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Pancreatic α cells are exposed to metabolic stress during the evolution of type 2 diabetes (T2D), but it remains
unclear whether this affects their survival. We used electron microscopy to search for markers of apoptosis
and endoplasmic reticulum (ER) stress in α and β cells in islets from T2D or non-diabetic individuals. There
was a significant increase in apoptotic β cells (from 0.4% in control to 6.0% in T2D), but no α cell apoptosis. We
observed, however, similar ER stress in α and β cells from T2D patients. Human islets or fluorescence-
activated cell sorting (FACS)-purified rat β and α cells exposed in vitro to the saturated free fatty acid palmitate
showed a similar response as the T2D islets, i.e. both cell types showed signs of ER stress but only β cells
progressed to apoptosis. Mechanistic experiments indicate that this α cell resistance to palmitate-induced
apoptosis is explained, at least in part, by abundant expression of the anti-apoptotic protein Bcl2l1 (also
known as Bcl-xL).

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Type 2 diabetes (T2D) affects 380 million individuals worldwide,
and its prevalence will further increase in the coming decades
with the obesity epidemic (IDF Diabetes Atlas, 2013). T2D is character-
ized by progressive loss of pancreatic β cell function and insulinopenia,
and by non-suppressed post-prandial glucagon secretion by pancreatic
α cells (D'Alessio, 2011). β cell failure is associatedwith β cell apoptosis
and a progressive decrease in β cell mass (Butler et al., 2003; Rahier
et al., 2008). β cell death is probably secondary to metabolic stress me-
diated by high levels of saturated free fatty acids (FFAs) and glucose
(Poitout and Robertson, 2008). Possible mechanisms of metabolic
stress-induced β cell apoptosis in T2D include endoplasmic reticulum
(ER) stress (Kharroubi et al., 2004), oxidative stress (Carlsson et al.,
1999) and ceramide production (Shimabukuro et al., 1998), and this
culminates in activation of the intrinsic or mitochondrial pathway of
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808, CP618, B-1070 Brussels,
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apoptosis (Cunha et al., 2012; Gurzov and Eizirik, 2011). A high-fat
and high-sugar diet decreases β cell mass but increases α cell mass in
nonhuman primates (Fiori et al., 2013). Recent evidence obtained in
mice, monkeys and humans suggests that β cells may dedifferentiate
and adopt α cell characteristics (Fiori et al., 2013; Gao et al., 2014;
Talchai et al., 2012; White et al., 2013), putatively contributing to
the decreased insulin production and increased glucagon secretion in
T2D.αCell dysfunction andhyperglucagonemia is inducedby postpran-
dial lipemia in healthy subjects and by treating mouse islets with
triglyceride-rich lipoproteins (Niederwanger et al., 2014).

Pancreatic α and β cells have similar embryonic origins (Teitelman
et al., 1993), and are equally exposed to metabolic stress during the
evolution of T2D, but it remains unclear whether metabolic stress
affects α cell survival. Here we examined the presence of apoptosis
and ER stress in α and β cells of T2D individuals and in human islets
exposed to palmitate. Both cell types show signs of ER stress, but only
β cells progress to apoptosis. To clarify themechanisms involved, we de-
veloped a method to fluorescence-activated cell sorting (FACS)-isolate
pure (N90%) and viable (N90%) rat α cells. In keeping with the human
islet data, palmitate induced ER stress in α and β cells, but apoptosis
was only present in β cells. This α cell resistance to lipotoxicity is due
to higher anti-apoptotic protein expression.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Materials and Methods

2.1. Human Islet EM

Organdonor pancreatawere handledwith the approval of the Ethics
Committee of the University of Pisa, Italy. Samples from 8 non-diabetic
and 9 T2D organ donors were studied, individual characteristics of age,
gender, BMI, cause of death and anti-diabetic treatment are listed in
Table S1. Samples were processed as previously described (Cnop et al.,
2014; Marchetti et al., 2007). In brief, the tissue was fixed with 2.5%
glutaraldehyde in 0.1 M of cacodylate buffer, pH 7.4 for 1 h at 4 °C.
After rinsing in cacodylate buffer, the tissue was postfixed in 1%
cacodylate buffered osmium tetroxide for 2 h at room temperature,
then dehydrated in a graded series of ethanol, quickly transferred to
propylene oxide and embedded in Epon-Araldite. Ultrathin sections
(60–80 nm thick) were cut with a diamond knife, placed on formvar-
carbon coated copper grids (200mesh), and stainedwith uranyl acetate
and lead citrate. β and α cells were identified by the ultrastructural
characteristics of the insulin and glucagon granules, respectively (Orci,
1985) and in some cases confirmed by immunogold (see below).
Morphometric analyses were performed as previously detailed (Cnop
et al., 2014; Marchetti et al., 2007). Briefly, micrographs obtained at
×10,000, were analyzed by overlay with a graticule (11 × 11 cm)
composed of 169 points. Volume densities were calculated according
to the formula: volume density = Pi/Pt, where Pi is the number of
points within the subcellular component and Pt is the total number of
points; values are expressed as ml/100 ml tissue (ml%). By electron
microscopy analysis, morphological evidence of marked chromatin
condensation and/or the presence of blebs were considered as signs of
apoptosis (Masini et al., 2009).
2.2. Immunoelectron Microscopy Methods

Immunogold experiments were accomplished according to the pro-
cedures detailed by Zuber et al. (Zuber et al., 2005). Ultrathin sections,
from glutaraldehyde–osmium tetroxide fixed tissue mounted on nickel
grids, were placed on droplets of freshly prepared 1% aqueous periodic
acid for 6 min at room temperature. Sections were conditioned
with PBS (0.01 M phosphate buffer, pH 7.2, 0.15 M NaCl) containing
1% BSA, 0.01% Triton X-100, and 0.01% Tween 20 and exposed to
guinea pig anti-insulin antibody (Sigma-Aldrich, Saint Louis, MO,
USA), diluted 1:200, for 2 h at room temperature, or to rabbit anti-
glucagon antibody (Zymed-Invitrogen, Carlsbad, CA, USA), diluted
1:100, overnight at 4 °C. Afterwards, samples were rinsed with buffer
and grids were incubated with 15 nm of protein A-gold complex
(Agar Scientific, Stansted, UK), diluted 1:10, for 1 h at room temper-
ature. Finally, sections were contrasted with uranyl acetate and lead
citrate prior to examination with the 902 Zeiss electron microscope.
Control incubations were performed by omission of the primary
antibody.
2.3. Human Islet Isolation and Exposure to Palmitate

For the in vitro studies, islets were isolated from 3 non-diabetic
donors (age, 61 ± 6 years; 2 males/1 female; body mass index,
25.4 ± 0.8 kg/m2; cause of death: 2 cardiovascular diseases, 1 trauma;
intensive care unit stay, 2.7 ± 0.6 days; pancreas cold ischemia time:
16.7±2.3 h) by collagenase digestion and density gradient purification,
as previously reported (Del Guerra et al., 2005; Cnop et al., 2014). Islets
were cultured for 2–3 days in M199 medium (containing 5.5 mM of
glucose) supplemented with 10% adult bovine serum. Then, the islets
were cultured for 48 h in supplemented M199 medium containing 1%
bovine serum albumin (BSA) and 0.5 mM of palmitate (Cnop et al.,
2014; Cunha et al., 2008).
2.4. FACS Purification, Culture and Treatment of rat α and β Cells

MaleWistar rats (Charles River) were housed and used according to
the guidelines of the Belgian Regulations for Animal Care, with the
approval by the local Ethical Committee. Rat islets were isolated by
collagenase digestion and handpicked. For β and α cell isolation, islets
were dissociated into single cells by mechanical and enzymatic
dispersion using trypsin (1 mg/ml) (Sigma) and DNaseI (1 mg/ml)
(Roche) for 5 min at 31 °C under agitation. Dissociated cells were re-
suspended inHEPES-buffered Earle'smedium containing 2.8mMof glu-
cose. FACS sorting of β and α cells was done using an Aria I cell sorter
(BD Biosciences) equipped with violet, blue and red lasers and a
70 μm nozzle. Forward scatter (FSC) and side scatter (SSC) indicated
the relative differences in, respectively, size and granularity of the
cells. Cells were selected with the blue argon laser at 488 nm while
the FAD-like cellular autofluorescence was excited at 488 nm and
selected after a 530/30 band-pass filter (525 nm). Cell doublets and
cell fragments/death cells were excluded from FACS analysis and collec-
tion. Rat β cells have a threefold higher FAD fluorescence thanα cells at
low glucose concentration (2.8 mM). This property, coupled to the size
and granularity difference between β and α cells (β cells are larger and
more granulated than α cells), allows the separation of the β andα cell
fractions, with a high purity, using an average side scatter-width inten-
sity of 170,000 units for the β cells and 120,000 units for the non-β cells.
The non-β cell fraction was gated under 50,000 units of fluorescence to
avoid contamination by β cells. Additional used parameters were:
voltage FSC: 105, SSC: 205, FITC: 730, laser window extension: 0.5,
and FACS area scaling: 0.75. To obtainα cells from the non-β cell popu-
lation, we narrow the gate on the fluorescence parameter and define a
sorting window between ±20,000 and 40,000 units of fluorescence.
This allows us to reach a very high purity in α cells (N90–95%) and
very good viability (N90%) (protocol modified from (Pipeleers et al.,
1985)). After sorting, purified β cells were cultured in Ham's F-10
medium containing 10 mM of glucose, 2 mM of GlutaMAX, 0.5% BSA,
50 μM of isobutylmethylxanthine, 50 units/ml of penicillin and 50 μg/ml
of streptomycin and 5% heat-inactivated fetal bovine serum (FBS, Gibco
Life Technologies). α cells were cultured in the same medium but with
6.1 mM of glucose and 10% FBS. In some experiments α and β cells
were cultured in parallel at 6.1, 10 and 20 mM of glucose.

Palmitate (sodium salt, Sigma) was dissolved in 90% ethanol to a
concentration of 50 mM and diluted in medium containing 0.75% BSA
(fatty acid-free fraction V, Roche) and 2% FBS to a final concentration
of 0.5 mM (modified from (Cnop et al., 2001)).

CPA and tunicamycin (Sigma)were dissolved in DMSO and used at a
concentration of 12.5 μM and 5 μg/ml, respectively. BFA (Sigma) was
dissolved in ethanol and used at 0.1 μg/ml. The treatments were
performed in specific culture medium for β and α cells with 2% FBS.

2.5. RNA Interference

β andα cellswere transfectedwith 30 nMof the previously validated
siRNAs for Bcl2l1 (Invitrogen, Carlsbad, CA) (Miani et al., 2013), Bcl2
(Invitrogen, Carlsbad, CA) (Cunha et al., 2012) or Allstars Negative
Control siRNA (siCTRL, Qiagen, used as a negative control) using the
Lipofectamine RNAiMAX lipid reagent (Invitrogen). siCTRL does not
affect β and α cell gene expression, function or viability ((Moore et al.,
2012) and data not shown). Cells were cultured for 48 h and then
exposed to palmitate.

2.6. Assessment of Cell Viability

The percentage of viable, apoptotic, and necrotic cells was deter-
mined after incubation with the DNA-binding dyes propidium iodide
(5 μg/ml; Sigma) and Hoechst 33342 (5 μg/ml; Sigma) (Rasschaert
et al., 2005). A minimum of 600 cells was counted in each experimental
condition. Viabilitywas evaluated by two independent observers, one of
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them unaware of sample identity. The agreement between observers
was N90%.

2.7. mRNA Extraction and Real-time PCR

Poly(A) + mRNA was isolated from primary rat β and α cells using
the Dynabeads mRNA DIRECT kit (Invitrogen), reverse transcribed,
amplified by real-time PCR using SYBR Green as described (Rasschaert
et al., 2005), and compared with a standard curve (Overbergh et al.,
1999). Expression values were corrected for the reference gene
glyceraldehyde-3-phosphate dehydrogenase (Gapdh), expression of
which is not modified by the experimental conditions. The primers are
detailed in Table S2.

2.8. Western Blot Analysis

Cells were washed with cold PBS and lysed in Laemmli buffer.
Immunoblot analysis was performed with anti-Bcl2l1 (54H6) (cell
signaling) and anti-α-tubulin (Sigma).Membraneswere exposed to sec-
ondary peroxidase-conjugated antibody for 1 h at room temperature.
Immunoreactive bands were revealed using the SuperSignal West
Femto chemiluminescent substrate (Thermo Scientific) and detected
using a Bio-Rad chemi DocTM XRS+ (Bio-Rad laboratories). The
densitometry of the bands was evaluated using Image LabTM software
(Bio-Rad laboratories).

2.9. Statistical Analysis

Data are presented asmeans± SEMor plotted as box plots, indicating
lower quartile, median, and higher quartile, with whiskers representing
the range of the remaining data points. Comparisons were performed
by two-tailed paired Student's t-test or by ANOVA followed by Student's
t-test with Bonferroni correction, as indicated. A p value b0.05 was con-
sidered as statistically significant. Sample size was calculated based on
the variability observed in preliminary experiments and power analysis
using GPower 3.1 software.

2.10. Role of Funding Source

This work was supported by grants from the Fonds National de la
Recherche Scientifique (FNRS), Belgium (T.0036.13 (14505023)), the
Communauté Française de Belgique-Actions de Recherche Concertées
(ARC) (20063), the Spanish Ministry of Economy and Competitiveness
(BFU2013-42789-P), the European Union (277713) (project BetaBat in
the Framework Programme 7 of the European Community) and the Ju-
venile Diabetes Foundation International (JDFI) (3-SRA-2014-32-S-B).
LM is supported by a FNRS post-doctoral fellowship. None of these
funding sources have any role in the writing of the manuscript or
decision to submit it for publication.

3. Results

3.1. Human β but not α Cells from T2D Patients Have Increased Apoptosis

Toevaluate the impact of the diabetic state on the viability ofα andβ
cells, electron microscopy (EM) studies were performed in pancreas
samples from 8 non-diabetic and 9 T2D donors (described in Materials
andMethods). β andα cells were identified by the ultrastructural char-
acteristics of the insulin and glucagon granules, respectively (Orci,
1985). Furthermore, immunogold labeling in pancreatic sections from
3 different T2D donors and controls was accomplished as described
(Zuber et al., 2005) to confirm cell identification (Fig. S1). Interestingly,
immunogold identified insulin also in apoptotic β cells (Fig. S2). Overall,
1638 and 1578 islet cells were analyzed by EM in non-diabetic and T2D
samples, respectively. β cells with signs of apoptosis were 0.4 ± 0.2%, 5
of 1114 β cells in control islets and 6.0 ± 1.3%, 50 of 836 T2D β cells
(p b 0.01). No apoptotic α cells were seen in 505 T2D α cells and 444
controlα cells. Representative pictures are shown in Fig. 1A. Interesting-
ly, both β and α cells from T2D islets had increased ER volume density
(Fig. S3), which is a hallmark of the unfolded protein response (UPR;
the response to ER stress) (Marchetti et al., 2007). The values (in ml%)
were: β cell ER, non-diabetic 1.2 ± 0.1 and T2D 3.1 ± 0.4 (p b 0.05); α
cell ER, non-diabetic 1.3 ± 0.6 and T2D 4.5 ± 0.6 (p b 0.05). There was
also a nearly 2-fold increase in mitochondrial volume density in both
cell types (data not shown).

3.2. Lipotoxic Stress Induces Apoptosis in Human β but not α Cells

To evaluate whether the increase in apoptosis and ER volume densi-
ty was caused by metabolic stress, human islets were exposed to the
saturated FFA palmitate for 48 h (Cnop et al., 2014; Cunha et al.,
2008). Similar to the observations in T2D islets, palmitate induced β
cell apoptosis (4.0 ± 0.6% of 279 β cells vs 0.9 ± 0.1% of 439 β cells
for respectively palmitate-treated and control, p b 0.01), but not α cell
apoptosis (none detected in 156 palmitate-exposed and 189 control α
cells). Representative pictures are shown in Fig. 1B. In both cell types
palmitate increased ER volume density (in ml%): β cell ER, control
0.6 ± 0.1 and palmitate-treated 3.9 ± 0.6 (p b 0.01); α cell ER, control
1.3 ± 0.2 and palmitate-treated 4.3 ± 0.9 (p b 0.01) (Fig. S3). There
was also a 1.5-fold increase in mitochondrial volume density in both
cell types (data not shown).

3.3. Rat α Cells Exposed to Palmitate Express Markers of ER Stress but are
Resistant to Apoptosis

To clarify the mechanisms of α cell resistance to palmitate-induced
apoptosis, we developed a method to FACS-purify and culture rat α
cells (Fig. 2 and Fig. S4). This method, based on single step FACS-
sorting of α and β cells, has points in common to a recently described
method (Kohler et al., 2012), but was developed independently. Be-
cause of thehighfluorescence of humanβ cells due tomarked lipofuscin
accumulation (Cnop et al., 2010), this approachworkswell in our hands
for rat (present data) but not for human islets (unpublished data).

The β and α cell fractions were N90% pure (by immunostaining for
insulin and glucagon, Fig. 2B and C) and retained 80–90% viability
during culture (Figs. 2D and 3A). Cell purity was confirmed by specific
gene expression signatures, with highly abundant expression of Ins2
and Pdx1 in β cells and greatly enriched Gcg and Arx expressions in α
cells (Fig. 2E–H).

Exposure of FACS-purified rat β and α cells to palmitate induced a
response similar to that of human islets. Palmitate increased β cell apo-
ptosis by 3-fold, but did not augmentα cell death (Fig. 3A). In a separate
series of experiments,we exposedα cells to palmitate in the presence of
different glucose concentrations, namely 6.1mM(similar to the Fig. 3A),
11mMand20mMof glucose. Therewas again nopalmitate-induced in-
crease in apoptosis forα cells, while values of β cell apoptosis evaluated
in parallel showed a similar fold-increase in palmitate-induced apopto-
sis (Fig. S5) as in Fig. 3A. As previously described (Gremlich et al., 1997),
palmitate increased α cell glucagon secretion by 5-fold (μg glucagon/106

cells × 24 h; control, 48± 5; palmitate-treated, 261± 26, p b 0.001, n=
12). Both β and α cells showed induction of the ER stress markers Ddit3
(Chop) and Xbp1s (Fig. 3C and D), but this increase was more marked in
α cells, particularly for the ER chaperone Hspa5 (BIP) (Fig. 3B). Thus, α
cells are affected by palmitate and trigger an ER stress response. Different-
ly from β cells, however, they do not undergo apoptosis, in keeping with
the observations for α cells from T2D patients.

3.4. FACS-Purified rat α and β Cells are Equally Susceptible to Apoptosis
Induced by Chemical ER Stressors

These results could potentially be explained by a broad resistance
of α cells to ER stress, as a result of the marked induction of the ER



Fig. 1. Human α cells are resistant to apoptosis compared to β cells both in T2D patients and following exposure to palmitate. Representative images of β (left panels) and α cells
(right panels) from non-diabetic (A, CTRL) or T2D donors (A, T2D), and islets exposed or not (B, CTRL) to palmitate (B, PALM). N: nucleus; IG: insulin granules; GG: glucagon granules;
CC: chromatin condensation (a sign of apoptosis).
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chaperone Hspa5 in stressed cells (Fig. 3B). To test this hypothesis,
α and β cells were exposed to three different chemical ER stressors,
namely cyclopiazonic acid (CPA, a reversible inhibitor of sarcoplasmic
reticulum Ca2+-ATPase), tunicamycin (an inhibitor of protein glycosyl-
ation) or brefeldin A (BFA, an inhibitor of ER-to-Golgi vesicle transport).
All three stressors similarly induced apoptosis in α and β cells, in spite
of the higher Hspa5 induction in α cells following exposure to CPA
and tunicamycin, but not to BFA (Figs. S6, S7 and S8). These findings
indicate that α cells have a particular resistance to metabolic stress
and the in vivo T2D situation, but no general resistance to chemical ER
stress.
3.5. FACS-Purified rat α Cells Have an Increased Expression of the
Anti-Apoptotic Protein Bcl2l1

We have previously shown that palmitate triggers β cell apoptosis
via activation of the BH3-only proteins Hrk (DP5) and Bbc3 (PUMA)
(Cunha et al., 2012). Surprisingly, α cells showed increased expression
of both Hrk and Bbc3 as compared to β cells (Fig. 4A and B). The pro-
apoptotic effects of BH3-only proteins can be overruled by anti-
apoptotic Bcl2 proteins such as Bcl2 and Bcl2l1 (Gurzov and Eizirik,
2011). α Cells showed increased expression of the mRNAs encoding
for these proteins as compared to β cells, both basally and following



Fig. 2. Purity and viability of the rat β andα cell fractions after single-step FACS purification. (A) FACS analysis of dispersed pancreatic islet cells based on the FAD fluorescence and SSC-W
(side scatter-width) intensity at 2.8mMof glucose. The subpopulationwith high autofluorescence and high SSC-Wrepresents theβ cells,whereas theα cells showa lower granularity and
FAD content. (B and C) Immunostaining for insulin or glucagon of the rat islet cell preparations used in this study. (B) Representative images of β andα cell fractions immunostained for
insulin (red) and glucagon (green). (C) Percentage of insulin- and glucagon-positive cells in theβ andα cell preparations. (D) Cell viabilitywas evaluated by staining theβ andα cellswith
the nuclear dyes Hoechst 33342 and propidium iodide after 4 days in culture. Results of B–D are means ± SEM of 20 independent preparations. (E–F) Expression of specific β and α cell
markers in the FACS-purified β andα cell fractions. Insulin (Ins2) (E), glucagon (Gcg) (F), Pdx1(G) and Arx (H) mRNA expressions were assayed by real-time PCR and normalized to the
reference gene Gapdh. The boxes indicate lower quartile, median, and higher quartile; whiskers represent the range of remaining data points. Results of 5 independent experiments;
*p b 0.05, **p b 0.01 and ***p b 0.001 α vs. β cells; Student's t-test.
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palmitate exposure (Fig. 4C andD). The increased Bcl2l1 expression inα
cells was confirmed at the protein level (Fig. 5A). We next evaluated
whether Bcl2l1 silencing with a previously validated siRNA (Miani
et al., 2013) would abrogate the resistance of α cells to palmitate. The
siRNA decreased by N10-fold Bcl2l1 mRNA and protein expression
(Fig. 5B andC). Bcl2l1 knockdowndidnot increase basalα cell apoptosis
(Fig. 5D), but it markedly sensitized the cells to palmitate. Indeed,
palmitate induced a similar rate of apoptosis in Bcl2l1-deficient α cells
(nearly 30%; Fig. 5D) compared to β cells (Fig. 3A), indicating that the
high Bcl2l1 expression in α cells plays a major role in the resistance of
these cells to metabolic stress-induced apoptosis. On the other hand,
knockdown of Bcl2 did not sensitize α cells to palmitate-induced
apoptosis (Fig. S9), suggesting that the protection observed in α cells
is mainly due to increased Bcl2l1 expression.
4. Discussion

The molecular mechanisms that lead to increased glucagon and
decreased insulin levels in T2D remain to be clarified. β Cell failure is,
at least in part, related to progressive β cell loss (Butler et al., 2003;
Mizukami et al., 2014; Rahier et al., 2008). It is unclear whether α cell
viability is affected by the long-term metabolic stress inherent to the
disease.
We presently observed increased β but not α cell apoptosis in islets
from T2D patients. Both α and β cells from T2D patients presented an
increased ER area, a phenomenon previously shown by us (Marchetti
et al., 2007) to be part of the UPR (Marciniak and Ron, 2006). These find-
ings indicate that both α and β cells face chronic ER stress, but while α
cells adapt and even increase hormone production, β cells fail and even-
tually undergo apoptosis. This is supported by observations in genetically
modifiedmice.α Cell-specific Xbp1 deletion increases ER stress without
affecting α cell survival, but Xbp1-deficient α cells cannot suppress glu-
cagon secretion after glucose stimulation (Akiyama et al., 2013). In con-
trast, β cell-specific Xbp1 deletion impairs glucose-stimulated insulin
secretion and leads to β cell loss (Lee et al., 2011).

The α cell resistance to apoptosis was reproduced when human
islets or FACS-purified rat α and β cells were exposed in vitro to
palmitate, the most common circulating saturated FFA that is thought
to contribute to β cell failure and T2D (Forouhi et al., 2014; Paolisso
et al., 1995): in both cases, palmitate activated the UPR, but only β
cells underwent apoptosis, indicating that α cells are well equipped to
survive metabolic ER stress. These differences in palmitate-induced
apoptosis between α and β cells were confirmed at three different
glucose concentrations, i.e. 6.1 mM, 10 mM and 20 mM. Marked eIF2α
phosphorylationwas shown inα cells of high fat diet-induced or genet-
ically obese mice (Engin et al., 2014); in β cells, hyperactivation of this
branch of the UPR is particularly cytotoxic (Cnop et al., 2007). This
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phenomenon is not part of a broad and non-specific resistance ofα cells
to apoptosis, since these cells showed similar susceptibility as β cells to
apoptosis triggered by chemical ER stressors.

Our findings fit with the report of detectable β cell apoptosis but
absence of α cell apoptosis in baboons with different degrees of
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Palmitate triggers β cell death via induction of ER and oxidative
stress (Cunha et al., 2008; Carlsson et al., 1999; Karaskov et al., 2006;
Kharroubi et al., 2004). This culminates in activation of the intrinsic
pathway of apoptosis, which is regulated by a delicate balance between
pro- and anti-apoptotic Bcl2 family members (Gurzov and Eizirik,
2011). Compared to β cells, α cells express higher levels of the two
anti-apoptotic proteins Bcl2 and Bcl2l1. Bcl2l1 is a key anti-apoptotic
protein in β cells (Miani et al., 2013), and we presently demonstrate
that Bcl2l1, and not Bcl2, silencing sensitizes α cells to palmitate-
induced apoptosis, which reaches levels similar to that in β cells,
suggesting a key role for Bcl2l1. We cannot exclude, however, that
other mechanisms behind Bcl2l1 contribute to the observed α cell
resistance.

In conclusion, the present findings show that human and rat pancre-
aticα cells are specifically resistant tometabolic stress-induced apopto-
sis. This resistance is due, at least in part, to the enhanced expression
of anti-apoptotic proteins, which render α cells resistant to palmitate-
and T2D-related ER stress. These observations suggest the intriguing
hypothesis that the recently described β to α cell transdifferentiation
in T2D (Gao et al., 2014; Talchai et al., 2012; White et al., 2013) is a
defense mechanism to avoid metabolic stress-induced apoptosis.
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