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Abstract: The need to monitor specific areas for different applications requires high spatial and
temporal resolution. This need has led to the proliferation of ad hoc systems on board nanosatellites,
drones, etc. These systems require low cost, low power consumption, and low weight. The work
we present follows this trend. Specifically, this article evaluates a method to determine the cloud
map from the images provided by a simple bi-spectral infrared camera within the framework of
JEM-EUSO (The Joint Experiment Missions-Extrem Universe Space Observatory). This program
involves different experiments whose aim is determining properties of Ultra-High Energy Cosmic
Ray (UHECR) via the detection of atmospheric fluorescence light. Since some of those projects use
UV instruments on board space platforms, they require knowledge of the cloudiness state in the FoV
of the instrument. For that reason, some systems will include an infrared (IR) camera. This study
presents a test to generate a binary cloudiness mask (CM) over the ocean, employing bi-spectral
IR data. The database is created from Moderate-Resolution Imaging Spectroradiometer (MODIS)
data (bands 31 and 32). The CM is based on a split-window algorithm. It uses an estimation of the
brightness temperature calculated from a statistical study of an IR images database along with an
ancillary sea surface temperature. This statistical procedure to obtain the estimate of the brightness
temperature is one of the novel contributions of this work. The difference between the measured
and estimation of the brightness temperature determines whether a pixel is cover or clear. That
classification requires defining several thresholds which depend on the scenarios. The procedure
for determining those thresholds is also novel. Then, the results of the algorithm are compared with
the MODIS CM. The agreement is above 90%. The performance of the proposed CM is similar to
that of other studies. The validation also shows that cloud edges concentrate the vast majority of
discrepancies with the MODIS CM. The relatively high accuracy of the algorithm is a relevant result
for the JEM-EUSO program. Further work will combine the proposed algorithm with complementary
studies in the framework of JEM-EUSO to reinforce the CM above the cloud edges.

Keywords: remote sensing; infrared camera; cloud coverage; split-window algorithm; JEM-EUSO

1. Introduction

The detection of clouds with airborne instruments is critical when studying the mete-
orology and climate of the Earth. However, there are other applications where auxiliary
systems for cloud detection and characterization are needed, which is the case that con-
cerns us.

Thermography is one of the main techniques for measuring the temperature of things
remotely. It is based on InfraRed (IR) cameras to characterize the relationship between the
object temperature and the IR energy it emits. Although the first applications of IR cameras
were military (World War II), their use spread to many fields since the 1960s. However, the
direct application of IR cameras to some applications did not obtain the expected results.
Frequently, the lack of knowledge of the physical phenomena involved in the emission,
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propagation, and measurement of IR radiation led to inappropriate use of commercial IR
cameras or prevented a correct interpretation of the images.

To solve a new technological or environmental problem, it is necessary to follow an
adequate procedure. The method should begin with a radiometric and spectral characteriza-
tion of the problem. Afterward, the IR instruments can be developed or adapted according
to the previous characterization. Finally, to solve the specific problem, it is necessary to
develop specific algorithms that retrieve the physical information from the data provided
by the IR instrument: combustion measurements [1,2] forest fires,[3,4] non-destructive
analysis, medical applications [5], etc.

Nowadays, technology has evolved significantly, and there are extremely high-
performance hyperspectral IR systems. Many of these systems are embedded in satel-
lites and can provide very precise information on many phenomena globally.

However, the most current trend in the space sector is moving towards developing
small satellites, nanosatellites, or CubeSats. At present, many environmental and techno-
logical problems do not require the high spectral resolution that current technology offers.
However, they do require simple systems with low cost, low mass, and low energy con-
sumption. In this framework, it makes sense to recover bi-spectral thermography systems,
which are simpler and cheaper than sophisticated multispectral systems. The spectral and
radiometric characterization of the problem should be the basis to simplify the devices. This
alternative approach facilitates observation at higher spatial and temporal resolution and
addresses monitoring problems in specific areas. This is also the case of some instruments
using ancillary devices to provide complementary but essential information.

Precisely, the work that we present here aims to develop and validate an algorithm to
detect clouds from the information provided by a simple bi-spectral IR camera. In the Joint
Experiments Missions- Extreme Universe Space Observatory (JEM-EUSO), a secondary
instrument (a bi-spectral camera) will carry out the detection of the clouds. However,
the relevance of the results we present here goes beyond the JEM-EUSO missions. New
instruments for mini and nanosatellite constellations, mainly focused on communications
and Earth observation, could use this algorithm.

The objective of the international JEM-EUSO program is to observe Ultra High-Energy
Cosmic Rays (UHECRs) to explain the origin and nature of such particles [6]. When a
UHECR collides with an atmospheric nucleus, it causes an Extensive Air Shower (EAS),
which is a cascade of charged particles throughout the atmosphere. The charged particles
excite nitrogen molecules and we can detect the ultraviolet (UV) radiation produced in
this process (fluorescence and Cherenkov radiation). The analysis of the UV images will
give information on the UHECR properties. That is the observational principle of all the
experiments of the JEM-EUSO program. However, the flux of these particles is extremely
low (a few per km2 per century at extreme energies such as E > 5 × 1019 eV). The JEM-
EUSO Collaboration has addressed that challenge with space observatories. The final
objective of the JEM-EUSO program is to realize a space mission with a super-wide-field
telescope. It will look down from space onto the night sky to detect UV photons emitted
from the EAS generated by UHECRs in the atmosphere. This is also the measuring principle
of other pathfinders boarded on balloons and satellites to test the technologies involved in
this ambitious program [7,8].

However, the presence of clouds between the EAS and the UV telescope may interfere
with the EAS measurement. It may also lead to a misinterpretation of the observations.
Then, for this type of application, an auxiliary instrument that maps the state of the clouds
when a UHECR occurs is essential.

Today there are many weather satellites with instruments capable of determining the
state of the sky with great accuracy [9–11]. Most of them base their operation on a massive
study of bands that allow an exhaustive atmosphere characterization, e.g., MODIS includes
36 spectral bands ranging from 0.4 to 14.4 µm. The Advanced Very High-Resolution Ra-
diometer (AVHRR) is a multispectral sensor with six spectral bands included in NOAA
satellites since the last 1970s [12]. Even the Imaging Infrared Radiometer (IIR), which is
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part of the payload of the Cloud-Aerosol Lidar and IR Pathfinder Satellite Observation
(CALIPSO-NASA), provides information in three spectral bands [13]. The Spinning En-
hance Visible and Infrared Imager (SEVIRI) in MSG (Meteosat Second Generation) satellites
observes the Earth in 12 spectral bands [14]. Moreover, the Meteosat Third Generation
Sounder (MSG-S) includes an Infrared Sounder (IRS) based on an imaging Fourier interfer-
ometer with a hyperspectral resolution of 0.625 cm−1 [15]. Logically the performance of
these sophisticated instruments has superseded the simple bi-spectral systems since the
1990s [16–18].

However, current weather satellites do not have the temporal and spatial resolution
necessary to ensure simultaneous information to JEM-EUSO main instrument. In addition,
the high cost, weight, power consumption, and dimensions of those high-performance
spectroradiometers make them non-viable for auxiliary purposes of JEM-EUSO missions.

For this reason, the JEM-EUSO instrument and some of the pathfinders include in
their payload a bi-spectral camera in the thermal infrared (TIR) spectral region [19–22].

Reference [19] includes detailed information on the specifications of the IR camera of
the initial JEM-EUSO mission as an example. Table 1 summarizes the main characteristics
of weight, dimensions, consumption, and spectral bands of the IR camera. For comparison
purposes, the table includes the same information for the Moderate-Resolution Imaging
Spectroradiometer (MODIS), a multispectral instrument of reference in the field of the
Earth observation and onboard the Terra and Aqua satellites. Other JEM-EUSO missions
also propose IR cameras of similar characteristics.

The JEM-EUSO camera has its bands located around 11 and 12 µm for different
reasons: the requirement of measuring at night, the 8–13 µm atmospheric windows, and
the slight differences in cloud absorption between these bands [23]. It is also important
to note that using two adjacent bands simplifies the instrument since it only requires one
detector array.

Table 1. Specifications of a initial IR camera on board JEM-EUSO instrument [19] and MODIS
instrument [24].

JEM-EUSO Camera MODIS

Mass (kg) 11 228.7
Dimensions (m) 0.40 × 0.40 × 0.37 1.0 × 1.0 × 1.6

Power consumption (W) 15 162.5
Data Rate (Mbps) 0.04 10.6

No. of bands 2 36
Band #11 (µm) 10.3–11.3 10.78–11.28
Band #12 (µm) 11.5–12.5 11.77–12.27

Concerning the data analysis, most of the cloud detection methods use radiometric
and multispectral single-pixel tests, which rely on selecting different thresholds [10,25,26]
or textural and nearby pixel measures [27,28].

The use of radiometric methods focused on cloud detection is widespread and exploits
the information of those multiple bands. The Cloudiness Mask (CM) used by MODIS uses
11 spectral tests for 19 different bands [25]. The cloud detection algorithm of the second
generation Meteosat involves 12 different bands [10]. The AVHRR employs five different
channels involved in five spectral tests and two spatial tests. Although those satellites use
a wide variety of bands to determine the CM, they include a few tests that only use the 11
and 12 µm bands (e.g., a gross 11 band test or a thin cirrus test that uses both bands).

At this moment, the most innovative methods are learning-based techniques such as a
machine or deep learning [29–35]. Nonetheless, learning-based methods are not easy to
apply to JEM-EUSO missions.

Since the JEM-EUSO IR cameras have slight differences in their designs (resolution,
noise, altitude, latitude, etc.), it would be necessary to readapt and retrain the learning-
based methods for the different pathfinders. In addition, the IR systems onboard pathfind-
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ers do not provide enough data to train those methods due to the short duration and
trajectory of the flights. For this reason, we have developed a radiometric algorithm that
can be more suitable in the frame of the JEM-EUSO missions.

However, the bi-spectral concept of JEM-EUSO IR cameras adds strong restrictions
to the available tests when determining the CM for this system. Nevertheless, it is still
possible to retrieve information about cloud coverage using those bands. Moreover, the
conditions where an EAS can be measured make the development of the CM easier. JEM-
EUSO program will detect the EAS just when the UV background noise is low enough.
Clouds, then, only have to be detected during night-time and mainly over oceans. We have
extended the study to day-time images to interpret the results better and make this new
CM more applicable.

The goal of the study we present is to design and evaluate a CM test to determine the
presence of clouds in the Field of View (FoV) of the JEM-EUSO telescope, over oceans and
during night-time. Although we have also studied the performance of a gross test based
only on the brightness temperature measured at 11 µm, our proposal is finally a bi-spectral
CM due to its better results. Our CM uses brightness temperatures (BTs) measured in the
bands centred at 11 and 12 µm (from now on BT11 and BT12) along with the Sea Surface
Temperature (SST) as ancillary data.

The main idea of the methodology we propose is to establish a relationship between
the BT11, the Brightness Temperature Difference (BTD) between BT11 and BT12, and the
ancillary SST using a set of real images in BT11 and BT12 bands. The objective is to get a
statistical estimation of the BT11 as a function of the BTD and SST for clear-sky pixels. Since
the BT of cloudy pixels is lower than that of the clear pixels, the difference between the
real and estimated BT11 can be useful to determine the pixel state. Based on this difference,
we define a threshold using a similar technique as in [36] to determine whether the pixel is
clear or cloudy.

The use of two adjacent bands has been used before in other CM algorithms [10,25,36].
The methodology we propose combines the advantages of those CMs but also provides
several novel ideas. First, in this work, the estimate of the BT11 for clear sky pixels is
calculated from a statistical analysis of thousands of images to consider all the atmospheric
scenarios. Therefore, the BT11 values do not depend on the performance of any radiative
model or the estimate of the atmospheric conditions. Second, since our original data are
BT11 values, the CM threshold is calculated on the BT11 value not on the SST one, as in[25]
and [36]. Third, the threshold is not determined directly from the intersection between the
distribution functions of the clear and cloudy pixels but by optimizing the results using
skill scores, as explained in Section 2.3. Finally, we include a specific analysis of partially
cloudy pixels.

Although there are some pathfinders, including IR cameras, for example, the EUSO-
SPB II (EUSO-Super Pressure Balloon II), the IR cameras have not provided enough im-
ages [22]. For that reason, MODIS data have been used in this work, allowing us to develop
our algorithm and validate it. Considering this CM is based on a split-window algorithm
test, we have called it the Split-Window Cloudiness Mask (SWCM).

As JEM-EUSO does not retrieve the SST, a global SST model is needed. In this
study, the NOAA 1/4◦ daily Optimum Interpolation Sea Surface Temperature (or daily
OISST) [37] provides the SST estimation.

Section 2.1 contains a short description of the data used to design and validate the
algorithm. Section 2.2 describes the fundamentals of the algorithm. Section 2.3 details the
methods to calculate the thresholds and coefficients that define the SWCM. Afterward,
the results of our methodology, that is, the final coefficients and thresholds that define the
SWCM and its validation, are presented in Section 3. In Section 4 we discuss the results
attained in the previous section and compare them with those of other authors. The last
section, Section 5, provides a summary of the methodology and the main results of this
work. It also includes the relevance of the results in the framework of JEM-EUSO and
remote sensing in general. In this section, we also point out some future working lines
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oriented to combine tests of different nature in a more global CM to improve the results of
individual single-test CMs.

2. Materials and Methods

In this section we will describe the data used to design and validate the SWCM.
Afterwards, the theoretical basis of the SWCM is summarized and the SWCM is defined.
The last subsection details the methodology to optimize the thresholds that characterize
the SWCM.

2.1. Data

Since the CM will be applied in the future to JEM-EUSO systems, it must be based on
the data that provide those systems. Although the spectral characteristics of the different
JEM-EUSO IR cameras can be slightly different, the bands of the IR reference instrument
are centred at 10.8 and 12.0 µm. As 31 and 32 MODIS bands are centred at 11.030 and
12.020 µm, we have selected the brightness temperature data at these two bands to design
our CM algorithm. In addition, MODIS products include accurate cloud features, which
are crucial to analyze and evaluate the proposed algorithm.

In this work, we use daily Collection 6.1 level 2 MODIS images [38] combined with a
global SST model. Table 2 summarizes the data fields utilized in this study.

Table 2. Data used in this work.

Concept Source Resolution

11 and 12 µm BTs MODIS Collection 6 5× 5 km2

SST NOAA Daily OISST 0.25◦ × 0.25◦

Cloud Fraction MODIS Collection 6 5× 5 km2

Zenith MODIS Collection 6 5× 5 km2

Geolocation MODIS Collection 6 5× 5 km2

2.1.1. MODIS Data

Collection 6.1 level 2 from MODIS (MYD06) is a product that contains processed
information about the optical properties of the clouds and other processed MODIS products
(as the MODIS CM).

MODIS products have been widely used as ground truth to evaluate new CM al-
gorithms due to his great confidence [11,39]. A comparison between the Active Remote
Sensing of Clouds (ARSCL) and the MODIS CM presents an agreement of 85% between
both techniques [9,40]. The largest difference between the two methods occurs for high
and thin clouds.

The similarity between JEM-EUSO IR camera bands, its global coverage, and its high
precision; make MODIS a great choice to calculate and validate the SWCM.

The data fields taken from MODIS include BT11, BT12, the MODIS Cloud Fraction
(CF), and geolocation images. Although MODIS bands have, at least, resolutions better
than 1× 1 km2, BT11, BT12 are provided at 5× 5 km2. For that reason, in this work, the
5× 5 km2 is the spatial resolution used. Additionally, most MODIS cloud products have
that resolution.

However, although MODIS provides a CM with a resolution of 5× 5 km2, we have
used the MODIS CF product also at a 5× 5 km2 resolution. The main reason is that MODIS
5× 5 km2 CM is subsampled from the MODIS 1× 1 km2 CM [41]. The value of the 5× 5
km2 CM is only representative of the central pixel of the corresponding area at 1 km
resolution and not of the general cloudiness state of the 5× 5 km2 area.

The CF product is immediately derived from the MODIS 1× 1 km2 CM and is defined
as the percentage of the cloudy pixels in a 5× 5 km2 pixel and then reflecting better the state
of the pixel. Therefore, the CF product is more representative than the CM at 5× 5 km2

resolution.
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2.1.2. Ancillary SST

As SST input, we use the daily OISST. Numerous algorithms use this kind of OISST
products as input, e.g., MODIS uses a weekly OISST to calculate initial radiances. The
OISST is correlated with the MODIS data fields using the geolocation that both products
provide. Since the resolution of the SST model is worse than that of MODIS images, we
have applied a linear interpolation to correlate MODIS and OISST products.

2.1.3. Region of Study

Since the final JEM-EUSO instrument is thought to be on board the International
Space Station (ISS), the trajectory does not include polar latitudes larger than 60◦. Thus, a
total of 6000 midlatitude and 5500 tropical images belonging to 2018 have been selected
to represent all possible scenarios of the JEM-EUSO IR camera, considering the latitudes
and seasonal variations involved in the trajectory of the ISS. To avoid using cross data
between the method and validation, we have split MODIS data into two different groups:
the methodology group (5704 images) and the validation group (3557 images).

2.2. SWCM Definition

The main idea of the methodology we propose is to establish a relationship between
the BT11, the BTD and the ancillary SST using a set of real images. The objective is to get a
estimation of the BT11 as a function of the BTD and SST for clear-sky pixels. The difference
between the real and estimated BT11 can be useful to determine the pixel state. Based on
this difference, we define a threshold to determine whether the pixel is clear or cloudy.

Figure 1 shows a flowchart of the SWCM.

2.2.1. Theoretical Basis

Due to the close relationship between the SST and the BT or radiance observations
in the TIR spectral region, some authors have introduced several algorithms to find the
SST from radiative sources [42]. On the contrary, using a guessed surface temperature to
calculate cloud properties is also not uncommon. The CM presented in [11] uses simulated
real-time clear-sky IR radiances for different tests. Numerical Weather Prediction data
supply the atmospheric parameters required for those simulations. The SST values are also
needed.

The combination of [43–45] lead to the equation 1 that allow us to estimate the BT11
value from the BTD and the SST:

BT11,e = A · SST

+ BTD(B1 + B2 · SST) + C · (1− sec(θ))BTD + D
(1)

where BT11,e is an estimation of the clear-sky BT11; θ is the zenith angle and A, B1, B2, C
and D are constants to be determined.

In this work, we also propose the use of an ancillary SST global model together with
the radiative information from a bi-spectral system to estimate the BT11 value. However,
we determine the coefficients of Equation (1) through a regression fit and not calculated
from radiative simulations as in [10]. Since the coefficients depend on the conditions of the
scenario (midlatitude/tropical), we calculate two different sets of coefficients for each one.
Figure 1 shows the stage at which the flowchart makes the selection of these coefficients
using the geolocation (box Select Latitude Model).

In the next section, we explain how the SWCM uses the difference between the real
and estimated BT11.

2.2.2. SWCM Procedure

To obtain the SWCM, we define a new parameter, ∆BT11, which measures the differ-
ence between the real BT11 and the estimated BT11,e (for clear sky).

∆BT11 = BT11 − BT11,e (2)
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If the radiative properties of the atmosphere remained the same, clear-sky pixels
would satisfy BT11,e = BT11. However, due to the atmosphere’s variation, the BT11 is not
the estimated one. Thus, we need a threshold to establish the BT11 range of clear-sky pixels.

Equation (2) determines the difference between the real and a estimated BT11 (values
of ∆BT11 close to zero show a high probability of being clear sky). The definition of a
probability threshold for ∆BT11 will allow generating a binary cloudiness mask. The
SWCM is defined as:

SWCM =

{
Cloudy if ∆BT11 < τ

Clear if ∆BT11 ≥ τ
(3)

being τ a threshold to determine. In this study, we calculate different τ for different
conditions (tropical/midlatitude or day/night). Figure 1 shows the stage where the SWCM
makes this selection (box Select Threshold).

Figure 1. This flowchart shows the process that the SWCM follows when determining whether a
pixel is clear or cloudy.

2.3. Methods

The method used to determine the coefficients consists of:

1. Selecting the MODIS images from the method group.
2. Separating the images for two different regions: tropical and midlatitude.
3. Fitting each subset of clear-sky pixels to the Equation (1) to obtain the coefficients.

The method used to determine the thresholds consist of:

1. Determining BT11,e for each pixel using the coefficients of the Equation (1).
2. Determining ∆BT11 for each pixel.
3. Determining a ground truth CM to compare with the SWCM.
4. Grouping the pixels of the images for the different scenarios (tropical/midlatitude,

day/night).
5. Scanning different τ thresholds for ∆BT11 to discern the cloudiness state (clear/cloudy

sky).
6. Selecting the optimum τ threshold for each scenario.

2.4. Coefficients Determination

Although other works base the calculation of the coefficients on direct radiative
models, in this work, we determine the coefficients of Equation (1) empirically through
a robust regression fit, using a bi-square weighting. This regression involves only pixels
with a CF equal to zero, securing that no clouds were involved in the fitting. All pixels
containing land or sea ice were also discarded.



Sensors 2021, 21, 6506 8 of 21

A total of 4006 midlatitude (|latitude| > 23.44 & |latitude| < 66.56) and 3661 tropical
(|latitude| ≤ 23.44) MYD06 images were involved in the fit. The images were selected in an
attempt to cover evenly all oceans and all seasons of the year, as well as the different hours
of the day.

2.5. Threshold Determination

Since the SWCM is a categorical variable obtained from continuous data, it depends
strongly on whether or not that continuous variable exceeds a specified threshold, τ.

Then, to obtain the SWCM, an optimal threshold for the ∆BT11 parameter has to
be defined. In this study, we perform a comparison between MODIS CF derived CMs
and the SWCM for different τ values to obtain the optimal threshold. To quantify those
comparisons, we use diverse skill scores, that is, statistical measures of the accuracy and
performance of a classifier. A common technique to evaluate categorical classifiers such
a CM [11,39] are the use of skill scores [46]. This study involves five different skill scores:
the Proportion Correct (PC), Frequency Bias (FB), Probability of Detection (POD), and
the Kuiper’s Skill Score (KSS) (Appendix A contains the definitions and use of these
skill scores).

Figure 2 represents the probability density functions of ∆BT11 for totally clear (CF = 0),
totally cloudy (CF = 100), and mixed pixels (0 < CF < 100) for midlatitude images. Totally
clear pixels (continuous line) are grouped around ∆BT11 = 0, within the range of −3 K and
3 K. That range also embraces some totally cloudy pixels (dotted line). The small overlap
existing for totally clear and cloudy pixels means no threshold splits both classes entirely.
The mixed pixels (dashed line in Figure 2) increase the overlapping for values between
−10 and 3 K. That range also embraces some totally cloudy pixels (dotted line). The easiest
solution would be to reject those mixed pixels by applying spatial and textural techniques,
such as the Sobel algorithm [47]. However, the number of pixels discarded would be too
high, at least at 5× 5 km2 spatial resolution. For this reason, this study includes mixed
pixels. The optimal τ value is the one for which the SWCM gives the best results.

Figure 2. Probability density functions for clear, covered, and partially covered conditions. Midlati-
tude case.

Since the ground truth used in this study is the MODIS CF and not MODIS CM,
the evaluation of the binary SWCM against the 0–100% MODIS CF is not direct. On the
contrary, it means that a new parameter is necessary, h. CF above the h parameter leads
to cloudy pixels, and those below will be considered clear sky. This new binary mask
calculated from the MODIS CF product can be used as ground truth to calculate the optimal
τ value and validate the SWCM performance.
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Therefore, two kinds of thresholds are necessary for this study. The h parameter used
to generate the ground truth binary mask from the MODIS CF product and τ optimal
threshold used to define the SWCM based on the ∆BT11 parameter.

2.5.1. Ground Truth Cloud Masks

In order to evaluate the impact of these mixed pixels, we have considered two ground
truth CM derived from MODIS CF. In this sense, we have evaluated the SWCM from a
twofold point of view.

The first ground truth CM is the Reference Cloud Mask (RCM), which gives an idea
of the SWCM performance in real situations where mixed pixels are always present. A
transformation of the CF into a CM using the h parameter conducts to the RCM:

RCM =

{
Cloudy if CF > h
Clear if CF ≤ h

(4)

In principle, the h parameter can be chosen at the user’s convenience and depends
on the final application. To avoid an arbitrary selection of h, in this paper, h has also been
selected based on skill scores measures.

In this framework, the best response to the cloud mask determines the threshold. The
Receiver Operational Characteristics (ROC) curves are one of the most common methods
to evaluate that response [48]. ROC curves show the relationship between the PODs of
classes of a classifier, in this case, between PODclr and PODcld. By computing ROC curves
for different h values, we can choose the optimal h threshold. Figure 3 represents the
ROC curves of different h values. The optimal h parameter is 40% since it is the one that
maximizes the area under the curve.

Figure 3. ROC curves for different reference CF thresholds.

In addition, we introduce the Pure Cloud Mask (PCM) to evaluate the SWCM capacity
to discriminate totally clear and totally cover-sky pixels. To achieve that, the PCM excludes
all pixels with a CF distinct to 0 or 100%, avoiding the mixed pixels. In this way, it is
possible to determine if the discrepancies are due to the methodology or the mixed pixels.

Figure 3 also depicts the ROC curve corresponding to only completely cloudy and
clear pixels, named Pure Cloudiness Mask (PCM). This curve shows that the proposed
cloud mask performs as a near-perfect classifier when no mixed pixels are considered.
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2.5.2. Optimal τ Threshold Calculus

We can determine the optimal τ threshold after generating the ground truth CMs
(RCM and PCM). For this purpose, we calculate the SWCM for different τ values. Then,
we compute the skills scores mentioned in Appendix A by comparing the SWCMs with the
ground truth CMs

Figure 4 represents the PC, KSS, and FB in function of the τ threshold value.
The PC is not the best skill score for unbalanced problems (where a class is over-

represented). In addition, high PC values appear even though the predictor shows no skill.
e.g., for τ > 4 K, all clear sky pixels get classified as cloudy ones (Figure 2) but the PC is
still high for those values (Figure 4).

Compared with the PC, the KSS measures the ability to separate both categories and
solves that inconvenience. In Figure 4, we can observe that for the maximum value of the
KSS, the FB is close to one, which means that no one class is over-represented.

Since the KSS seems to be the best choice for this problem, we have calculated the
optimal τ threshold by maximizing the KSS (Figure 4).

Figure 4. Different skills scores in function of the threshold value. midlatitude case.

3. Results

The results of this work have been split into two subsections: Section 3.1 specifies the
results of the proposed methodology, that is, the coefficients and thresholds of the SWCM.
Section 3.2 includes the results of the validation against MODIS multiband algorithm.

3.1. Cloud Mask Results
3.1.1. Cloud Mask Coefficients

The CM coefficients have been calculated for the tropical and midlatitude models and
are summarized in Table 3. Both models present similar coefficients except for A1 and B2,
associated with the BTD.

Table 3. Calculated coefficients.

A B1 B2(K−1) C D(K)

midlatitude 1.04 34.60 −0.13 1.41 −12.41
Tropical 0.95 14.28 −0.06 1.32 15.91

3.1.2. τ Threshold

We have calculated the optimal value τopt for mid and tropical latitudes, during
the day and night time and for the PCM and RCM, obtaining a total of eight different
thresholds, summarized in Table 4.
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Table 4. Optimal thresholds τ values.

Mid Latitude Tropical

Day Night Day Night

τopt RCM (K) −1.7 −1.9 −1.4 −1.9
τopt PCM (K) −1.7 −2.0 −1.8 −2.6

3.2. Validation

The validation procedure consists of applying the SWCM to a set of 3800 MODIS
images. The results are compared with those of the PCM and RCM described in the
previous section (Section 2.5.1). The two kinds of validation allow us to analyze the cloud
fraction effect on the SWCM (Section 3.2.1).

The validation set contains images of each month of the 2018 year during the day
and night-time, including latitudes between 0 and 60◦ degrees, which makes possible an
analysis of the day/night influence and the seasonal variations (Sections 3.2.2 and 3.2.3
respectively).

3.2.1. Validation Results

Around 95 × 106 tropical and 155 × 106 midlatitude observations were used to
perform the validation. This number is inferior when the PCM is used as ground truth
since mixed pixels got excluded.

Table 5 presents the contingency values (a, b, c, and d), the PC, KSS, and FB of the
SWCM. The table summarizes the tropical and midlatitude case. The skills scores have
been calculated using the two different ground truths, PCM and RCM. Table 5 includes the
data during the day and night-time conditions separately and merged.

Table 6 illustrates the monthly variation of the skill scores. When the ground truth
is the PCM, the PC and KSS is 0.97–0.98 and 0.90–0.97, respectively. The POD for the
clear-sky class is 0.93–1.00 and 0.97–0.98 for the cloudy one. The similarity between both
PODs values reflects the unbiased nature of the selected thresholds. The close to 1 value of
the FB indicates that almost no bias is introduced compared to MODIS for the totally-clear
and cloudy states.

When the ground truth is the RCM, the PC and KSS decrease to 0.90–0.92 and
0.83–0.84, respectively. The POD is lower for both classes, being 0.88–0.92 for cloudy
pixels and 0.91–0.96 for clear-sky pixels. The FB is 0.90–0.93 for the cloudy class and
1.22–1.33 for the clear-sky class, meaning that the SWCM is biased in comparison to the
RCM, overestimating the clear sky pixels and underestimating the cloudy ones.

As an example Figure 5 represents a comparison between the RCM and the SWCM
on 1 January 2018 at 01:15 UTC. The image on the left represents the RCM and the image
on the right shows the discrepancies between the RCM and the SWCM. In general, the
agreement between both CMs is quite good, and the most significant differences are on the
edges of the clouds (discussed in Section 4).
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Table 5. Skills scores of the SWCM compared against the PC and RCM during day and night-time, including tropical and
midlatitude.

Tropical

RCM PCM

Total Day Night Total Day Night

a 57,266,328 26,683,057 30,583,271 40,867,567 19,288,469 21,579,098
b 1,222,183 705,236 516,947 59,935 47,947 11,988
c 7,957,351 3,954,977 4,002,374 922,384 556,335 366,049
d 29,052,983 15,617,908 13,435,075 13,756,951 8,228,695 5,528,256
n 95,498,845 46,961,178 48,537,667 55,606,837 28,121,446 27,485,391
PC 0.90 0.90 0.91 0.98 0.98 0.99
KSS 0.84 0.83 0.85 0.97 0.97 0.98
PODCld 0.88 0.87 0.88 0.98 0.97 0.98
PODClr 0.96 0.96 0.96 1.00 0.99 1.00
FBCld 0.90 0.89 0.90 0.98 0.97 0.98
FBClr 1.22 1.20 1.25 1.06 1.06 1.06

Tropical

RCM PCM

Total Day Night Total Day Night

a 117,985,325 57,529,262 60,456,063 98,187,245 48,678,004 49,509,241
b 2,284,878 755,258 1,529,620 1,006,353 322,617 683,736
c 10,823,371 5,367,212 5,456,159 2,877,836 1,489,219 1,388,617
d 23,828,633 13,856,568 9,972,065 13,014,840 8,197,908 4,816,932
n 154,922,207 77,508,300 77,413,907 115,086,274 58,687,748 56,398,526
PC 0.92 0.92 0.91 0.97 0.97 0.96
KSS 0.83 0.86 0.78 0.90 0.93 0.85
PODCld 0.92 0.91 0.92 0.97 0.97 0.97
PODClr 0.91 0.95 0.87 0.93 0.96 0.88
FBCld 0.93 0.93 0.94 0.98 0.98 0.99
FBClr 1.33 1.32 1.34 1.13 1.14 1.13

Figure 5. Selected case showing the performance of the mask comparing to MODIS CM. Left image shows the RCM. Right
image shows the discrepancies between the SWCM and the RCM.

3.2.2. Day or Night Influence

Since the data include pixels during the day and night-time, Table 5 includes those
conditions separately.

The results show no significant differences between the day and night time skill scores,
excluding results in midlatitude when RCM is used as ground truth, with better results
during day-time with a KSS of 0.86 (0.78 for the night-time).
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3.2.3. Seasonal Variation

As commented in Section 2.1.3, the MODIS images have been selected to be represen-
tative of the different seasons. Table 6 summarizes the obtained KSS, PC, POD, and FB for
each month.

Although some skill scores remain almost stable (the PC and the POD for cloudy
pixels), some scores show a monthly variation (the POD for clear-sky pixels).

Figure 6 shows the monthly variation of the POD for clear-sky pixels for midlatitude
north, midlatitude south, and tropical regions. The tropical PODclr remains stable, but
for midatitude, the PODclr is worst for the winter-spring seasons with values of 0.76 (in
comparison to summer-autumn months, with values of 0.98).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

0.75

0.8

0.85

0.9

0.95

1

P
O

D
cl

r

Tropical

Mid-Latitude North

Mid-Latitude South

Figure 6. PODclr in function of the month for tropical and midlatitude.

The lower POD for clear-sky pixels during winter-spring months causes a monthly
variation of the KSS and FBs.

Table 6. Seasonal variation of the obtained skills scores when comparing the SWCM against the RCM.

Tropical
Total January February March April May June July August September October November December

PC 0.90 0.90 0.90 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.90 0.91 0.90
KSS 0.84 0.83 0.84 0.82 0.82 0.83 0.84 0.84 0.85 0.84 0.84 0.85 0.84
PODCld 0.88 0.87 0.87 0.85 0.87 0.86 0.89 0.90 0.90 0.89 0.87 0.88 0.88
PODClr 0.96 0.95 0.97 0.98 0.96 0.97 0.95 0.94 0.95 0.95 0.97 0.96 0.97
FBCld 0.90 0.89 0.89 0.86 0.89 0.88 0.91 0.93 0.91 0.91 0.89 0.90 0.89
FBClr 1.22 1.24 1.25 1.26 1.22 1.21 1.18 1.18 1.22 1.19 1.21 1.26 1.25

Midlatitude North
Total January February March April May June July August September October November December

PC 0.91 0.93 0.92 0.90 0.90 0.91 0.91 0.88 0.92 0.90 0.92 0.93 0.93
KSS 0.83 0.82 0.78 0.69 0.74 0.82 0.85 0.82 0.86 0.84 0.88 0.88 0.87
PODCld 0.91 0.94 0.93 0.94 0.93 0.91 0.90 0.85 0.90 0.87 0.90 0.92 0.94
PODClr 0.92 0.89 0.85 0.76 0.82 0.91 0.95 0.97 0.96 0.98 0.98 0.97 0.93
FBCld 0.93 0.96 0.96 0.99 0.97 0.93 0.91 0.86 0.92 0.87 0.91 0.93 0.94
FBClr 1.29 1.29 1.20 1.07 1.10 1.32 1.38 1.45 1.24 1.29 1.30 1.31 1.41

Midlatitude South
Total January February March April May June July August September October November December

PC 0.92 0.92 0.91 0.91 0.93 0.91 0.91 0.91 0.91 0.92 0.92 0.92 0.92
KSS 0.82 0.89 0.88 0.87 0.89 0.79 0.78 0.71 0.69 0.76 0.80 0.86 0.88
PODCld 0.92 0.91 0.90 0.90 0.92 0.92 0.92 0.94 0.93 0.93 0.93 0.91 0.91
PODClr 0.91 0.98 0.98 0.97 0.97 0.88 0.87 0.78 0.76 0.83 0.86 0.95 0.97
FBCld 0.94 0.91 0.90 0.91 0.92 0.94 0.95 0.97 0.97 0.96 0.96 0.92 0.92
FBClr 1.35 1.44 1.47 1.50 1.38 1.40 1.28 1.18 1.17 1.20 1.25 1.39 1.46
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4. Discussion

As seen in the Sections 2.3 and 3.2, different thresholds τ and different performances
are derived depending on the day/night state, the latitude, or season. In this section, we
will discuss these results and compare them with those of other authors to better evaluate
our SWCM.

As expected, the comparison with the PCM ground truth, which evaluates the perfor-
mance of the SWCM to classify clear and cloudy pixels, gives more satisfactory skill scores
than the comparison with the RCM ground truth, which better reflect the overall skill of
the SWCM including mixed pixels. For the PCM, the PC, KSS, POD, and FB take values
close to one (the perfect score for those skill scores). That means that the SWCM is able
to classify clear and cloudy pixels with high accuracy and that the mixed pixels are the
primary source of error in the SWCM.

In general, we can say that the results are very encouraging since the PC is always
higher than 0.90 (including mixed pixels) for all the latitudes regardless of whether it is
day or night (Table 5). The difference in the total PC score when using both ground truths
is 0.08 (Tropical) and 0.07 (midlatitude), which means that the performance of the SWCM
is also good in realistic scenarios, including mixed pixels.

The KSS presents the same behavior, with a total difference of 0.13 (tropical) and 0.7
(midlatitude). This fact reveals that the optimization of the h threshold (h = 40%) solves
the issue of the ∆BT11 overlapping between the mixed pixels and the clear and cloudy
ones, at least partially. As an illustrative example, Figure 7 represents the probability
density functions of the scene represented in Figure 1 divided in pixels with CF below 40%
and pixels with CF above 40%. In general, those mixed pixels are located in cloud edges.
Nevertheless, the influence of those pixels in the SWCM performance is strong because of
the size of the pixels (5 × 5 km2) that increases the percentage of pixels partially covered.
Therefore, it is expected that the SWCM performance improves when applied to better
spatial resolutions [49] (as JEM-EUSO systems).

Figure 7. ∆BT11 probability density functions of different cloud fraction cases.

As mentioned before, the BT11,e and the τ depends on the blackbody emission of the
ocean (according to its temperature) and the absorption due to the atmospheric water
vapour content. However, BT11,e and τopt calculus uses not a real SST but a daily SST
provided by the NOAA Daily OISST global model. The OISST is constructed by combining
observations from different platforms (satellites, ships, buoys, and Argo floats). For this
reason, the OISST temperature values can differ from those of a remote sensor (±0.5 K on
average [50]). Nevertheless, if there is a bias between both temperatures for any condition
(i.e., different CF conditions as shown in [51]) the effect of those differences is minimized
in the statistical procedure, that is, in the fitting process to calculate the coefficients of
Equation (1) and in the thresholds optimization.
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In addition, the small diurnal SST oscillation [52] could entail some errors that have
been avoided calculating two different τ for day and night (Table 4). The difference between
both τ is higher for Tropical latitudes, where the SST daily oscillation is also higher. The
negligible difference between the day and night values of all the scores in Tropical analysis
(Table 5) indicates that the diurnal variation is properly taken into account using different τ
for day and night. The midlatitude images analysis shows the same behavior except for the
values of PODclr for which there is a clear difference between day and night. This exception
could be related to the well-known difficulty of identifying clear pixels when the underlying
surface is at low temperature, and there is no good contrast with clouds, which are also
cold. This poor contrast between the cold SST and the clouds could also explain the seasonal
variation in the midlatitude region observed in the validation section (Section 3.2 Table 6 and
Figure 6).

The differences between day and night performance could be associated with the
variation of the atmospheric state as well. Precisely, the atmospheric vertical profiles
also undergo a seasonal variation, especially the water vapor profile, which has the main
responsibility for the atmospheric absorption in the TIR. Since we do not perform regression
fits for each month in each geographical region, the methodology averages the atmospheric
seasonal variations. As the water vapor variation occurs in the firsts kilometers of the
atmosphere, it affects the PODcld to a lesser extent because the clouds above the lower
layers of the atmosphere can shield what happens below them. This explanation is in
agreement with a lower difference between day and night PODcld compared to the PODclr
one in the midlatitude region (Table 5). It also agrees with a lower seasonal variation in
PODcld compared to PODclr for the same region, as can be seen in Table 6. However, the
tropical region does not show this seasonal variation, as the water vapor content almost
does not change throughout the year. Finally, the different proportions of clear and cloudy
sky pixels existing could also cause the seasonal variation of the PODs in the midlatitude
region, e.g., for the validation subset of images, for midlatitude north, during august, the
ratio between totally cloudy and clear pixels is 4.1; meanwhile, during march month, the
ratio is more significant, with 6.3.

To summarize, we find slightly better results for Tropical than midlatitude regions
(Table 6). However, the skills scores are very similar between the tropical and the midlat-
itude cases during summer-autumn months (the discrepancies occur during the winter-
spring months). In almost all cases, the PC is more significant than 0.90, and the KSS is
higher than 0.82 (Tropical) and 0.69 in the worst case of midlatitude.

In any case, to determine the scope of the SWCM in a more general framework, our
results have been compared with those of other authors who also use MODIS CM as
ground truth. Table 7 contains the skills scores of different CMs when compared to MODIS
CM. It should be mentioned that these comparisons do not take into account that these
works cross the data of two different satellites and instruments, increasing the difference
with the MODIS CM. On the contrary, this work compares the same MODIS instrument’s
data to focus only on the algorithm and CM performance.

The SWCM test has been compared with a BT11 gross test (BT11 > threshold). The
results (Table 7) show that the results of the test used are better than the BT11 gross test.
This difference becomes greater for midlatitude, where the classification of the BT11 gross
test is poor.

The INSAT-3D Gaussian Mixture Model (GMM) CM [39] is an algorithm that uses
two TIR channels and one Middle IR (MIR) channel. It is based on the assumption that
cloud data radiances are clustered in different Gaussian distributions. The CM is obtained
then by merging those clusters into cloudy and clear classes.

In [11], an operational CM for the Advanced Geostationary Radiation Imager (AGRI)
on board Fengyun-4A is presented. The algorithm applies 13 spectral and spatial tests
based on six different bands, producing a four-level CM product. The algorithm makes use
of simulated real-time clear-sky IR radiances, using data from the Global Forecast System.
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Even though the SWCM uses only one test based on two TIR bands, its global PC
(0.91) is similar to the PC values of the other CMs. It is higher than the INSAT-3D GMM
PC (0.76), although lower than the Advanced Himawari Imager (AHI) PC (0.93).

Concerning the POD, the SWCM PODCld is of the order of the others, but the SWCM
PODClr is the highest. The SWCM PODClr is higher than the SWCM PODCld, unlike in
the other CMs. It is noticeable that the SWCM KSS score, which measures the ability to
separate clear and cloudy pixels, is the highest one.

When analyzing the FAR, the SWCM FARCld is lower than the others, although the
FARClr is higher. Nevertheless, in general, all the FARs are in the same range.

Other works that show similar POD scores can be found in [53].
To summarize, the performance of the SWCM is similar to the one of the other CMs

based on multispectral or spatial tests, even though the SWCM is a one-test CM based on
only two spectral bands.

Table 7. Other test and cloud mask results [11,39].

Different CM Products PC KSS PODCld PODClr FARcld FARclr

SWCM
(Using MYD06 data)

0.91 0.84 0.90 0.94 0.02 0.27

AGRI CM Product 0.91 0.79 0.93 0.86 0.04 0.22
AHI CM Product 0.93 0.83 0.94 0.89 0.03 0.22
INSAT-3D GMM CM 0.76 0.52 0.76 0.76 0.26 0.22
BT11 Gross Test 0.79 0.58 0.79 0.79 0.05 0.56

5. Summary and Conclusions

The main objective of this new SWCM is to provide the JEM-EUSO program with a
cloudiness map in the interest regions. For this reason, we have only focused on areas over
oceans because the UV principal instrument will keep clear of populated areas to avoid the
associated UV light pollution.

Our proposal is a simple cloud mask test based on a split window algorithm. The
inputs of the SWCM are the BTs in two spectral bands in the thermal infrared region
(centered at 11 and 12 µm) and SST data provided by a Global Model OISST. The method
is based on two stages. The first one is an estimate of the brightness temperature of clear
sky at 11 µm. The statistical procedure to calculate the estimate of BT11 is one of the
novel contributions of this work. The second step calculates the difference between the
estimate BT11 and the measured one. To classify the pixel, that difference is compared with
a threshold. The procedure to calculate the thresholds is also novel.

The usefulness of this SWCM in the framework of JEM-EUSO is twofold. On the one
hand, it will determine if there are clouds in the FoV of the UV main telescope. On the
other hand, it will select the cloudy pixels where the radiative algorithms will be applied to
retrieve the cloud top height, which is the main objective of the JEM-EUSO IR Camera [54].

Concerning the resilience of the SWCM, despite the IR cameras of the different JEM-
EUSO missions having slight differences in their designs (resolution, noise, altitude, etc.),
the SWCM could be applied to all the JEM-EUSO pathfinders. The spectral bands (centering
and width) are very similar to each other and very similar to the MODIS spectral bands.
For this reason, the results obtained by applying SWCM to MODIS data can be extrapolated
to the IR systems of the JEM-EUSO missions and other systems with similar spectral bands.
The proximity between the bands and their coincidence with an atmospheric window
also favor extrapolation. Finally, the SWCM uses brightness temperature data, which is
calibrated and does not depend heavily on the sensor used.

Since the JEM-EUSO instrument is not already in orbit, we have used MODIS data.
Precisely, MODIS bands #31 and #32 are very similar to those of the IR JEM-EUSO Camera.
MODIS data have allowed us to develop the SWCM and validate it without crossing data
between different instruments and, therefore, without introducing instrumental effects
in the evaluation of the CM performance. However, in the future, these instrumental
differences will have to be studied.
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The SWCM results are very good when applied to totally cloudy or clear pixels,
which implies that the proposed algorithm is an appropriate classifier. Comparing the
results using PCM and RCM reveals that the main discrepancies are related to partially
cloudy pixels at the cloud edges. However, they have been minimized by optimizing the h
threshold. However, as the spatial resolution of JEM-EUSO (about 0.75× 0.75 km2) is better
than the one used in this work, the expected results in the JEM-EUSO IR camera should
be better. Nevertheless, those mixed pixels could also be identified and/or discarded to
improve the algorithm accuracy by applying some spatial and textural techniques. The
final solution will depend on the JEM-EUSO requirements.

The lower performance corresponds to the PODclr for midlatitude regions during the
winter months. These results could be improved by conducting specific regression fits
and calculating new coefficients A, B1, B2, C, and D for that period in midlatitude regions.
Moreover, if the JEM-EUSO mission detected an EAS, local coefficients could be calculated
through the radiative Transfer Equation [11], using vertical water vapour profiles provided
by numerical weather prediction models such as WRF or GFS [55].

The scope of our study has been determined by comparing SWCM with other relevant
studies. The comparison between the skill scores (Table 7) allows us to assert that the
SWCM presents a performance similar to other studies that use MOD35 data as ground
truth, even though the SWCM uses just one test based on only two spectral bands.

Nevertheless, in the future, it is expected to integrate this algorithm in a more elabo-
rated CM algorithm, also using other complementary tests. Actually, other works based on
spatial analysis [54], deep learning [56], or Numerical Weather Forecast models [57] have
already been carried out within the JEM-EUSO community.

It is also important to emphasize the relevance of our results in the field of future
remote sensing sensors. The great advantage of the proposed SWCM algorithm is its easy
hardware implementation. It requires defining only two spectral bands by using band-pass
interferential filters on two arrays of the same detector material. The use of only one type
of material means a big simplification in terms of electronics and data acquisition and
management.

Finally, we would highlight that this algorithm could also be applied to data of plenty
of satellites, both operative and non-operative since the use of the TIR bands has been
widespread since the second half of the last century. Moreover, the concept proposed in
this article can be easily transferred to nanosatellites and CubeSats constellations devoted
to Earth observation, following the current trend of development of simple and low cost,
mass, and energy-consumption systems. The possibility of monitoring the presence of
clouds at high resolution and in specific areas with simple systems will allow providing
complementary and valuable information for numerous environmental and technological
applications.
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SWCM Split-Window Cloudiness Mask
OISST Optimum Interpolation Sea Surface Temperature
MYD06 MODIS Cloud Product
ARSCL Active Remote Sensing of Clouds
ISS Internattional Space Station
CF Cloud Fraction
PC Proportion Correct
FB Frequency Bias
POD Probability Of Detection
FAR False Alarm Ratio
KSS Kuipers Skill Score
RCM Reference Cloud Mask
PCM Pure Cloud Mask
ROC Receiver Operational Characteristic
GMM Gaussian Mixture Model
AGRI Advanced Geostationary Radiation Imager
AHI Advanced Himawari Imager



Sensors 2021, 21, 6506 19 of 21

Appendix A

Skill scores are defined in terms of the contingency table (Table A1), a table that
classifies the predicted data into four categories. This study involves five different skill
scores, including the Proportion Correct (PC), Frequency Bias (FB), Probability of Detection
(POD), the False Alarm Ratio (FAR), and the Kuiper’s Skill Score (KSS). The skills scores
are defined as:

PC =
a + d

a + b + c + d
=

a + d
n

FBCld =
a + b
a + c

FBClr =
d + c
d + b

PODCld =
a

a + c

PODClr =
d

b + d

KSS = PODClr + PODCld − 1 =
ad− bc

(a + c)(b + d)

FARCld =
b

a + b

FARClr =
c

c + d

(A1)

where a, b, c, and d are the contingency table terms, and the suffixes Cld and Clr are referred
to the cloudy and clear-sky conditions, respectively, and n the sum of the total cases.

Table A1. Contingency Table.

Prediction (SWCM)
Reference Mask

Cloudy Clear

Cloudy a b

Clear c d

POD: represents the ability to determine clear or cloudy conditions independently.
A higher value of the POD score implies a better accuracy for the clear-sky or cloudy
condition.

PC: is an intuitive measure of the overall accuracy. It can lead to a bias for unbalanced
problems (where a category is more common than the other). In this study, the cloud
analyzed problem is unbalanced since there is a higher proportion of cloudy pixels. The
KSS, a popular combination of the PODs ratios, which measures the ability to separate
both categories, solves that inconvenience.

FB: When a threshold is optimized by using a skill score, it is common to get a
deviation or bias with the reference or truth mask. To measure this effect, FB was employed
in this study. FBs greater than one indicates an overestimation of the class; meanwhile,
FBs values below one indicate an underestimation of the class.

FAR: is a skill score which measures the number of false alarms per total number
of alarms.
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