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With the rapid popularity of agent technology, a public opinion early warning agent has

attracted wide attention. Furthermore, a deep learning model can make the agent more

automatic and efficient. Therefore, for the agency of a public opinion early warning task,

the deep learningmodel is very suitable for completing tasks such as popularity prediction

or emergency outbreak. In this context, improving the ability to automatically analyze and

predict the virality of information cascades is one of the tasks that deep learning model

approaches address. However, most of the existing studies sought to address this task

by analyzing cascade underlying network structure. Recent studies proposed cascade

virality prediction for agnostic-networks (without network structure), but did not consider

the fusion of more effective features. In this paper, we propose an innovative cascade

virus prediction model named CasWarn. It can be quickly deployed in intelligent agents to

effectively predict the virality of public opinion information for different industries. Inspired

by the agnostic-network model, this model extracts the key features (independent of the

underlying network structure) of an information cascade, including dissemination scale,

emotional polarity ratio, and semantic evolution. We use two improved neural network

frameworks to embed these features, and then apply the classification task to predict the

cascade virality. We conduct comprehensive experiments on two large social network

datasets. Furthermore, the experimental results prove that CasWarn can make timely

and effective cascade virality predictions and verify that each feature model of CasWarn

is beneficial to improve performance.

Keywords: agent system, deep learning, cascade virality prediction, feature fusion, classification

1. INTRODUCTION

Currently, the number of agents is increasing rapidly (ichocki et al., 2011), and smart agents
are more efficient. With the advancement of artificial intelligence technology, more and more
intelligent agents are being used in the industry. A deep learning model provides a potential
solution for artificial intelligence, it is widely used in various agents fields (Westerlund, 2020). With
the rapid development of the Internet, the growth rate of information in online social networks has
become an evaluation indicator of public opinion. Some information in the network will become
the source of viral dissemination, and this information will spread like a storm. Different industries
need to monitor their own network public opinion, especially for government, enterprises, and
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media industries. They pay attention to the impact of sudden
public opinion on themselves. In other words, they want to know
what information related to their own will become a viral cascade
as early as possible (Tatar et al., 2014). Information cascade
virality means that some informationmay be widely spread in the
network in a short time. It may be organized, planned behavior,
or the extension of controversial social emergencies (Kefato et al.,
2018).

However, the cost of manually studying and judging
information cascade virality is enormous. Automatically
distinguishing early warnings through agents becomes a
way to reduce labor costs in different industries. Designing
efficient neural network algorithms to meet agents’ needs to
predict information cascade virality becomes the focus of
research. Supposing this agent can use the features of significant
differences and accurately warn when information becomes
viral in the early stage. In that case, it plays a crucial role in
the decision-making (blocking or guiding the dissemination) of
the follow-up information dissemination. With the continuous
progress of machine learning models, many advanced models
apply information cascade scale prediction. These works use
the network structure features of information dissemination
and network nodes attribute features to establish a strong
correlation, for example, the number of followers/followers of
participating users, user connections and community structure,
and user activity, etc. They mainly use machine learning models
to predict the magnitude of the information forwarded at the
future moment (Li et al., 2017, 2018; Wang et al., 2018). The
emergence of deep learning technology improves manual feature
selection in early work and obtains more high-dimensional
space representation capabilities. However, in the field of cascade
virality prediction, there are still two types of problems in
previous works.

Firstly, a social network is usually scattered. Most of the
previous virality predictions are based on many underlying social
relationships (Subbian et al., 2017). It causes most models to
rely on the underlying network features and uses users’ network
relationships to predict the cascade virality. However, it may be
difficult to obtain such detailed network information in most
cases. Besides, for different industries that only pay attention
to their own information, it is not significant to obtain global
social network relation data, such as the following relationship
between users. It is not well-supported in terms of data volume
and algorithm efficiency.

Secondly, network relational data are dynamic and complex.
When applying deep learning models to solve network
relational data, it usually requires more complicated information
aggregation work (like GNN Zhou et al., 2018) to embed network
nodes’ representation, which requires a large number of model
parameters. Simultaneously, in an information cascade process,
new nodes will also cause new node embedding problems
after joining the network, which brings about the problem of
continuous training of new parameter models (Qiu et al., 2018).
However, for many practical purposes, the timeliness of the
virality of the information is more critical. If we can predict the
virality earlier rather than later, such predictions are useful.

Some studies expect similar results with less feature
information. They ignore the underlying network structure
features (Zhao et al., 2015). Subbian et al. (2017) propose
an agnostic network-based method to reduce the network
structure information in the information cascade process. Kefato
et al. (2018) apply deep learning models to agnostic-network
virus prediction, use the number of forwarding in the time
sequence process as the feature, and use the CNN model to
predict whether the information will explode. However, the
construction model lacks critical features strongly related to the
information cascade.

To solve these problems, we propose a cascade virality
prediction model based on deep learning, named CasWarn.
First, we segment an information cascade with time slices
and extract the cascaded features in different time slices,
including dissemination scale, emotional polarity ratio, semantic
evolution features, and use advanced models to vectorize these
features. Next, we design a module with two neural network
modules to aggregate these features. The first module uses
a convolutional neural network to aggregate the relations
between different features and uses asynchronous patterns to
learn the potential relations of different time-series features.
The second uses a variant of a recurrent neural network to
learn the semantic evolution relations in the cascade process.
Then, we use the gradient descent algorithm to train the
classification model. The main contributions of our work are
as follows:

(1) We design an intelligent agent model to predict
the cascade virality of social network information, which
can be applied to public opinion monitoring for different
industries. We only need to monitor the dissemination content
and time of information related to different industries and
do not need to care about the user relationship involved
in the dissemination. Using a relatively small amount of
information, it can quickly and effectively predict social network
information virality.

(2) We propose an improved deep learning model, CasWarn,
for cascade virality prediction based on time series. CasWarn
extracts the key features of information dissemination from
the agnostic-network and fuses these features through a deep
learning model, which makes it more suitable for cascade virality
prediction tasks.

(3) We conduct extensive experiments on two public
datasets, and our results prove that CasWarn outperforms the
latest benchmarks in many agnostic-network cascade virality
prediction tasks. Simultaneously, compared with the state-of-
the-art knowable-network model, we have achieved comparable
performance under the premise of a less information parameter.

The rest of this paper is structured as follows. In section
2, we briefly review related works. Section 3 gives the formal
definition of an information cascade event and information
cascade sequence and defines the problem of cascade virality
prediction, while section 4 details the proposed CasWarn model.
In section 5, we discuss the experimental evaluation of CasWarn
against previous state-of-the-art baselines. We conclude our
work in section 6.
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2. RELATED WORK

With the continuous advancement of artificial intelligence
technology, more and more deep learning models are deployed
on agents to solve problems in different fields, such as visual
recognition (Ruiz-del-Solar et al., 2018; Gu et al., 2021), behavior
supervision (Quan et al., 2018; Ganesan et al., 2021; Jia et al.,
2021), and artificial assistance (Xiao et al., 2020), etc. Deep
learning is defined as a scientific field involving complex
functions (for example, non-linear dynamics) to train a multi-
layer neural network, embedding the data from the original,
high-dimensional, multimodal state to the understandable state
of the agent system (Goodfellow et al., 2016). Due to the
flexibility and adaptability of neural networks, it is very suitable
for agent systems (Ciresan et al., 2010), especially at the most
active research frontier, to help researchers study agent systems’
perception capabilities (Marsland, 2009).

In the work of social network public opinion supervision,
intelligent auxiliary agents can help different industries perceive
their own network evaluations, and prompt the industry to
follow-up or block the information. Many models based on deep
learning have emerged in this field, and most of the work is to
predict the scale of the information cascade through the model
(Tsur and Rappoport, 2012; Jenders et al., 2013; Cheng et al.,
2014; Weng et al., 2014; Gao et al., 2015; Zhao et al., 2015; Li
et al., 2017). They use large-scale cascade indicators for intelligent
early warning, and the main focus is predicted performance
indicators and timeliness indicators (early detection). In order to
obtain the macro-level predictive value of information cascade
in social networks in time, many works decided to use machine
learning models and divide the scale of cascade into two types
of tasks: One uses regression, like (Kefato et al., 2018; Zhu
et al., 2018), to predict the potential scale of an information
cascade, and the other uses the classification models, such as
Zhao et al. (2015), to define the form of dissemination as viral
or non-viral. Based on the machine learning models, most of the
work focuses on the following information cascade features: (a)
network topology (e.g., user relationship, first-order relationship
network structure of user, etc.); (b) network node features (e.g.,
user features, discussion content, information sources, or key
early dissemination participants, etc.); (c) temporal features (e.g.,
forwarding interval, etc.).

In an information cascade influencing factors, some studies
suggest that user features play a crucial role in the information
cascade. One of the most common features is the number of
followers. As the representative of user influence, it means that
key users affect the speed and timing of the future dissemination
scale (Zaman et al., 2013). Those who have many followers,
such as celebrities and news industries, are more likely to
have a larger number of cascading effects than ordinary users
because their information is more evident in the network (Suh
et al., 2010; Bakshy et al., 2011; Jenders et al., 2013). However,
a large-scale information cascade is not only generated by
influential users, but also closely related to the content of the
information, and it makes sense to study large-scale cascades
generated by ordinary users rather than celebrities (Dow et al.,
2013). Some studies confirm that the text semantic contained

in the information cascade process is considered one of the
internal driving forces and key factors leading to cascade virality
(Dong et al., 2015, 2016). Moreover, semantic features have
better performance (with higher content complexity) in the
cascade of observation topics (such as hashtags). For example,
breaking news, rumors/fake news, hotspots, controversies/special
topics, etc., attract more attention than normal content (Yano
and Smith, 2010; Yan et al., 2011). Simultaneously, a lot of
work confirms that in the process of an information cascade,
user emotions involved in dissemination are important factors
affecting information dissemination (Stieglitz and Dang-Xuan,
2012; Chen et al., 2016; Yuan et al., 2016). Pfitzner et al. (2012)
introduce the concept of emotional divergence, which combines
the positive and negative points of emotion in a tweet, and can
also predict the probability of a tweet post being forwarded. In
general, tweets with high emotional diversity are more likely
to be retweeted, which affects the spread of the information.
Jenders et al. (2013) on the relationship between emotional
divergence and retweet probability can also confirm the research
results of Pfitzner et al. (2012), and the sentiment analysis task is
significantly improved through deep learning models. Tian et al.
(2020) introduce sentiment knowledge to enhance pre-training
(SKEP), learning a unified emotional expression and achieving
better performance. Some preliminary and reliable attempts to
explore network agnostic methods proved that useful and timely
predictions could be made only based on the information learned
from the cascade itself without any other network structure
information (Subbian et al., 2017).

As mentioned, recent models in this field apply a neural
network framework like CNN (Kefato et al., 2018), RNN (Li
et al., 2017), and GNN (Chen et al., 2019), etc. By using the
above information cascade features, the neural network model’s
excellent feature extraction ability is efficient for agent systems.
Moreover, the semantic information in vector space can be
better obtained by embedding the semantic information in the
representation, such as word2vec (Goldberg and Levy, 2014).

For the reasons above, we use the classification method of
agnostic-network. The advantage is that it is relatively "cheap"
to obtain information dissemination for different industries
(no need for global relationship structure or to construct a
complex relationship network). We use the temporal features
of an information cascade and process relatively easy-to-obtain
text semantics, emotions, and dissemination scale, which are
widely regarded as key features. Furthermore, we construct a
timing-based sequence based on these features and propose
a neural network feature fusion method, which obtained
performance results comparable to expensive operations (such as
the knowable-network models).

3. MODEL FRAMEWORK

3.1. Problem Formulation
The problem of predicting the scale of each cascaded forwarding
depends on the definition of virality. The most common and
useful definition is its size (Cheng et al., 2014). For most practical
purposes, it is much more difficult to predict the exact size
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than to know whether the cascade will be larger than a certain
threshold. The threshold can be set as a relative measure or an
absolute measure. Relative measure is used when the cascade size
is unknown and relative to the population observed in the latest
data (if user engagement with the social network is changing).
In our task, we need to detect new information according to
the needs of different industries, so we use the method based on
fixed thresholds to predict the cascade’s virality according to the
task’s needs.

Definition 3.1.1 (Information Cascade Event) In the cascade
virality prediction process of agnostic-network, we can regard
the information cascade process as a event. It is constantly
changing with the evolution of time. When we divide the event
according to the timestamp, an information cascading event can
be expressed as: E = [et0 , et1 ...etn ], where eti is the state of the
cascade when the event occurs at time ti, which is:

eti = {f
ti
j : f

ti
j ∈ Rn×m, i, j,m, n ∈ N} (1)

where f
ti
j is the feature representation of the event at event ti

and j represents different feature types, which can be represented
as normalized visible features. In this paper, we use three key
features that cause cascade virality, semantic features, and local
and emotional ratios. Section 3.2.1 introduces these features
in detail.

Definition 3.1.2 (Information Cascade Sequence) When an
event is split into a series of sub-events, we define E(ts, te) =
[E :E ∈ (Ets ...Ete )]. For the sake of brevity, we simplify the writing
of E(te): E(te) = E(t0, te), which means that the sub-events all
start from t0. Through the above definition, we can get a cascade
sequence of information as follows:

C = {E(t0),E(t2), ....E(tn)}. (2)

After that, we define two cascade sequences: COt and C1t , we
consider COt to be an observable sequence of the event, that is
COt = C(tn), which represents the set of sub-events of an event
from the start time t0 to tn, and C1t = C(tn + 1t) is considered
to be an unobservable sequence.

Problem 1: Cascade Virality Prediction In order to better
solve the problem of cascade virality prediction, according to the
above definition, we can obtain an observable event subsequence
COt , which contains each event slice Ei and cascade features eti
within the time slice. We seek to predict the magnitude of the
information cascade event; CNum

1t
= |C1t | is larger than the

absolute threshold τ in the prediction time 1t . Specifically, given
a cascade COt and a absolute threshold τ ∈ N, if CNum

1 ≥ τ

then COt is labeled as a viral cascade. That is, we need to quantify
the activation probability of information virality after the time
interval 1t , which is denoted as follows:

Pv = P(CNum
1t
| COt ). (3)

Where Pv is the probability of whether the cascade is viral or not,
and COt is the cascade sequence containing features. Further, the
cascade virality prediction can then be formulated as, given COt ,

1t , finding an optimal mapping function L that minimizes the
following objective with parameters 2:

L(2) = −

N
∑

i=1

log P2(C
Num
1t
| COt ;2). (4)

3.2. CasWarn Model
We hope to use the key features to predict the possibility of a
viral cascade under the premise of the least available data and
return the prediction results in the form of early warning to
realize the early warning agent. Through the previous work of
Subbian et al. (2017), we know that the viral cascade may begin
to spread rapidly in the first few hours. In contrast, a non-viral
cascade takes a long time to reach a small number of users.

Unlike the previous network-agnostic cascade virality
prediction models, we consider that more features can be
used, but the challenge is fusing and embedding features. In
addition to statistical features such as the dissemination time,
dissemination scale, etc., many useful features can be obtained,
such as text and tweets’ emotional features. We know that these
features significantly impact the information cascade’s virality
and apply to agnostic networks from previous studies. Based on
the above assumptions, we use deep learning models to model
a time series-based multi-feature cascade prediction model. In
summary, the model construction process is as follows:

1. For each information cascade process C in our dataset, we
extract Ctn in the observable time window, where tn is the end of
the timestamp we can observe.

2. We label the cascade C and determine whether it is viral or
not by threshold τ at time to 1t .

3. Regarding whether the cascade sequence C will become
viral, we segment the cascade based on a time window, and use
different embedding methods to extract the dissemination scale,
semantic evolution feature, and emotional polarity ratio features
in different time slices, then use them as the input of the neural
networkmodel, and predict the probability as a classification task.

3.2.1. Data Preprocessing
We slice the observable cascade sequence C based on time series
and sample different features with equal time windows. In the
time slice, we extract the cascaded features through the following
three steps:

a) Dissemination scale feature

Dissemination scale feature is a crucial indicator to determine
the virality of the cascade. We process it into a sequence by
extracting the number of forwardings in the time slice, as shown
in Figure 1a–2. Specifically, by extracting the forwarding times
in the time slice, similar to Kefato et al. (2018), the sequence
of integers representing the number of events included in each
slice becomes:

Cdpf = [|COti
| : 0 ≤ ti < to] (5)

where COti
represents the total number of reposts at time ti, to

represents the sequence observation time, and i represents the
i− th time slice.
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FIGURE 1 | The overall architecture of CasWarn. (A): Three perspectives of information cascade. (a-1): The overall information cascade after time slice; (a-2): the

composition form of dissemination scale feature after time slice; (a-3): features in the user’s view, including emotional polarity ratio and semantic evolution features.

(B): Different feature preprocessing and embedding representation processes. (C): The end-to-end neural network model. It first fuses the quantitative and emotional

features through the CNN-E1 layer and then embeds the temporal semantic evolution features through the Bi-LSTM model, it next uses the CNN-E2 model to fuse

the three features again. Finally, the FC-softmax layer predicts the result.

b) Emotional polarity ratio feature We calculated the
emotional polarity of users participating in the information
cascade for forwarding and commenting in the time slice, as
shown in Figure 1a–3. Specifically, we use the Senta model,
which can obtain the comments’ emotional polarity to the
original tweets (Tian et al., 2020). Then we construct the
emotional ratio in a time window. This ratio is a two-
tuple, indicating the degree of opposition of emotions in the
time window:

Ceprf = [(sum(ptis ) : sum(ntis ), ps = 1, ns = 0, 0 ≤ ti < to] (6)

where ps is positive emotion and ns is negative emotion.
c) Semantic evolution feature

For viral cascades, the evolution of topic semantics is more
likely to cause the "mutation." By transforming topics in different
time slices, we want to capture the impact of the features of
topic evolution on the spread of the virus. We use the word2vec
method to vectorize the semantic information of high-frequency
topics in the time window, as shown in Figure 1a–3. Specifically,
we extracted topicn words with the highest word frequency in
each time window to represent the key semantic features of
this time window and form a matrix sequence based on the
time series:

Csem = [Xti
:X ∈ Rd×n, 0 ≤ ti < to]

Xti = [Tt
i : 0 ≤ i < topicn,T ∈W]

(7)

where X is the subject word in the time slice, T is the keyword,
and W is the corpus. It is worth noting that if the number of
samples in a specific time slice is less than topicn, we perform a
zero-padding operation.

3.2.2. Neural Network Model
After obtaining the three features, we design an end-to-end
neural network model (Figure 1C) to predict the cascade virality.
We use the CNN as the main framework to solve the prediction
task. Because in the time series classification task, a CNN has the
advantages of high efficiency and high performance (Gundersen
et al., 2020), we changed the frame structure of the original CNN
to better adapt to the task needs.

As shown in Figure 1C, we use two layers of CNN
convolutional layers in the neural network model to obtain the
feature representation after feature fusion. In particular, we have
designed an improved two-way method for the representation
of semantic features in the time window. The Bi-LSTM layer
(Yulita et al., 2017) learns the potential connections in the topic
evolution process and finally uses the fully connected layer to
predict the results.

3.2.2.1. Input Layer
As illustrated in Figure 1B, the input layer constructs a feature
vector for three types of features. We can see from Figure 1C that
these features are synchronized in the time series, but when input
as a model, the steps are asynchronous.

3.2.2.2. CNN-E1 Feature Fusion Layer
As shown in the CNN-E1 part of Figure 1C, we concatenate Cdqf

and Ceprf as a vector into the convolution layer of the CNN
model, as:

hc = [hcdqf ||hceprf ]. (8)

It is worth noting that we want to obtain the implied features
of filters with different sliding windows, so we apply n filters of
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different sizes on every possible slice of the fused features:

fl(h
i
c) = σ (W ihic + bi) (9)

where hic can be regarded as a filter with step size i, i ∈
(1, slice − 1), σ is the activation function, and we use the
relu method. Similar to the n-grams method, we can regard
Wi as the weight of the filter layer of ith, and hic ∈ Rkd

is the feature representation with the async length i. We
sample the dependencies between subsequences by obtaining
different convolutional layers. Then we obtain the fused feature
representation by summation average:

f1(hc) =
1

i

∑

i∈n

fl(h
i
c) (10)

where, f1(hc) ∈ Rd1, and n represents the number of filters.

3.2.2.3. Bi-LSTM Semantic Evolution Layer
For the feature representation of semantic evolution, we design
an improved architecture based on bi-directional LSTM (Bi-
LSTM) to obtain the potential relationship of topic evolution
in different time slices. Unlike the fully connected layer, it can
capture the potential relations of semantic changes, as shown
in the Bi-LSTM layer in Figure 1C. Firstly, since the number
of keywords extracted in each time interval is fixed, we first
concatenate the semantic information which represents the
semantic feature vector in each time slice:

ht
csef
= ||i∈topicnhti (11)

where hti represents the representation of the i-th feature word
under the t-th time slice. Then, for different time slices, the
content embedding of hcsef is computed as follows:

f2(h
t
csef

) =

∑

t∈slice[
−−−→
LSTM{W(ht

csef
)}||
←−−−
LSTM{W(ht

csef
)}]

|slice|
(12)

where f2(hcsef ) ∈ Rd×1 (d: content embedding dimension), slice
represents the number of time slices, and W represents the
learning parameters of neural networks. The operator || denotes
concatenation. We use the Bi-LSTMmodel to learn the potential
relationship of semantic evolution. The LSTM is formulated as:

zi = σ

(

Uz

(

ht
csef

)

+Wzhi−1 + bz

)

fi = σ

(

Uf

(

ht
csef

)

+Wf hi−1 + bf

)

oi = σ

(

Uo

(

ht
csef

)

+Wohi−1 + bo

)

ĉi = tanh
(

Uc

(

ht
csef

)

+Wchi−1 + bc

)

ci = fi ◦ ci−1 + zi ◦ ĉi

hi = tanh (ci) ◦ oi

(13)

where hi ∈ R
(d/2)×1 is the output hidden state of i-th content, ◦

denotes the Hadamard product, Uj ∈ R
(d/2)×df , Wj ∈ R

(d/2)×df ,

bj ∈ R
(d/2)×1, and (j ∈ {z, f , o, c}) are learnable parameters, zi, fi,

and oi are the forget gate vector, input gate vector, and output gate
vector of the i-th semantic evolution feature, respectively. It is
worth noting that the Bi-LSTM model can aggregate the ordered
semantic information in order to obtain the implicit association
of the semantic evolution process in different time slices.

3.2.2.4. CNN-E2 Feature Fusion Layer
Next, we concatenate the semantic evolution feature f2(h

t
csef

) with

the output feature f1(hc) of the previous layer:

hdes = f1(hc)||f2(hcsem ). (14)

As shown in the CNN-E2 layer in Figure 1C, the concatenated
data are fused again by the CNN feature fusion layer to learn the
potential relationship between different features:

f3(hdes) =
1

i

∑

i∈n

σ (W ihdes + bi). (15)

Then, f3(hdes) is followed by a fully connected (FC-softmax layer)
logistic classification layer:

h (ci) = softmax(Wf3(hdes)+ bi). (16)

The vector h (ci) ∈ R
2 can be regarded as the last feature

representation in the model, which will be used to predict the
virality of the cascade.

3.2.2.5. Output Layer and Loss Function
This layer outputs a two-dimensional representation vector for
each information cascade. We compare the representation of
the dissemination scale feature with the ground truth, and then
optimize the log-likelihood loss, as follows:

min
∑

i

yi log
(

h (ci)
)

+
(

1− yi
)

log
(

1− h (ci)
)

(17)

where h(ci) is the predicted value, yi is ground truth,
and the model parameters are trained using the back-
propagation algorithm.

There are three main advantages for this framework: (1)
It has concise structures with relatively low complexity (fewer
parameters), making the model implementation and tuning
relatively easy; (2) it can fuse the key features of information
cascade in the agnostic-network and has a strong classification
performance; (3) since the model is modular, it is flexible to add
extra features, making the model extension more available.

4. EXPERIMENTS AND RESULTS

In this section, we conduct extensive experiments to answer
the following research questions: (RQ1) How does CasWarn
perform the virus cascade prediction task compared with the
state-of-the-art baselines? (RQ2) How does CasWarn compare
with most state-of-the-art baselines in terms of early detection
capability? (RQ3) How do different features, such as emotional
polarity or semantic evolution, affect the performance of
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the model? (RQ4) How do various hyper-parameters, e.g.,
number of slices, word embedding dimension, impact the
model performance?

4.1. Datasets
Our experiment selected two real-world social network datasets.
One mostly exists to evaluate their methods of predicting
diffusions on single social network data (Zhang et al., 2013, 2015;
Cao et al., 2020). Another is a dataset of Twitter posts that we
collected for specific semantics for different industries’ needs to
evaluate the proposed CasWarn model quantitatively.

4.1.1. Weibo Dataset
Sina Weibo is the most popular Chinese Weibo service. The
dataset is from (Zhang et al., 2013) and can be downloaded here.
The complete dataset contained 1.78 million users and 23 million
tweets between September 28, 2012 and October 29, 2012. It is
worth noting that 300,000 original tweets in this dataset become
information cascades. We sample these cascades, as shown in
Table 1.

4.1.2. Twitter Dataset
During the unrest in Hong Kong in 2019, the government was
more concerned about whether Hong Kong-related tweets would
become viral cascades. Unlike Sina Weibo, different industries’
social public opinion events are more aggregated at a semantic
level. Therefore, in order to better verify the impact of fusion
features on the information cascade, we collected anonymized
tweets related to Hong Kong from September to October 2019
for a total of 30 days by using the Twitter API, to better verify the
authenticity of the cascade virality prediction of the content we
care about.

As Table 1 shows, we sample data with a cascade scale of
more than 1,000 times (τ = 1, 000) as positive samples, negative
samples are obtained by random sampling.

4.2. Comparison Methods
We compare CasWarn with a set of strong baselines, including
feature-based models used for cascade prediction (Logistic
Regression, SEISMIC), deep learning models based on cascade
embedding in knowable networks (Deepcas), and the state-of-
the-art deep learning models based on cascade embedding in
agnostic networks (Cas2Vec).

Logistic Regression (LOR): This baseline is used in previous
studies. We concatenate the vector of each time window and
calculate it as the LORmethod’s input for training a classification
model. It should be noted that each time window contains the
stitching of three feature vectors.

SEISMIC: This is a recent study that uses point estimation
models to predict the popularity of tweets (Zhao et al., 2015). It
evaluates the influence of tweets based on the number of retweets
at time t, then the estimated infectiousness is used to predict the
ultimate size of the tweet.We follow a similar strategy as Cas2Vec
to label tweets based on fixed size, that is viral if and only if fixed
size is larger than τ .

DeepCas: This is the state-of-the-art deep representation
learning model for knowable-network popularity prediction (Li

et al., 2017), which learns the representation of cascade graphs
in an end-to-end model. Specifically, it represents the cascade
graph. DeepCas significantly improves the performance of hand-
crafting feature-basedmethods. As a result, we here takeDeepCas
as a knowable-network method to compare with CasWarn.
Specifically, we use formula (17) to modify the loss function of
DeepCas from regression task to classification task.

Cas2Vec: Cas2Vec is the state-of-the-art deep representation
learning model for network-agnostic cascade virality prediction
(Kefato et al., 2018). This model applies convolutional neural
networks to model the sequence of retweet size within the time
window and predicts information cascade virality.

4.3. Evaluation Settings and
Implementation Details
To evaluate our algorithm, we use the following settings: As
required by problem 1 (section 3.1), we want to predict the task
based on the observable time to and the forecast time window
1t . Since the distribution of viral cascades is highly skewed and
sparse, we set the ratio of positive and negative samples to 1:2 and
use validation sets during training to adjust hyper-parameters,
such as the size of filters.

When the hyper-parameters are fixed, we use three-fold cross-
validation without the validation set, and record the average
results and errors. Regarding the embedding of topic words, we
use a fixed value topicn = 15 and use F-score with β = 3 (because
it is a rare classification prediction).

4.4. Results
4.4.1. Virus Cascade Prediction Performance (RQ1)
To answer RQ1, we design experiments to evaluate CasWarn
on cascade virality prediction tasks. In this set of experiments,
our goal is to evaluate the effective classification performance
of our model under different baselines. We set the observable
time to = 1 (1 h), and then evaluate F1 values under different
1t = to +1. The results are shown in the table.

Table 2 reports the performance of all models and shows
the best results in bold. Comparing different baselines on the
two datasets shows that the best baselines in most cases are
our model. We can see that most of CasWarn’s performance
is better than the DeepCAS model based on the knowable-
network. However, CasWarn is based on the agnostic-network,
which requires less data and is more efficient. Compared with the
agnostic-network model, the relative improvements of CasWarn
over the Cas2Vec range from 1.3 to 2.3% and 1.5 to 6.0% for
the Twitter and Weibo datasets. In general, the experimental
results on the F1 value show that the deep learning framework
we proposed is effective and demonstrates that it can outperform
state-of-the-art baselines in the cascade virality prediction task of
the agnostic-network.

4.4.2. Early Prediction (RQ2)
In order to solve this problem, we analyze the prediction
experiment of early information dissemination. And observed
that most events occurred twice in the median time of spread of
all cascade viruses. Similar to the work of Kefato et al. (2018),
we selected the median of the viral cascade of two datasets. The
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TABLE 1 | Summary of dataset statistics.

Dataset Original tweets Retweets average Positive samples Positive retweets

Weibo 300,131 7.91 6,734 5,725,352

Twitter 470,435 4.43 9,723 7,786,556

TABLE 2 | Prediction performance of different models on the two datasets (%).

Model
Twitter Weibo

1.5 h 2 h 5 h 10 h 20 h 60 h 1.5 h 2 h 5 h 10 h 20 h 60 h

LOR 83.23 83.13 82.47 80.35 76.32 77.39 80.57 81.64 79.87 77.56 72.23 69.14

SEISMIC 82.61 79.77 77.26 74.53 72.24 59.57 77.44 75.32 72.21 69.57 62.27 60.50

DeepCas 86.97 87.42 87.90 83.21 82.77 79.83 83.74 84.42 83.21 80.22 79.38 76.77

Cas2Vec 85.98 86.72 85.43 84.35 82.78 77.21 83.26 83.33 84.23 74.57 73.31 72.29

CasWarn 87.77 88.97 87.45 86.23 84.33 78.77 84.98 82.21 83.44 79.90 79.62 77.23

The bold values are represent the optimal performance values.

median of Weibo is 16 h and Twitter is 7 h (due to Twitter data
being more focused on topics, and that it is easier to quickly
forward various pieces of network information). We choose a
different (but fixed) prediction time 1t for each dataset, that is,
16 h for Twitter and 34 h for Weibo, and then change the size of
the prediction window from 1 h to 1t h (the step is fixed, 1 h) to
evaluate the time.

Note that the forecast time is fixed. In both cases, the step is 1
h. The rest of the hyper-parameters are the same as RQ1, but we
use the recall rate to evaluate the performance of early detection.

Figure 2 shows that, as expected, our model achieves the best
recall rate at the minimum value (1 h), which shows that we
predict that the virus cascade’s performance is the best within 1
h. At the same time, we hope that the prediction of the algorithm
is robust as 1t increases. We can see that the performance of
baselines declines faster than CasWarn, and CasWarn gets the
best recall. In addition to the previous cascade virality prediction,
our experiments also show that CasWarn is more robust than
state-of-the-art models and can predict cascade virality as early
as possible.

4.4.3. Ablation Study (RQ3)
CasWarn is a framework for a deep learning early warning
agent that fuses multiple cascade features. How different features
impact the model performance and whether emotion polarity
or semantic evolution aggregation effectively improves the
model’s predictive ability need to be addressed. To answer RQ3,
we conducted an ablation study to evaluate the performance
of several model variants, including: (a): No-Sen which uses
semantic evolution feature and dissemination scale feature
encoding to represent each cascade sequence embedding
(without emotional polarity feature). (b): No-Sem which uses
emotional polarity and dissemination scale feature encoding to
represent each cascade sequence embedding (without semantic
evolution feature), and (c): Semantic-FC which employs a fully
connected neural network to embed semantic evolution features.

In this group of experiments, we set the observation window
as t0 = 0.5, 1, 3 (hours) and use the same parameter in
RQ1 for our hyper-parameter. The results on two datasets
are reported in Figure 3. From this figure, we can see that
the performance of CasWarn is better than that of No-
Sen in most cases, demonstrating that the cascade sequence
embedded with the emotional polarity feature is more efficient
for cascade virality prediction. Similarly, we can find that
the performance of CasWarn is better than that of No-Sem,
demonstrating that the fusion of the two cascade sequence
features is effective in improving the performance of the
model. Semantic-FC outperforms No-Sen, which shows that our
improved Bi-LSTM-based semantic evolution feature embedding
is better than the embedding methods used to capture "deep"
content feature interactions such as the FC layer. It is worth
noting that the two datasets show better results on the
Twitter dataset due to the more aggregated semantic content
of Twitter.

4.4.4. Hyper-Parameter Sensitivity (RQ4)
Hyper-parameters play an essential role in CasWarn because
optimal parameters for cascade virality prediction determine
the prediction results’ accuracy. We conduct experiments to
analyze the impacts of three key parameters, i.e., the number
of slices (see section in the supplement for detailed setup) and
the topic word’s embedding dimension. Cascade virality predicts
the performances of CasWarn as a function of the two datasets,
which are shown in Figure 4.

For the number of slices parameter, from the upper part of
Figure 4, we can see that performance improves as the number of
slices increases and then drops at a peak. For the Twitter dataset,
we can see that 40 to 50 is the best metric. In the Weibo dataset,
the optimal solution is between 30 and 40. So we find that a value
between 30 and 50 provides the best result. For the parameters
of embedded dimensions of semantic evolution features, we set
them to float before 16 to 256 dimensions. From the lower part
of Figure 4, we can see that the performance is significantly
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FIGURE 2 | Evaluation results of early prediction experiments for the Twitter and Weibo datasets.

FIGURE 3 | Performances of variant proposed models.

improved with the increase of dimensions in the early stage. Then
the performance has decreased with the increase of dimensions,
which may be the result of over-fitting. The dimension when
set to 32 meets the requirements of fewer variable parameters
and timeliness.

5. CONCLUSIONS

In this paper, we propose a viral cascade early warning
model, which can be deployed on intelligent agents to assist
different industries in monitoring the public opinion effect of
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FIGURE 4 | Impact of different hyper-parameters on prediction performance.

relevant information. Inspired by the agnostic-network cascade
prediction, we design an innovative deep learning model based
on feature fusion named CasWarn. This model serializes the
cascade features through time slices, then fuses and embeds
different key features through our designed neural network
module, and then predicts the cascade sequence’s virality.
Our model incorporates the key features of the information
cascade and does not need to consider the cascade network’s
underlying relationship structure, which is more suitable for
the needs of fast, effective, and easy to deploy on agent
systems. We conducted comprehensive experiments on two
large social network datasets to prove that CasWarn can
make timely and effective cascade virality predictions and
verified that each feature model of CasWarn is beneficial to
improve performance.
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