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A B S T R A C T   

We present the findings of a thorough first-principles analysis of physical parameters related to 
the ground state, elastic, electronic, optical, thermodynamic, and transport properties of the 
quaternary coinage metal-based compound CuHgSBr using the WIEN2k package. The computed 
equilibrium lattice parameters align well with their experimental equivalents, providing strong 
support for the validity of the findings. We performed numerical and computational calculations 
to estimate the elastic constants for the orthorhombic structure with space group Pbam. The band 
structure analysis of CuHgSBr reveals an indirect band gap semiconductor of 0.76 eV, classifying 
it as a p-type semiconductor. We also calculated the optical properties within the energy range of 
0–13.56 eV. Moreover, we investigated the effective mass, exciton binding energy, and exciton 
Bohr radius, which indicated that CuHgSBr exhibits a weak exciton binding energy and belongs to 
the Mott-Wannier type exciton category. Using the Boltzmann transport theory, along with the 
constant relaxation time and Slack equations, we determined the thermoelectric properties and 
lattice thermal conductivity of CuHgSBr. Notably, the figure of merit at 800 K is calculated to be 
0.54, which is encouraging for potential thermoelectric applications. The comprehensive research 
study we conducted provides valuable insights for experimental research across multiple physical 
properties, as the material is being theoretically examined for the first time in this full prospectus.   

1. Introduction 

Around the world, active research is being conducted in the hunt for effective materials for use in photovoltaics, optoelectronics 
and thermoelectric devices. Waste heat causes a significant loss of useable energy, with this lost heat being of excellent quality but 
dispersed. As the need for electricity among humans continues to grow, sustainable energy-producing techniques like thermoelectric 
energy generation are becoming increasingly crucial [1]. The discovery made by Seebeck in 1821 revealed that thermoelectric (TE) 
materials have the capability to produce power by utilizing a difference in temperature, which is known as the Seebeck effect. 
Conversely, the Peltier effect generates a temperature difference using electricity. As a result, there is a need for thermoelectric 
materials with exceptional performance to efficiently transform heat into electric energy on a continuous basis [2,3]. 

In recent times, the exploration of high-performance thermoelectric substances has garnered increasing attention from the fields of 
energy and the environment, driven by the prospect of potential commercial applications. The complexity of thermoelectric materials 
at the structural, electrical, and compositional levels necessitates close collaboration among a broad scientific community consisting of 
chemists, physicists, and materials scientists [4–6]. Notably, spacecraft have been continuously utilizing this energy-generating 
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technique since early 1960s [7,8]. For the past two decades, thermoelectric materials have been at the forefront of research aimed at 
utilizing waste heat in stationary applications and automobiles to reduce the burden on alternators [9]. 

Several organisations have led the way in global-scale thermoelectric development, with numerous significant advancements made 
possible by fundamental insights based on first-principles. The DFT framework enables the estimation of band structure projections, 
phase diagrams through cluster expansion techniques, and phase stability of unidentified compounds. Over the past 15 years, the 
thermoelectric figure of merit (ZT) of half-Heusler alloys, fascinating class of thermoelectric materials, has experienced significant 
improvement. Recently, there has been a notable interest in chalcogenide materials for narrow/wide bandgap semiconductors, which 
are frequently employed in optoelectronic devices. Photovoltaic technology relies on a variety of materials, including primarily 
organic, inorganic, or organic-inorganic mixtures, for efficient photon-to-electron conversion [10]. 

Recent experimental and theoretical reports have highlighted several ternary and quaternary chalcogenide-based materials 
[11–15] for optoelectronics [16–20] and thermoelectric [21–26] applications. Consequently, we conducted DFT computation on the 
quaternary chalcogenide-based material CuHgSBr, which has demonstrated extraordinarily high efficiency and provides a funda
mental overview of all digital tools. The synthesis involves a hydrothermal reaction within sealed glass ampoules at 670 K, yielding 
yellow-orange CuHgSBr crystals. The most prevalent crystal structure for our chemical is orthorhombic with space group Pbam. The 
structures comprise flattened HgS chains that are interconnected by a combination of distorted CuS2Br2 tetrahedra sharing an edge 
with Br atoms. Notably, the copper atoms are positioned off-centre, as corroborated by experimental investigations [27]. The prior 
structural method, reliant on powder diffraction data [28], was invalidated upon the determination of a single crystal structure. The 
structural archetype of CuHgSBr bears a striking resemblance to previously identified compounds like CuHgSeBr, AgHgSBr, AgHgSI 
(collectively known as MHgYX) [29]. 

In the current work, we employed the comprehensive full potential linearized augmented plane wave (FP-LAPW) technique using 
the WIEN2k software to analyze the structural, elastic, electronic, and optical aspects of CuHgSBr. We are not aware of any literature 
describing the structural, transport, electronic, optical, thermodynamic, and elastic properties of these materials. 

2. Computational details 

The DFT computation were performed for the quaternary compound CuHgSBr to estimate its ground state, electronic behavior, 
elasticity, optical and transport characteristics. We used the WIEN2k [30] package to calculate all these properties. To achieve this, we 
employed the WIEN2k software [30], utilizing the Generalized Gradient Approximation (GGA) with the Perdew-Burke-Ernzerhof 
(PBE) method [31] to account for electron exchange-correlation effects. For CuHgSBr, we set an energy separation of − 6.0 Ry be
tween the valence and core states. The parameters RMT x Kmax were chosen as 8.0, with a k value of 4 × 4 × 4 using Monkhorst-Pack 
method. Notably, 2000 k points were designated solely for optical property calculations. Muffin tin radii, which prevent core charge 
leakage, were set at 2.19, 2.44, 1.79, and 2.14 for Cu, Hg, S, and Br, respectively. The calculations for CuHgSBr’s structure were based 
on lattice constants reported experimentally [27]. To analyze structural parameters and their dependence on energy against the c/a 
ratio, Murnaghan’s state equation was employed. The determination of elastic constants was facilitated by the IR-Elast package [32], 
integrated within the WIEN2k code, leading to the assessment of various elastic parameters. Optical properties were explored through 
the complex dielectric function, while transport properties were studied using the BoltzTraP code [33]. 

3. Results and discussion 

3.1. Geometry optimization 

The quaternary compound CuHgSBr exhibits an orthorhombic crystal structure with the Pbam space group and Brillouin zone plot, 
as shown in Fig. 1(a) and (b). Structural optimization was executed using the reported experimental lattice parameters [27]. The total 

Fig. 1. a) Crystal structure of CuHgSBr, and b) First Brillouin zone representing high symmetry k points for CuHgSBr compound.  
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energy was fitted into the Murnaghan equation of state as a function of c/a, and this relationship was visualized in Fig. 2. Based on the 
total energy vs c/a ratio, the optimized lattice parameters, total energy and equilibrium volume for different functionals were 
computed and listed in Table 2. Among the exchange-correlation functionals considered, GGA-PBE exhibited the lowest ground state 
energy, as indicated by the obtained total energy values. Consequently, GGA-PBE was selected as the functional for computing all the 
physical properties discussed in this paper. Our computed outcomes demonstrated favorable consistency with experimental data. 
Furthermore, we determined the bond lengths for CuHgSBr, and these values are detailed in Table 1. 

3.2. Electronic properties 

The energy dispersion within CuHgSBr defines its electronic characteristics, a feature elucidated by the calculated band structure 
presented in Fig. 3. This band structure assessment is conducted across significant directions within the Brillouin zone, highlighting 
high-symmetry paths. The valence band maximum (VBM) and conduction band minimum (CBM) predominantly consist of Cu-d and S- 
p states, respectively. Notably, the material possesses an indirect narrow band gap of 0.76 eV, determined through the application of 
the PBE-GGA method. The CBM is situated at the high-symmetry gamma point, while the VBM resides between the R and Γ points, 
indicative of an asymmetrical location. Fig. 1(b), portrays the first Brillouin zone alongside high-symmetry k paths. The presence of 
non-symmetrical points within the band structure holds promise for thermoelectric materials, a trait previously acknowledges in high- 
performance material studies [34–37]. 

We also estimated the band gap values using various exchange-correlation methods within the WIEN2k software, and these out
comes are listed in Table 2. Near the Fermi level EF, the band structure shows very flat energy dispersion in the X-Γ direction, indicating 
a high hole effective mass. Flat bands, characterized by minimal energy dispersion, have significant effects on electronic properties and 
can lead to interesting physical phenomena, such as a high density of states, which enhances various electronic and transport prop
erties, including thermoelectric efficiency. 

The valence band region exhibits a collection of more dispersive flat bands and less dispersive parabolic bands. Flat bands find 
applications in 2D and 3D materials, such as ferromagnetism, superconductivity, Mott insulators, thermoelectric devices, quantum 
Hall effect, strongly correlated systems, Kagome lattice, and several topological states [38–49]. In our case, the presence of flat bands 
in the VB enhances the performance of thermoelectric devices, leading to an elevation in the Seebeck coefficient. All of these aspects 
are discussed in the transport properties section. 

Regarding the conduction band (CB), there is only one band at the bottom, with an average effective mass of roughly 0.1 electrons, 
signifying the prevalence of electrons as the main charge carriers. The collective density of states (DOS) and partial density of states 
(PDOS) are shown in Figs. 4 and 5(a-d). The calculated S-p peak is at 1–3 eV below the CBM, and the Cu-d peak is at 0 to − 3 eV. The 
lower VB is composed of Hg-d orbitals, while the higher VB closest to the Fermi level is made up of Cu-d, S-p and Br-p orbitals. S-p 
orbitals dominate the bottom of the CB, accounting to the primary significant peak in the CB DOS at 2 eV. The s states in the PDOS plots 
were neglected due to their deep energy level. It is important to note that there is currently no experimental research available for 
comparison regarding the electronic properties of CuHgSBr. 

3.3. Elastic and mechanical properties 

The ability of materials to regain their original size and shape after the stress within them is removed can be explained using elastic 
attributes, as long as the stress doesn’t exceed the elastic limit. The mechanical traits of materials (represented by Cij) are established 
by the elastic constants of single crystals. These constants are linked to the Debye temperature and Grüneisen parameter. The me
chanical robustness of materials that are sought after for technological purposes, including factors like melting point, fracture 

Fig. 2. Optimized c/a variations using GGA-PBE.  

H. M and E. R.D                                                                                                                                                                                                       



Heliyon 9 (2023) e19438

4

Table 1 
Elucidated atomic bond lengths within the crystal structure of CuHgSBr.  

Compound Bond Bond distance (Å) 

CuHgSBr Cu–Br 2.4553 
Hg–S 2.3799 
Cu–S 2.2817  

Table 2 
Calculated optimized lattice constants, equilibrium volume, band gap (eV) and total energy (Ry) using different exchange-correlation functional of 
CuHgSBr.  

CuHgSBr a (Å) b (Å) c (Å) V (Å3) Eg (eV) E0 (Ry) 

Experimental [27] 10.037 18.336 4.124 758.97 – – 
Theoretical (GGA-PBE) 10.137 18.517 4.042 758.71 0.767 − 389164.053 
GGA-WC 10.138 18.515 4.042 758.70 1.329 − 389124.524 
LDA 10.133 18.507 4.045 758.56 1.309 − 388879.370 
mBJ – – – – 1.243 − 388874.601  

Fig. 3. Electronic band structure of CuHgSBr.  

Fig. 4. TDOS of CuHgSBr.  
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toughness, load deflection, sound velocity, and thermoelastic stress, plays a significant role in their performance. These parameters 
also provide crucial insights into stiffness, material bonding, and the interatomic forces present within solids. 

The CuHgSBr quaternary compound has an orthorhombic crystal structure [50], which is characterized by nine distinct elastic 
constants: C11, C22, C33, C44, C55, and C66, C12, C13, and C23. These elastic constants must adhere to specific conditions (expressed in 
equations (1)–(7)) [51] to ensure the elastic stability of the orthorhombic crystal system, as defined by the Born-Huang criteria. The 
estimated values for the elastic constants of CuHgSBr are provided in Table 3, and they satisfy the prerequisites for maintaining elastic 
stability within the orthorhombic framework. 

C11 > 0 (1)  

C11C22 > C2
12 (2)  

C11C22C33 + 2C12C13C23 (3)  

− C11C2
23 − C22C2

13 − C33 C2
12 > 0 (4)  

C44 > 0 (5)  

C55 > 0 (6)  

C66 > 0 (7)  

Materials with higher values of elastic constants (Cij) are more incompressible and require greater external force to deform them, while 
materials with lower values of Cij are more easily deformed. Table 4 displayed additional mechanical properties. To understand the 
internal strains described by equation (8) [52], the Kleinman parameter (Ϛ) was calculated. 

Ϛ=
C11 + 8C12

7C11 + 2C12
(8) 

Fig. 5. PDOS for a) Copper (Cu), b) Mercury (Hg), c) Sulphur (S) and d) Bromine (Br).  

Table 3 
Elucidated elastic constants and Kleinman parameter (Ϛ) for CuHgSBr using GGA-PBE functional.  

XC C11 C22 C33 C44 C55 C66 C12 C13 C23 Ϛ 

GGA-PBE 104.80 102.50 138.66 3.34 4.06 32.93 33.40 44.06 20.82 1.15  
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The Ϛ provides information about a compound’s ability to resist bending and stretching forces. The capacity to withstand alter
ations in volume when subjected to external pressure is quantified through the bulk modulus. Equations 9–12 [53] can be employed to 
calculate the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio. The bulk modulus signifies how well a material 
resists changes in volume, while the shear modulus gauges its resilience to reversible deformations. Young’s modulus denotes the 
material’s rigidity against alterations in length. Based on the computed bulk modulus values, CuHgSBr is not considered a hard 
material. Additionally, the size of the bulk modulus is related to bond distance in the crystal structure, with smaller bond lengths 
resulting in larger bulk modulus values. In the case of CuHgSBr, the obtained bond lengths are shorter. 

B=
Bv + BR

2
(9)  

G=
Gv + GR

2
(10)  

E=
9GB

3B + G
(11)  

n=
3B − 2G
6B + 2G

(12) 

Through the utilization of Pugh’s ratio B/G and Poisson’s ratio, n, it becomes possible to discern whether a material possesses 
ductile (ionic) or brittle (covalent) characteristics. A B/G value exceeding 1.75 indicates brittleness, while values below 1.75 suggest 
ductility. For pure covalent and ionic materials, Poisson’s ratio (n) is typically around 0.1–0.25 and 0.25–0.5 [54–56], respectively. 
Therefore, CuHgSBr can be considered ductile and strongly ionic character. Young’s modulus serves as a gauge for determining a 
material’s rigidity. The investigation also covered elastic anisotropy, contributing to the emergence of microcracks. The shear 
anisotropy ratio concerning (100) shear planes between the (011) and (010) orientations was calculated using equations 13–15 [57]. 
The calculated shear anisotropy factor values (A100, A010, A001) using the GGA-PBE functional are 0.0860 GPa, 0.0813 GPa, and 
0.9375 GPa, respectively. The shear anisotropy ratios A100 and A001 are both less than 1, indicating the anisotropy nature of CuHgSBr 
structure. Additionally, A010 also have values less than 1. 

A100 =
4C44

C11 + C33 − 2C13
(13)  

A010 =
4C55

C22 + C33 − 2C23
(14)  

A001 =
4C66

C11 + C22 − 2C12
(15) 

The orthorhombic structure exhibits elastic anisotropy due to both shear anisotropy and the anisotropy of the linear bulk modulus. 

3.4. Optical properties 

The evaluation of a material’s potential for solar cell and optoelectronic applications necessitates an examination of how the optical 
properties respond to incident photon radiation [58]. The electronic characteristics of a material are encapsulated in a complex 
dielectric function, represented by the equation ϵ(ω) = ϵ1(ω) + iϵ2(ω), wherein ϵ1(ω) and ϵ2(ω) stand for the real and imaginary 
components of the complex dielectric wave function, respectively. Equations 16–20 [59] are employed to compute additional optical 
properties, including absorption coefficients (α), refractive index n(ω), extinction coefficient κ(ω), reflectivity R(ω), and energy loss 
function L(ω) (as illustrated in Figs. 6 and 7): 

α(ω)=
̅̅̅
2

√
ω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϵ2
1(ω) + ϵ2

2(ω)

√

− ϵ1(ω)

√

(16)  

n(ω)=

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϵ2

1(ω) + ϵ2
2(ω)

√
+ ϵ1(ω)

√

̅̅̅
2

√

⎞

⎠ (17)  

Table 4 
Elucidated Bulk modulus (GPa), Young’s modulus (GPa), Shear modulus (GPa), Poisson’s ratio, and Pugh’s ratio for CuHgSBr.  

XC Bv BR B Ev ER E Gv GR G nv nR n B/G  

GGA-PBE 60.28 59.04 59.66 64.91 22.89 44.75 24.57 7.97 16.27 0.320 0.435 0.374 3.666  
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κ(ω)=

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϵ2

1(ω) + ϵ2
2(ω)

√
− ϵ1(ω)

√

̅̅̅
2

√

⎞

⎠ (18)  

L(ω)=
ϵ2(ω)

ϵ2
1(ω) + ϵ2

2(ω)
(19)  

R(ω)= (n − 1)2
+ κ2

(n + 1)2
+ κ2

(20)  

In crystalline materials, photon absorption is described by the ϵ2(ω) component of the dielectric function. Peaks in ϵ2(ω) are attributed 
to electronic transitions from the VB to CB. The initiation of absorption in ϵ2(ω) defines the material’s bandgap, situated within the 
visible spectrum, specifically (<3.1 eV for the CuHgSBr compound). This points to robust interband transitions within the material. As 
a result, CuHgSBr is an attractive material for solar cell applications. Additionally, compared to wide bandgaps, materials with narrow 
bandgaps enable faster electron transitions. 

The CuHgSBr compound displays persistent light absorption across the energy range of 0.8–6 eV, encompassing infrared, visible, 
and ultraviolet light. This behavior is primarily attributed to the elevated value of the imaginary components ϵ2(ω) in its dielectric 
function within this energy span along the x, y, and z directions, as illustrated in Fig. 7(b). The static value, commonly known as ϵ1 
(Energy = 0), is the primary characteristic of the ϵ1(ω) curve. In the area of optical and photonic devices, the refractive index n(ω) is a 
crucial optical parameter to investigate a material’s possible uses. The refractive index of the material is correlated to this static value 
as n =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ϵ1(0)) .

√
According to Fig. 7(a), the computed values for the static dielectric constant at the zero-frequency limit ϵ1(0) are 

9.84, 7.62, and 6.67 along x, y and z directions, respectively. At Energy = 0, the ϵ1(ω) graph reaches substantial peak at low energy 
along x, y, and z regions, which are 0.88 eV, 2.21 eV, and 2.27 eV for CuHgSBr, respectively. Notably, the value exceeding 1 for the y 
and z directions indicates that the interaction between photons and the material’s electrons has caused a reduction in the speed of 
photons. Photon transmission persists until energy ranges of 5.72–6.38 eV and 8.53–13.56 eV, where the ϵ1(ω) value turned negative. 
At this energy range, incident photon radiations are believed to be completely absorbed, leading to metallic behavior in the com
pounds. Similarly, the real component ϵ1(ω) of the dielectric function of CuHgSBr has highest values within the energy range of 0–3 eV, 
signifying significant electromagnetic wave interaction within this span. The refractive index n(ω) (refer to Fig. 7(c)) achieves its peak 
values in the same energy range, indicating that electromagnetic waves are largely bent when travelling through the CuHgSBr crystal. 
The calculated values of static refractive index at the zero-frequency limit n(0) for CuHgSBr along x, y, and z directions are 3.14, 2.76 
and 2.58, respectively. 

The absorption coefficient serves as a significant optical indicator, providing valuable insights into the absorption of optical energy 

Fig. 6. Estimated a) Absorption coefficient, b) Reflectivity, and c) Energy loss for CuHgSBr.  
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per unit length. The absorption process is influenced by the crystal’s molecular structure and its band gap. Optical absorption takes 
place when the frequency of an incoming photon resonates with the transition frequency of an atom. This phenomenon is limited to 
specific materials due to the frequency-dependent nature of the absorption coefficient. The mechanism behind optical absorption 
involves electrons transitioning from occupied states in the upper valence band to available unoccupied states in the lower conduction 
band. As depicted in Fig. 6(a), the absorption rate α(ω) is minimal within the infrared range for energies below 2 eV, indicating the 
transparency of the CuHgSBr crystal to such light. However, the absorption rate α(ω) experiences a rapid rise from 0.77 eV upwards, 
reaching its peak values. Notably, incident light parallel to the y-z plane exhibits greater absorption compared to light parallel to the x- 
axis. The CuHgSBr compound displays higher absorption of ultraviolet light compared to infrared and visible light when energies 
surpass 9 eV, with diminished directional dependency. The absorption coefficient and the imaginary component of the dielectric 
function are closely related. The imaginary part of the dielectric function is responsible for describing the absorption of light or other 
electromagnetic waves in a material. It is represented by a complex number, where the real part accounts for the material’s refractive 
index, and the imaginary part represents the absorption coefficient. In general, the absorption coefficient is directly proportional to the 
imaginary component of the dielectric function. If there is inconsistency between the absorption coefficient and the imaginary 
dielectric function, it would imply that the material’s absorption behavior is not accurately represented by the dielectric function. The 
estimated absorption in Fig. 6(a) is not consistent with the imaginary components in the x plane, but it is consistent with y and z plane 
as shown in Fig. 7(b). 

The interaction of fast-moving electrons as they enter substance is governed by two factors: the material’s surface behavior, which 
is managed by reflectivity, and the extent of energy loss, regulated by the energy loss function. Notably, the key reflectivity peaks are 
consistently located at 13.56 eV in all three spatial directions: x, y, and z are illustrated in Fig. 6(b). According to the loss spectrum in 
Fig. 6(c), there was no discernible absorption in the visible wavelengths. The largest absorption peak is found in higher energy regions 
(>10 eV). The decline of electromagnetic wave intensity within the material is explained by the extinction coefficient (κ), as illustrated 
in Fig. 7(d). The maximum absorption occurs at 5.89 eV, 6.19 eV, and 8.28 eV along x, y, z directions for CuHgSBr, respectively. Based 
on these optical features, CuHgSBr is a strong contender for photovoltaic and solar cell materials. 

3.5. Transport and thermodynamic properties 

One direct approach to understanding a material’s electronic properties is by employing the concept of effective mass. This measure 

Fig. 7. Calculated a) Real part, b) Imaginary component, c) Refractive index, and d) Extinction coefficient.  
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is determined by employing a parabolic band approximation, where a polynomial fit of the relationship between wave vector (K) and 
energy (E) is applied to either the CBM or VBM. Maximum VBM, as depicted in Fig. 8. However, to calculate effective masses precisely, 
more computationally demanding approaches are needed. The effective mass can be obtained using equation (21), and Table 5 
provides the elucidated effective masses expressed with respect to free electron mass. 

1
meff

=
1
ħ2

∂2E
∂k2 (21)  

Furthermore, the breakdown of excitons into electrons (n-type) and holes (p-type) can also be predicted using effective masses and 
dielectric constants. The binding energy of excitons can be estimated using equation (22) [60], and the values for CuHgSBr are 12.1 
meV, 20.2 meV, and 26.4 meV along x, y, and z directions of static dielectric constant. Similarly, the exciton Bohr radius can be 
estimated using equation (24) [61,62], and the calculated are 60.25 Å, 46.65 Å, and 40.84 Å along x, y, and z directions of static 
dielectric constant. It is observed that CuHgSBr has a low exciton binding energy in all the three planes, and the value of a∗ is greater 
than the lattice parameters in all the three planes, indicating that it is a weak exciton and falls under Mott-Wannier type. 

Eb = 13.6
mμ

m0

1
ϵ1(0)2 (22)  

where, mμ is reduced effective mass and it is consider using equation (23) [60], 

1
mμ

=
1

meff
e

+
1

meff
h

(23)  

a∗ = ϵ1(0)
m0

mμ
a0 (24) 

The investigation into the electronic and optical attributes proposes that CuHgSBr holds promise for photovoltaic applications. Due 
to the global energy crisis, significant research has been dedicated to advanced materials, including smart materials like thermoelectric 
materials (TE). These possess the capability to convert waste heat into electrical energy and vice versa. A material’s thermoelectric 
performance is heavily influenced by its electronic structure at the VBM. In this study, the transport characteristics of CuHgSBr were 
simulated using BoltzTraP, a code baser on semi-classical Boltzmann theory. The efficiency of a material in this context is gauged by its 
elevated electrical conductivity and Seebeck coefficient as well as reduced electronic thermal conductivity. 

This study focused on investigating thermoelectric parameters across the temperature range of 50 K–800 K. Various parameters 
such as electrical conductivity (σ/τ), electronic thermal conductivity (κe/τ), lattice thermal conductivity (κL), Seebeck coefficient (S), 
Power factor (P.F), and figure of merit (ZT) for CuHgSBr were calculated. The computed electrical conductivity (σ/τ) is depicted in 
Fig. 9(a), illustrating a rise in σ/τ values as temperature increases. As materials display enhanced semiconducting properties, their 
electrical conductivity also increases, enabling electrons to surmount the fermi level barrier. For CuHgSBr, the σ/τ values are 4.24 ×
1016 (1/Ω cm s) at 50 K and 5.73 × 1018 (1/Ω cm s) at 800 K. 

Fig. 8. Calculated quadric curve of VBM and CBM for CuHgSBr.  

H. M and E. R.D                                                                                                                                                                                                       



Heliyon 9 (2023) e19438

10

The thermopower (S) of CuHgSBr, depicted in Fig. 9(b), displays a consistently positive trend across the entire temperature range, 
indicating a p-type characteristic of the compound. The computed values of S at 50 K and 800 K are 317 (μV/K) and 198 (μV/K), 
respectively. The higher Seebeck coefficient (S) at 50 K results from the presence of flat bands at the VB. As temperature increases, S 
significantly decreases, as depicted in Fig. 9(b). The electronic component of thermal conductivity (κe/τ) is depicted in Fig. 9(c), 
demonstrating a gradual increase with rising temperature. The κe/τ values at 50 K and 800 K are 2.48 × 1011 (W/mKs) and 3.20 × 1014 

(W/mKs), respectively. 
Power factor (P.F), which combines electrical conductivity and Seebeck coefficient, serves as an efficiency descriptor for ther

moelectric materials. Fig. 10(a) depicts the fluctuation of power factor with temperature. The lattice thermal conductivity (κL) was 
estimated using the Slack [63] equation (25), and the values are presented in Fig. 9(d). 

κl =A
Maθ3δ
γ2Tn2/3 (25)  

where, A, θ, and γ, are represented as constant, Debye temperature, and Grüneisen parameter. The constant A can be calculated using 
equation (26). 

A=
2.43 × 10− 8

1 − 0.514
γ + 0.228

γ2

(26) 

The value of θ and γ are 183.84 K and 2.35 calculated using IR-Elast code, which is incorporated in WIEN2k package. The tendency 
of κL shows that as the temperature rises, heat transfer of phonon decreases. The κL values at 50 K and 800 K are 1.77 (W/mK) and 0.11 
(W/mK), respectively, while the computed lattice thermal conductivity at 300 K is 0.29 (W/mK) as shown in Fig. 9(d). 

Figure of merit (ZT), a widely-used transport parameter, assesses material effectiveness. As shown in Fig. 10(b), a higher ZT in
dicates greater suitability for thermoelectric applications, necessitating elevated electrical conductivity, Seebeck coefficient, and 
diminished thermal conductivity. In this study, the calculated figure of merit (ZT) for CuHgSBr at 50 K and 800 K are 0.0012 and 0.54, 
respectively, indicating an increase with temperature. This behavior is attributed to the flat band structure at the upper VB. 

In conclusion, the band gap significantly influences a material’s electrical conductivity, with CuHgSBr’s properties affected by its 
unique band gap chemistry. With an increasing temperature, the figure of merit (ZT) also increases, making CuHgSBr a suitable 
candidate for thermoelectric applications. Furthermore, the temperature-dependent thermodynamic characteristics such as free en
ergy F, entropy S, and heat capacity Cv were estimated using the harmonic approximation in the phonopy [64], interfaced using 
WIEN2k, as shown in Fig. 11. As temperature climbs, free energy decreases, while entropy and heat capacity increase in accordance 
with the third law of thermodynamics. CuHgSBr’s heat capacity adheres to the T3 equation of the Debye model [65] at low tem
peratures, rapidly increasing up to 300 K. at higher temperatures, fluctuation diminishes, consistent with the Dulong-Petit rule [66]. 

4. Conclusion 

To sum up, we conducted a comprehensive analysis of various properties including structural, electronic, elastic, optical, ther
modynamic, and transport properties of the CuHgSBr quaternary compound using the Density Functional Theory (DFT) within the 
WIEN2k software. The optimized lattice constants were determined as a = 10.137, b = 18.517, c = 4.042 Å for CuHgSBr. Additionally, 
the bandgap was calculated to be 0.76 eV. Based on the results of the elastic constants, CuHgSBr was determined to be ductile (ionic), 
and mechanically stable at relatively low pressure, indicating its potential for use in resilient materials. Moreover, our studied 
compound shows promise for photovoltaic applications due to its predicted bandgap, high refractive index, and high absorption 
coefficient, particularly in the Ultra-violet to visible regions of the electromagnetic spectrum. Furthermore, we employed the semi- 
classical BoltzTrap code to compute the thermoelectric features of CuHgSBr. By fitting the band structure as VBM and CBM, we ob
tained the effective mass and exciton binding energy. Our analysis reveals the presence of a Mott-Wannier type exciton based on the 
exciton Bohr radius. Remarkably, CuHgSBr exhibits strong potential as a thermoelectric material, supported by power factor and ZT 
outcomes. These results are promising, driving us to delve deeper into the intricate and captivating domain of chalcogenide crystals in 
this field. In the context of future directions, we anticipate exploring methods to reduce thermal conductivities to further enhance the 
thermoelectric performance of CuHgSBr. The investigation of CuHgSBr as two-dimensional (2D) and one-dimensional (1D) materials 
could offer substantial improvements in this aspect. Advancements in DFT computations, such as employing potentials like the Becke- 
Johnson or hybrid potentials, hold promise for upcoming research endeavours. Ultimately, we foresee an ongoing focus on optimizing 
CuHgSBr’s properties and envision its potential applications in various dimensions. 
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