
occurs in the days to weeks following an ischemic stroke
appears to be linked to axonal plasticity including axonal
regeneration and reorganization (Liu et al., 2015; Bu et al.,
2021). taVNS treatment enhanced α7nAchR expression in
the ischemic cortex. And ischemic rats treated with taVNS
demonstrated improved axonal plasticity (regeneration and
reorganization of axons), in accordance with elevated levels
of BDNF/cAMP/PKA/p-CREB pathway members. Thus,
taVNS could effectively boost axonal plasticity in the brain
after I/R injury while improving neurofunctional recovery
(Li et al., 2020b).

Reducing Spreading Depolarizations
Spreading depolarizations (SDs) are sudden and sustained gray
matter depolarizations that can occur in a variety of brain states,
ranging from healthy brain tissue, such as the migraine aura,
to different areas of an ischemic brain, such as the severely
energy-depleted infarct core and its surrounding moderately
ischemic tissue (Dreier and Reiffurth, 2015). SDs are caused by
the failure of the sodium pump in the penumbra aftera n ischemic
stroke, and they create cytotoxic edema, disrupt blood flow, and
result in infarction of viable tissue, as well as affecting neuronal
survival and outcome (Dreier, 2011; Rakers and Petzold, 2017;
Dreier et al., 2018; Baig et al., 2022). Furthermore, they are
thought to play a role in the development of ionic and vasogenic
edema at later stages of ischemia (Dreier et al., 2018; Mestre
et al., 2020). As a result, in experimental models and clinical
cases of stroke and other acute neurological disorders, SDs are
among the most important contributors to infarct generation,
cell death, and injury expansion (Lauritzen et al., 2011; Dreier
and Reiffurth, 2015). Lindemann et al. (2020) discovered that
delivering nVNS or iVNS during permanent MCAO significantly
reduced the frequency of SDs in the cortical peri-infarct area
compared to sham VNS, without affecting relative blood flow
changes, blood pressure, heart rate, or breathing rate. They
hypothesize that either nVNS or iVNS could be a safe and
effective intervention for reducing the clinical burden of SD
waves in stroke.
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CLINICAL TRIALS TO ASSESS SAFETY
AND EFFICACY OF NON-INVASIVE
VAGUS NERVE STIMULATION AFTER
CHRONIC/SUBACUTE ISCHEMIC
STROKE

In our review, we found four studies and one case report
that investigated the influence of nVNS on upper-limb motor
function, sensory function, and sleep disturbance after stroke.
Among which, four studies included chronic stroke patients
(Capone et al., 2017; Redgrave J.N. et al., 2018; Baig et al.,
2019; Zhao B. et al., 2019) except one study included subacute
ischemic stroke patients (Wu et al., 2020). Here, we summarized
the mainly functional improvement, parameters, side effects and
future directions of nVNS in clinical studies on stroke.

In addition, several recently completed and ongoing clinical
studies are focused on the safety and effects of nVNS on
stroke (Baig et al., 2022). Especially some studies are focused
on acute or subacute stroke (NCT03733431; NCT04050501;
NCT03292159; Clinicaltrials.gov). Instruments and procedures
(MRI, CT perfusion, EMG, or force coupled to a computer
monitor) that can help quantify the findings have been utilized in
several studies in addition to the generally used scale for outcome
evaluation. The findings should help us better understand the
effectiveness, adverse effects, and ideal settings of nVNS, as well
as how nVNS influences stroke.

Non-invasive Vagus Nerve Stimulation
Combined With Rehabilitation Improves
Upper Limb Function After Chronic
Stroke
It is generally accepted that upper extremity impairment as one
of the results of stroke has a deep impact on quality of life, but
the clinical application of the treatment may not readily be seen
until after stroke. Studies have shown that iVNS paired with
rehabilitation significantly improves forelimb strength and speed
in models of ischemia and hemorrhage in rats (Hiraki et al., 2012;
Hays et al., 2014, 2016; Khodaparast et al., 2016). Clinical studies
showed that paired rehabilitation with VNS improves motor
function in patients suffering from chronic strokes. The Fugl-
Meyer Assessment-Upper Extremity (FMA-UE) score of stroke
patients after iVNS was clearly higher than the score of pure
rehab patients who did not receive iVNS (Dawson et al., 2020).
Significant improvements in the Wolf Motor Function Test (both
in terms of function and timing), Box and Block Test and Nine-
Hole Peg Test has also been observed (Dawson et al., 2020).
Similar results have also been reported in stroke patients treated
with nVNS. Redgrave J.N. et al. (2018) conducted a pilot study
combining taVNS with post-stroke upper limb rehabilitation in
18 sessions (1 h), showing improvement in motor function in the
pilot study. While Redgrave and Baig used therapists to conduct
rehabilitation training, Capone et al. (2017) have reported that
taVNS combined with robot-assisted rehabilitation may be able
to promote mild improvements in arm function and promote
long-term benefits for stroke recovery.

Motor Activated Auricular Vagus Nerve Stimulation
(MAAVNS) was devised as a closed-loop solution to the
parametric problem (Cook et al., 2020). It combines taVNS
with motor activity by using pulses at 25 Hz for 500 s during
a focused motor task (Cook et al., 2020). It has been shown to
be an effective neurorehabilitation tool and in early studies has
shown promise in helping neonates learn motor skills (Badran
et al., 2018, 2020). It is being explored further to facilitate stroke
rehabilitation in adults. Therefore, the continued development
of nVNS may radically change the field and potentially remove
the barrier of surgery for many patient populations.

Non-invasive Vagus Nerve Stimulation
Improving Sensory Recovery After
Chronic Stroke
Stroke survivors with sensory impairments tend to recover less
functionally after their injuries. A long-term follow-up study
found iVNS combined with tactile therapy improved sensory
function in a man suffering from the severe sensory decline
in his left hand and arm (Meyers et al., 2018). This may
be related to increased neuroplasticity throughout the brain.
Following the study, the authors speculated that combining
VNS with sensory stimulation can be an alternative method
for promoting neuroplasticity and sensory recovery for chronic
stroke patients. However, this was based on only one case study.
After that, Baig et al. reported the impact of taVNS paired
with repetitive motor task practice on sensory recovery in a
cohort of chronic stroke patients. An average of 18 sessions
(1 h/session) were given over 6 weeks to twelve participants
who were >3 months post-ischemic stroke and would still have
residual upper limb weakness. The repetition of functional arm
movements concurrently with the taVNS at the maximum level of
intensity is 300 repetitions. The UFM (Upper Limb Fugl-Meyer)
assessment was used to assess the light touch and proprioception
of the upper limb at baseline and during post-intervention. Seven
out of 11 participants (64%) who had sensory impairment at
baseline regained some sensation after the intervention. Patients
with the greatest improvement in motor function had the greatest
increase in UFM sensation.

There is a possibility that the improvements in proprioception
observed in subjects could be explained by an improvement in
strength and range of motion achieved through upper limb tasks
facilitated by taVNS. As a result of the increased range of joint
movements, it is possible that the increased sensory feedback
from the affected limb increased neuroplasticity in the cortical
sensory networks. When combined with the correlation between
improved motor function and sensory feedback, it is possible
to hypothesize that motor and sensory recovery are positive
feedback loops that mutually enhance one another.

Non-invasive Vagus Nerve Stimulation
Treating Post-stroke Insomnia After
Chronic Stroke
Patients with cerebrovascular disease are often affected by post-
stroke insomnia (PSI). Approximately 37–59% of patients with
stroke complain about insomnia (Duss et al., 2018). Studies
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suggest that insomnia is also associated with an increased risk
of morbidity from cardiocerebrovascular disease as well as a
reduced outcome from stroke. It has been proved that taVNS
is effective in treating depression with insomnia and primary
insomnia (Liu et al., 2020). A case report by Zhao B. et al. (2019)
examined the effectiveness and neuromechanics of taVNS in PSI
patients. BOLD-fMRI was carried out before and after 4 weeks of
taVNS. A 4-week taVNS intensive treatment produced significant
improvement in insomnia symptoms. Falling asleep time was
reduced to less than 30 min, and sleep duration was increased
to 7 h. The therapeutic effect was still observed 3 months after
treatment. PSQI scores dropped from 13 to 8 points.

Based on the association of the basal ganglia with the
frontal lobe and thalamus, a reduced functional connectivity in
the striatum and thalamus may suggest an emotional circuit
disorder. Following taVNS treatment, posterior cingulate cortex
and regions of basal ganglia associated with emotion showed
increased functional connectivity. This case study provides
evidence that taVNS therapy may provide a new, portable, self-
managed, and safe technique for the treatment of PSI patients.

Clinical Trials to Assess Safety and
Efficacy of Non-invasive Vagus Nerve
Stimulation After Subacute Ischemic
Stroke
Researchers recently published a randomized pilot study
exploring the safety and effectiveness of taVNS in treating
patients with subacute ischemic stroke. In this study, 21 patients
with strokes in the acute or subacute phase (between 0.5 and
3 months post onset) were included (Wu et al., 2020). At the
endpoint, there were significantly greater improvements in FMA-
U, FIM, and WMFT scores in the taVNS group compared with
the sham-taVNS group. Moreover, the taVNS group obtained a
significantly higher improvement of FMA-U score as compared
with the sham-taVNS group at 4and 12 weeks. Only one adverse
event related to contact with the auricular skin electrodes was
noted. In the present study, taVNS proved to have a beneficial
effect on the rehabilitation of upper limb motor function in
patients with subacute strokes. nVNS may be able to reduce
ischemic brain injury as it can be easily applied within a non-
hospital setting early after stroke thanks to its relatively small
therapeutic window.

Side Effects of Non-invasive Vagus
Nerve Stimulation
It has been shown that the nVNS was safe and well-tolerated,
and those adverse events were very rare (Capone et al., 2017;
Redgrave J.N. et al., 2018; Baig et al., 2019; Zhao B. et al.,
2019; Wu et al., 2020). Redgrave J. et al. (2018) published a
systematic review of the safety and tolerability of taVNS. Itching
and redness (16.7%) around the stimulation site are common
side effects, as are tingling and pain in the area (Redgrave J.
et al., 2018). Some less common side effects have been noted in
<1% of the study participants, including nausea and vomiting
(Schulz-Stübner and Kehl, 2011; Kreuzer et al., 2014; Jacobs et al.,
2015; Yuan and Silberstein, 2016), headache (Stefan et al., 2012;

Kreuzer et al., 2014; Gaul et al., 2016; Yuan and Silberstein, 2016;
Baig et al., 2019), facial drooping (Goadsby et al., 2014; Yuan and
Silberstein, 2016), dizziness (Jacobs et al., 2015; Gaul et al., 2016;
Liu et al., 2018; Baig et al., 2019), vocal hoarseness (Stefan et al.,
2012; Goadsby et al., 2014).

In addition, due to the vagus nerve’s influence on cardiac
activity, researchers closely monitored HR and BP during nVNS
sessions in to detect any potential cardiovascular harm. The HR
and systolic blood pressure (SBP) do not show significant pre-
post differences. All cardiovascular parameters did not change
significantly throughout the treatment. Heart palpitations were
reported in one research (Bauer et al., 2016). According to the
systematic review by Redgrave J. et al. (2018), 7/1322 participants
in total reported cardiac side effects such as palpitations,
arrhythmia, bradycardia, and hypotension. Steyn et al. (2013)
found that the mean heart rate in four participants with asthma
decreased from 106 to 85 beats per minute following nVNS.
However, all participants experienced no symptoms following
the procedure. Symptomatic bradycardia was observed in a male
volunteer who collapsed with bradycardia and hypotension after
receiving bilateral conchal taVNS (2–100 Hz, pulse width 0.2 ms)
in addition to a painful stimulus (Laqua et al., 2014). Kreuzer
et al. (2012) reported two cases of cardiac arrhythmia (left
bundle branch block and sinus arrhythmia), in their retrospective
assessment of the cardiac safety of taVNS. No work has yet
examined the relationship between stimulation parameters or
dose and the rate of side effects experienced, which should be
a priority of future research in the area, and clear documentation
of both side effects and stimulation parameters is crucial to
observe any trends.

Stimulation Parameters
For VNS, setting the optimal stimulation parameters has
a huge impact on clinical efficacy. Morrison et al. (2021)
found that stimulation intensity affects motor cortex plasticity.
Many factors, such as the stimulation site and side, electrode
and waveform configuration, continuous stimulation or pulse-
synchronous stimulation, titration protocols, current amplitude
and frequency, and stimulation on-and-off time can impact
the clinical efficacy of VNS (De Ferrari and Schwartz, 2011).
According to Helmstaedter et al. (2001), the effectors of
stimulation parameters and the resulting direction of VNS’s
cognitive effects appear to be highly constrained by stimulation
parameters. The timing and amount of VNS therapy also play a
crucial role in maximizing its therapeutic benefits (Meyers et al.,
2018; Nuntaphum et al., 2018).

Due to the fact that studies have been done with participants
with different clinical conditions and with diverse stimulation
parameters, it is hard to determine an ideal stimulation site for
any specific disease (Goadsby et al., 2014; Gaul et al., 2016; Liu
et al., 2018; Martelletti et al., 2018). Despite the lack of consensus
on ideal parameters, nVNS researchers carried out human clinical
trials using parameters similar to those administered in cervically
implanted VNS analogs.

Here are the specific parameters of stimulation for nVNS in
several studies (Table 3). Most studies used the left auricular
branch of the vagus nerve as the stimulated sites, except one
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TABLE 3 | Stimulation location, parameters, therapeutic effects, and side effects for all studies assessing the efficacy of nVNS in patients with stroke.

Authors Study groups Stimulation sites
and device

Phase of
stroke

Paired Parameter settings nVNS
duration

Therapeutic
effects

Side effects

Wu et al.,
2020

taVNS/sham
group;

Randomized
pilot study

taVNS; left ear
concha; bhd-1a
transcutaneous

electrical
stimulation therapy
instrument (Bohua,

china).

Subacute
ischemic stroke

taVNS paired with
conventional
rehabilitation

training

20 Hz; 0.3 ms; lasting
30 s each time,
stimulating once

every 5 min;
Mean stimulation
intensity 1.66 ma

15 days. Improves upper
limb motor

function

Skin redness

Redgrave
J.N. et al.,
2018

Feasibility study
with no control

group.

TaVNS; left ear
concha; Nemos

(cerbomed)

Chronic stroke.
3 months

post-stroke

taVNS paired with
upper limb
repetitive

task-specific
practice

25 Hz; 0.1 ms;
Median stimulation

intensity 1.4 mA

3 times a week,
over 6 weeks

Improves upper
limb motor

function

Light-
headedness in

one
Participant and

general tiredness
and fatigue in two

Baig et al.,
2019

Feasibility study
with no control

group.

TaVNS; left ear
concha; Nemos

(cerbomed)

Chronic stroke.
3 months

post-stroke

taVNS paired with
repetitive upper

limb task training

25 Hz;0.1 ms;
Median stimulation

intensity 1.4 mA

3 times a week,
over 6 weeks

Promotes motor
and sensory
rehabilitation

None reported

Capone
et al., 2017

Real or sham
tVNS

associated with
Robot-assisted

therapy.

taVNS; left ear
concha;

Twister-ebm

Chronic stroke,
ischemic or
hemorrhagic

taVNS paired with
robot-assisted

therapy

20 Hz;0.3 ms
,lasting 30 s each

time, stimulating once
every 5 min

Mean stimulation
intensity 2.0–4.5 mA

10 working
days.

Improves upper
limb function

None reported

Zhao B.
et al., 2019

Case report taVNS; bilateral
auricular concha
areas; device not

mentioned

7 months post-
hemorrhagic

stroke

None 20 Hz; less than
1 ms;

Intensity 4–6 mA

30 min, twice a
day, 4 weeks

Alleviates
post-stroke
insomnia

None reported

case report chose bilateral auricular branches of the vagus nerve
to stimulate. According to researchers, since vagal fibers to the
heart are supposed to originate from the right side, only the
left ear was stimulated to reduce the risk of cardiac side effects.
A common frequency of 20 or 25 Hz is used in these studies. It
is common for the stimulation current to be set according to a
subject’s sensitivity or just below their pain threshold (Frangos
et al., 2015; Lerman et al., 2016; Yakunina et al., 2018; Sclocco
et al., 2020; Yakunina and Nam, 2021). Studies gradually raised
stimulation intensity by 0.1 mA increments until the maximum
level reported by participants (Redgrave J.N. et al., 2018). The
intensity of stimulation ranged between 0.5 and 6 mA. Another
study adjusted stimulation intensity to levels above detection
thresholds and below pain thresholds (Capone et al., 2017). The
range is similar to those reported in other diseases, Stimulation
amplitudes vary over a wide range [from 0.5 mA (Jongkees
et al., 2018) to 12 mA (Trevizol et al., 2016)]. The amplitude or
amount, of energy delivered to tissues, is also unknown despite
current values for electric motors being reported, due to the
significant effect of electrode and tissue impedance and the need
for precise placement. In addition, the electrochemistry of the
stimulation electrode has a significant impact on the maximum
current tolerance of the participant, without a doubt.

CONCLUSION AND FUTURE DIRECTION

In this review, we reviewed current animal and clinical researches
on non-invasive vagus nerve stimulation on cerebral stroke,

emphasizing the outcomes, underlying mechanisms, stimulation
parameters, sites of stimulation, and side effects.

The development of neuroscience has led to a new type of
intervention, neuromodulation therapy, that targets the nervous
system to achieve therapeutic results. Several studies have shown
that nVNS affects the same brain regions and yields therapeutic
effects similar to iVNS (Terré and Mearin, 2009; Van Leusden
et al., 2015). Since nVNS is non-invasive, it has been receiving
special attention in basic, clinical, and translational research for
its benefits which are comparable to those of iVNS, ease of
use, and reduced side effects, In addition, it is more accessible.
Auricular and cervical branches of the vagus nerve are most
commonly targeted by nVNS.

As nVNS continues to emerge as a promising treatment in
stroke, there is still a lot to be done and a large number of
literatures to be improved. Several studies have confirmed the
effect of nVNS on stroke rehabilitation, however, most of the
current studies focused on upper limb function, and future
studies need to focus on the improvement of other functions
post-stroke, such as cognition impairment, dysphagia, aphasia,
and intestinal dysfunction. There is a lack of large sample RCT
studies, and therefore, no strong evidence on the role of nVNS in
stroke rehabilitation.

Rehabilitation effects are being demonstrated in stroke. The
parameters and protocols of most of the described methods vary
enormously, so there is no clear evidence on the best location to
apply nVNS or the stimulation parameters that will provide the
most therapeutic benefit. As nVNS research grows, we need to
take a historical perspective into account and further optimize

Frontiers in Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 820665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-820665 February 10, 2022 Time: 18:10 # 10

Li et al. nVNS in Cerebral Stroke

the parameter space. In addition, study results should also be
analyzed to determine the frequency of treatments, the number
of doses per day, and the degree of treatment tolerance.

The precise mechanism by which nVNS exerts its therapeutic
effects is still unclear. We need further studies examining
the mechanical basis of nVNS to facilitate our future trials.
A systematic study must be conducted to reveal the precise
mechanism of action and ideal stimulation modalities of nVNS
if it is to reach its full potential as a non-invasive and clinically
relevant therapy. Future investigations should not be restricted
by past hypotheses about the effects of nVNS on neural
activation and function.

Most studies have only a small sample, some with only
one participant. This makes it difficult to determine whether
the findings or proposed pathways can be generalized. In
order to avoid the risk of having extreme or biased results,
studies with a large sample size are necessary. Further standard
stimulation methods of nVNS combine electrophysiology and
imaging evaluation methods are needed to reduce subjective
bias during training and devise more effective rehabilitation
strategies for stroke.

In addition to helping avoid costly missed opportunities for
reducing ischemic brain injury, nVNS may be able to reduce
ischemic brain injury as it can be easily applied within a non-
hospital setting early after stroke thanks to its relatively small
therapeutic window.
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