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Abstract

Background: Kawasaki disease (KD) is a systemic vasculitis of unknown etiology. The innate immune system is involved in
its pathophysiology at the acute phase. We have recently established a novel murine model of KD coronary arteritis by oral
administration of a synthetic microbe-associated molecular pattern (MAMP). On the hypothesis that specific MAMPs exist in
KD sera, we have searched them to identify KD-specific molecules and to assess the pathogenesis.

Methods: We performed liquid chromatography-mass spectrometry (LC-MS) analysis of fractionated serum samples from
117 patients with KD and 106 controls. Microbiological and LC-MS evaluation of biofilm samples were also performed.

Results: KD samples elicited proinflammatory cytokine responses from human coronary artery endothelial cells (HCAECs). By
LC-MS analysis of KD serum samples collected at 3 different periods, we detected a variety of KD-specific molecules in the
lipophilic fractions that showed distinct m/z and MS/MS fragmentation patterns in each cluster. Serum KD-specific
molecules showed m/z and MS/MS fragmentation patterns almost identical to those of MAMPs obtained from the biofilms
formed in vitro (common MAMPs from Bacillus cereus, Yersinia pseudotuberculosis and Staphylococcus aureus) at the 1st study
period, and from the biofilms formed in vivo (common MAMPs from Bacillus cereus, Bacillus subtilis/Bacillus cereus/Yersinia
pseudotuberculosis and Staphylococcus aureus) at the 2nd and 3rd periods. The biofilm extracts from Bacillus cereus, Bacillus
subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus also induced proinflammatory cytokines by HCAECs. By the
experiments with IgG affinity chromatography, some of these serum KD-specific molecules bound to IgG.

Conclusions: We herein conclude that serum KD-specific molecules were mostly derived from biofilms and possessed
molecular structures common to MAMPs from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus
aureus. Discovery of these KD-specific molecules might offer novel insight into the diagnosis and management of KD as well
as its pathogenesis.
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Introduction

The etiology of Kawasaki disease (KD) remains unknown,

however, KD has long been considered to be caused by an

infectious agent, because of its characteristics of the symptoms, age

distribution, seasonality, occurrence of community outbreaks and

epidemic cycles. On the other hand, no consistently recoverable

agents, lack of person-to-person transmission or a common
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contagious source, and paucity of case clusters in families, schools

or nurseries are supportive of a non-infectious cause for KD [1–3].

Temporal clustering and marked seasonality in KD occurrence in

Japan, Hawaii and San Diego also suggest a wind-borne

environmental trigger for this disease [4].

KD is also characterized by marked elevations of serum levels of

proinflammatory cytokines and chemokines [2] and the activation

of the innate immune system [5–7]. We have established a novel

murine model of KD coronary arteritis by oral administration of

FK565, which functions as a synthetic microbe-associated

molecular pattern (MAMP) and a ligand to one of the innate

immune receptors, nucleotide-binding oligomerization domain-

containing protein (NOD) 1 [8]. In this report, we performed

liquid chromatography-mass spectrometry (LC-MS) analysis of

KD sera to find out KD-specific molecules and demonstrated that

serum KD-specific molecules were closely linked to MAMPs in the

biofilms.

Materials and Methods

Study subjects
All patients enrolled in this study were admitted to Kyushu

University Hospital, Fukuoka Children’s Hospital and Medical

Center for Infectious Diseases, Kawasaki Medical School Hospital

or Kurashiki Central Hospital between June 2010 and March

2014. The study subjects consisted of 117 patients with KD

(median age, 21 months; range 3–96 months; male/female, 65/

52), 101 controls with other febrile illnesses (DC: median age, 16

months; range 0–121 months; male/female, 61/40), and 5 normal

controls (NC: median age, 6 months; range 3–39 months; male/

female, 1/4). A diagnosis of KD was made according to the

Diagnostic Guidelines of KD [9]. The Ethical Committee of

Kyushu University approved the study. Written informed consent

was obtained from all guardians. The 1st study subjects (samples

were collected mostly between July 2011 and February 2012)

consisted of 43 patients with KD, 41 controls with DC (respiratory

syncytial virus infection: n = 4, influenza A virus infection: n = 7,

adenovirus infection: n = 2, exanthema subitum: n = 5, varicella:

n = 2, bacteremia: n = 2, pneumonia: n = 6, tonsillitis: n = 1,

lymphadenitis: n = 5, cellulitis: n = 1, urinary tract infection:

n = 1, gastritis: n = 5), and 5 NC. The 2nd (mostly between May

2012 and July 2013) and 3rd (mostly between November 2013 and

March 2014) study subjects consisted of 41 KD patients and 30

DC controls (respiratory syncytial virus infection: n = 8, influenza

A virus infection: n = 4, adenovirus infection: n = 2, exanthema

subitum: n = 2, herpetic stomatitis: n = 1, pneumonia: n = 5,

bronchitis: n = 2, upper respiratory infection: n = 1, tonsillitis:

n = 2, deep neck abscess: n = 1, acute otitis media: n = 1, urinary

tract infection: n = 1), and 33 KD patients and 30 DC controls

(respiratory syncytial virus infection: n = 8, influenza A virus

infection: n = 1, adenovirus infection: n = 1, pneumonia: n = 6,

bronchitis: n = 1, upper respiratory infection: n = 4, tonsillitis:

n = 2, lymphadenitis: n = 1, sinusitis: n = 1, acute otitis media:

n = 1, urinary tract infection: n = 2, gastritis: n = 2), respectively.

Sample collection
Blood samples were collected at the time of routine examina-

tions before and after high-dose intravenous immunoglobulin

(IVIG) therapy, and after resolution of symptoms. The sera were

separated by centrifugation and stored at 230uC until the analysis.

Routine bacterial cultures were performed with throat, tongue,

nasal and rectal swabs. Biofilms from teeth, tongue, nasal cavity, or

rectum (stool) were collected by cotton swabs or interdental

brushes (for teeth). These swabs or brushes were suspended in

double distilled water (ddH2O) immediately and stored at 230uC
until the analysis. Simultaneous collection of biofilm and serum

samples was performed at 2nd (n = 12, mostly October-December,

2012) and 3rd (n = 11, mostly January-February, 2014) study

periods.

Lipid extraction
Serum samples or other specimens were separated into

lipophilic and hydrophilic fractions by Folch method [10] or ethyl

acetate extraction [11,12]. As for Folch method [10], 100 mL of

serum was acidified to pH5 with acetic acid and mixed with 2:1

chloroform-methanol mixture (v/v) to a final volume 300 mL. The

mixture was shaken and centrifuged at 3000 rpm for 10 minutes,

and the bottom lipophilic layer and upper hydrophilic layer were

collected and evaporated. The lipophilic pellet was dissolved in

5 mL of chloroform, 5 mL of dimethyl sulfoxide (DMSO), and

40 mL of ddH2O and hydrophilic pellet was in 50 mL of ddH2O.

As for ethyl acetate extraction [11,12], 100 mL of serum was mixed

with the same volume of ethyl acetate. After centrifugation, the

upper lipophilic layer including the interface and the bottom

Figure 1. Whole and fractionated serum samples from KD
patients induce cytokine production in HCAECs. The production
of IL-8 by HCAECs was measured in triplicate after 24-hour stimulation
with whole sera or lipophilic and hydrophilic fractions from KD patients
(n = 6), DC controls (n = 5; pneumonia; n = 2, influenza A virus infection;
n = 1, adenovirus infection; n = 1 and urinary tract infection; n = 1), or NC
subjects (n = 5). Lipophilic and hydrophilic fractions were separated by
ethyl acetate extraction. The bottom and top edges of the box plot
correspond to the 25th and 75th percentiles, respectively. The
horizontal line inside the box represents the median of the distribution.
The whiskers indicate the 10th and 90th percentiles. **P,0.01; ***P,
0.001 (Welch’s t-test).
doi:10.1371/journal.pone.0113054.g001
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hydrophilic layer were transferred, evaporated, and dissolved in

50 mL of 20% methanol (lipophilic layers), and in 100 mL ddH2O

(hydrophilic layers) for cell stimulation, respectively. Since the

human coronary artery endothelial cell (HCAEC)-stimulatory

activities of KD serum samples were not stable after extraction

with Folch method, we used ethyl acetate instead of chloroform.

For LC-MS, lipophilic fractions were dissolved in 100% methanol.

Other samples were also mixed with the same volumes of ethyl

acetate, and centrifuged. Upper lipophilic layers including

interfaces were collected, evaporated and dissolved in 100%

methanol. To each sample, dibutyl hydroxytoluene was added at a

final concentration of 1.0% as an antioxidant [13].

Cell stimulation
HCAECs (purchased from Lonza and no mycoplasma contam-

ination) were cultured in EBM-2 medium with EGM-2MV

(Lonza) in a 5% CO2 incubator at 37uC. These cells, between

passages 5 and 7, were suspended and seeded into 75 cm2 flask.

After passage, HCAECs were introduced in a 96 well plate (36103

cells/well). On the following day, the medium was changed and

the supernatants were collected for assay 24 hours after stimula-

tion.

Cytokine assay
The concentrations of IL-8, IL-6, IL-1b, TNF-a, IL-12p70, and

IL-10 in culture supernatants were measured by EC800 cell

analyzer (Sony Corporation) with a BD Cytometric Bead Array

human inflammation kit (BD Biosciences) [8]. We performed the

experiments at least 3 times.

LC- MS analysis
Samples were analyzed by high performance liquid chroma-

tography (HPLC, Agilent 1200 HPLC instrument, Agilent

Technologies) on Dionex Acclaim surfactant column (3 mm,

120Å, 2.16150 mm, DIONEX) and MS (Esquire 6000 electro-

spray ionization: ESI, Bruker Daltonics). The mobile phases were

H2O with 0.1% formic acid (eluent A) and acetonitril with 0.1%

formic acid (eluent B). They were delivered at a flow rate of

0.2 ml/min and the column was operated at 25uC. The gradient

was as follows: 0–3 min. 20% B, 3–12 min. 20–100% B, 12–

70 min. 100% B. The injection volume to the system was fixed at

10 ml. The column eluent was connected to MS. The ESI-MSn

spectrum conditions were optimized in the negative-ion mode with

the conditions as follows: nebulizer gas, 30.0 psi; drying gas, flow 8

l/min; dry temperature 330uC; high voltage (HV) capillary,

4500 V; HV end plate offset, 2500 V; target ion trap, 30000; scan

range 100–3000 m/z. The width for targeted precursor ions was

set at 4 m/z.

Biofilm extraction from glass slides
After removing the medium, the culture tube and glass slides

were washed once with PBS and vortexed in the presence of ethyl

acetate. The ethyl acetate was transferred and evaporated, and the

pellet was dissolved in 100% methanol. Details were described in

Text S1 in File S1.

IgG affinity chromatography
Columns used included human polyclonal IgG-conjugated

Sepharose 6 Fast (GE Healthcare Life Science), human IgG

F(ab9)2 fragment-conjugated agarose (ROCKLAND), human IgG

Fc fragment full length protein (Abcam)-coupled to cyanogen-

bromide (CNBr) Sepharose 4B (GE Healthcare Life Science),

mouse monoclonal IgG against a specific antigen (Myc-tag)-

conjugated agarose (MBL), rabbit monoclonal IgG against a

specific antigen (Phospho-Met (Tyr1234/1235) (D26) XP)-conju-

gated sepharose (Cell Signaling), and inactivated CNBr Sepharose

4B (GE Healthcare Life Science). Coupling to and inactivation of

CNBr Sepharose 4B were performed according to the manufac-

turer’s instructions. Each column was washed once with 10

volumes of PBS with 0.05% Tween20, and twice with 20 volumes

of PBS. Biofilms extracts dissolved in PBS with 20% methanol or

sera without dilution were applied to a column. After incubation

for 30–60 minutes, the mixture was centrifuged and washed twice

with PBS. Elution was performed with ethyl acetate. The ethyl

acetate elutes were evaporated and the pellets were dissolved in

100% methanol. Inactivated CNBr Sepharose 4B was used as a

control column. We performed the experiments at least 3 times.

Statistics
Data were analyzed by Welch’s t-test and Fisher’s exact test

using a statistical software, JMP version 8.0 (SAS Institute), and P-

values of ,0.05 were considered to be statistically significant.

Results

Activation of HCAECs by KD sera in vitro
Since NOD1 ligand directly activates endothelial cells [8] and

the expression of endothelial activation antigens was detected in

KD skin biopsy specimens [14], HCAECs were employed for the

Figure 2. LC-MS chromatograms and MS/MS fragmentation patterns of serum KD-specific molecules at the 1st study period. A–E:
Each left upper panel: LC-MS chromatograms of KD-specific molecules (A: m/z 1531.8, B: m/z 1414.3, C: m/z 790.9, D: m/z 779.8, and E: m/z 695.0),
Each left lower panel: LC-MS chromatograms of biofilm extracts (or initial culture supernatants) from Y. pseudotuberculosis and S. aureus (A) and B.
cereus (B–E). U: Total ion current chromatograms, M: Extracted-ion chromatograms at m/z 1500–1600 (A), m/z 1400–1500 (B), m/z 700–800 (C and D),
and m/z 600–700 (E), L: Extracted-ion chromatograms at m/z 1531.8 (A), m/z 1414.3 (B), m/z 790.9 (C), m/z 779.8 (D), and m/z 695.0 (E). Arrows
indicate peaks of target molecules. Each right upper panel: MS/MS fragmentation patterns of KD-specific molecules (A: m/z 1531.8, B: m/z 1414.3, C:
m/z 790.9, D: m/z 779.8, and E: m/z 695.0), Each right lower panel: MS/MS fragmentation patterns of biofilm extracts (or initial culture supernatants)
from Y. pseudotuberculosis and S. aureus (A) and B. cereus (B–E). As for the molecule at m/z 779.8, cellobiose lipid shows a MS/MS fragmentation
pattern similar to that of KD sera (D, right lowest panel). The intensity is shown by relative abundance. F: The detection rates of each molecule in NC
(N = 5), DC (N = 41) or KD (N = 43) sera are shown. Twenty-one (48.8%) of 43 are positive at m/z 1531.8 (a), 13 (30.2%) of 43 at m/z 1414.3 (b), 17
(39.5%) of 43 at m/z 790.9 (c), 4 (9.3%) of 43 at m/z 779.8 (d) and 15 (34.9%) of 43 at m/z 695.0 (e) when the intensity above 16103 is considered to be
significant. The overall detection rate was 76.7% (33 of 43). P,0.0001 (a, b, c and e); P = 0.0364 (d) (Fisher’s exact test).
doi:10.1371/journal.pone.0113054.g002
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search of such molecules as MAMPs in KD sera. KD samples

induced significantly higher IL-8 production than DC and NC

samples in whole sera. After separation into the lipophilic and

hydrophilic fractions with ethyl acetate, KD samples elicited

higher IL-8 production in each fraction (Figure 1). Similar results

were obtained regarding IL-6 production. IL-6 and IL-8 levels in

most of the tested sera from KD patients were under detection

limits or negligible (data not shown). These results suggested that

sera from KD patients contained molecules that stimulated

HCAECs to produce IL-8 and IL-6. NOD1-stimulatory activity

was also examined in whole and fractionated serum samples from

KD, DC and NC, as described in Text S1 in File S1. However, no

NOD1 activity was detected in any of these samples (data not

shown).

Serum KD-specific molecules common to MAMPs from
the in vitro biofilms

We explored serum KD-specific molecules in the lipophilic and

hydrophilic fractions by LC-MS analysis, and found numerous

KD-specific molecules in the lipophilic fractions in 10 KD patients

of the 1st study period (data not shown). It has been reported that

Yersinia (Y.) pseudotuberculosis-infected children sometimes de-

velop KD [15,16]. Moreover, Bacillus (B.) cereus and B. subtilis
were 2 major spore-forming bacteria isolated from KD patients

(Table S1 in File S1), which might work as possible wind-borne

environmental triggers for KD [4]. Therefore, to find out the

MAMPs identical to serum KD-specific molecules, we initially

analyzed culture supernatants (later biofilms) of Y. pseudotubercu-
losis, B. cereus and B. subtilis from KD patients by LC-MS. Five

KD-specific molecules at m/z 1531.8, 1414.3, 790.9, 779.8, and

695.0 showed the m/z and MS/MS fragmentation patterns almost

identical to those of the MAMPs from Y. pseudotuberculosis and B.
cereus (Figure 2 and Figure S1 in File S1). The 5 serum KD-

specific molecules were detected with 100% specificity and 9.3%–

48.8% sensitivity. At least one of the 5 KD-specific molecules was

detected in 33 (76.7%) out of 43 patients at the 1st study period

(Figure 2, Table 1). All serum KD-specific molecules decreased

after IVIG treatment (Figure S1F in File S1). By comparison with

5 authentic microbial glycolipids, only one molecule at m/z 779.8

showed a MS/MS fragmentation pattern similar to that of

cellobiose lipid (Figure 2D).

As these microbes ceased production of these MAMPs after 1 or

2 passages, we investigated the optimal culture conditions

(medium, temperature, duration, shaking, nutrition and biofilm

formation) for the production of these MAMPs. We found that

they produced these MAMPs reproducibly in the biofilm-forming

conditions in the presence of lipid, especially butter (Figure S2 in

File S1). We thus examined the culture supernatants and biofilm

extracts from all the spore-forming microbes isolated from KD

patients as well as additional microbes by LC-MS and MS/MS

analyses. In addition to the 3 bacteria mentioned above, almost all

KD-specific molecules were detected not in the culture superna-

tants but in the biofilm extracts. Although a KD-specific molecule

at m/z 1531.8 was detected in biofilm extracts from several

bacteria (Table S2 in File S1), Y. pseudotuberculosis and

Staphylococcus (S.) aureus were isolated from KD patients. In

addition, B. cereus-associated MAMPs were detected in the sera of

KD patients from whom B. cereus was actually isolated (Figure 2,

Figure S1 in File S1 and Table S1 in File S1).

Serum KD-specific molecules common to MAMPs from
the in vivo biofilms

Although numerous KD-specific molecules were present in the

lipid extracts from KD serum samples of the 2nd study period, the

5 KD-specific MAMPs observed at the 1st study period were no

longer detected in the tested 10 samples. As the number of

oligosaccharides, and the length, position, degree of saturation and

configuration of the hydrophobic moieties in microbial glycolipids

are known to change according to the environmental conditions

and microbial origins [17,18], we examined lipid extracts from the

in vivo biofilms in respective KD patients by LC-MS analysis. We

detected 4 serum KD-specific molecules with MS/MS fragmen-

tation patterns similar to one (m/z 695.0) of the 5 MAMPs at the

1st study period and 3 additional ones in the biofilms formed in
vivo (teeth, tongue, nose and stool), respectively, in 10 (83.3%) out

of 12 KD patients (Table S3 in File S1, Figure 3, Table 1). By the

analysis of 20 microbial biofilm extracts and 5 authentic

glycolipids, only one molecule at m/z 695.0 in tongue biofilms

showed a MS/MS fragmentation pattern similar to that of a

MAMP of B. cereus (Table S2 in File S1).

At the 3rd study period, we examined teeth and tongue biofilms

and found 3 distinct KD-specific molecules with MS/MS

fragmentation patterns similar to those from the in vivo biofilms

in the respective KD patients by LC-MS and MS/MS analyses

(Table S4 in File S1, Figure 4). Two of the 3 serum KD-specific

molecules showed the MS/MS fragmentation patterns similar to a

MAMP from S. aureus, and that from B. subtilis, B. cereus or Y.
pseudotuberculosis, respectively. Actually, B. subtilis and S. aureus
were detected from the patients. At least one of the 3 KD-specific

MAMPs was detected in 10 (90.9%) out of 11 KD patients. The

detection rates of KD-specific serum MAMPs at the 1st, 2nd and

3rd study periods are shown in Table 1. By LC-MS analysis, all the

106 control samples were negative for the 5, 4 and 3 KD-specific

MAMPs detected at the 1st, 2nd and 3rd study periods, respectively.

IgG sepharose binds some serum KD-specific MAMPs
It has been reported that certain microbial glycolipids bound to

various species of IgG [19,20]. Therefore, we checked IgG-

binding activity of KD-specific MAMPs using various kinds of IgG

affinity columns. LC-MS analysis of IgG sepharose-binding

Figure 3. KD in vivo biofilms contain MAMPs common to serum KD-specific molecules (2nd study period). Extensive search for common
molecules in the in vivo biofilms and sera from KD patients or DC controls revealed that 4 KD-specific molecules (m/z 1171.4, 1169.4, 906.8, and 695.0)
showed similar MS/MS fragmentation patterns between the two in KD patients (Table S3 in File S1). A: The molecule at m/z 1171.4 was common in
KD serum and biofilm extracts from teeth, tongue, or nose. B: The molecule at m/z 1169.4 was common in KD serum and stool biofilm extracts. C: The
molecule at m/z 906.8 was common in KD serum and teeth biofilm extracts. D: The molecule at m/z 695.0 was common in KD serum and tongue
biofilm extracts and in vitro biofilm extracts from B. cereus.
doi:10.1371/journal.pone.0113054.g003
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molecules were conducted on KD and DC samples. Three KD-

specific IgG sepharose-binding molecules were detected in KD

sera of the 1st study period. One (m/z 1414.3) of the 5 serum KD-

specific MAMPs (Figure 5A) and 2 other serum KD-specific

MAMPs (m/z 745.6, 733.2) were detected in the IgG sepharose-

binding fractions. The latter two were minor KD-specific MAMPs

because they were detected in KD serum samples only after IgG

sepharose purification. The MS/MS fragmentation patterns of the

3 molecules were similar to those of biofilm lipid extracts from

B.cereus, while that of a molecule at m/z 733.2 also showed some

similarity to that from Y. pseudotuberculosis (Figure S3 in File S1).

To determine the IgG binding region of KD-specific MAMPs,

polyclonal IgG, monoclonal IgG, F(ab9)2, and Fc affinity columns

were employed. Serum KD-specific MAMPs bound to IgG mainly

via Fab non antigen-binding regions (Figure 5B).

Studies on the in vitro biofilm MAMPs from various
microbes

We investigated the stimulatory effects of extracts from culture

supernatants or in vitro biofilms from various microbes on

HCAECs. The biofilm extracts from B. cereus (9 out of 9 strains),

B. subtilis (2 out of 5), Y. pseudotuberculosis (4 out of 4),

Pseudomonas (P.) aeruginosa and S. aureus robustly induced the

production of IL-8 and/or IL-6 by HCAECs, especially when

microbes were cultured in the presence of sterilized butter

(Figure 6). Biofilm extracts from B. cereus, B. subtilis, Y.
pseudotuberculosis, P. aeruginosa and S. aureus were further

fractionated by HPLC. In all of these 5 bacteria, HCAEC-

stimulatory activity was observed in the same fractions (Figure 7).

LC-MS analysis revealed that there were no common MAMPs in

the fractions with high HCAEC-stimulatory activity among the

biofilm extracts from Y. pseudotuberculosis, B. cereus, B. subtilis,
S. aureus and P. aeruginosa.

Discussion

The present study showed that serum KD-specific molecules

had distinct m/z and MS/MS fragmentation patterns in each

temporal clustering of outbreaks. These findings are consistent

with the fact that cases in each cluster share similar clinical

features [21].

At the 1st study period, we detected 5 KD-specific molecules in

patients’ sera that were common to MAMPs from in vitro biofilms

(4 from B. cereus, and 1 from Y. pseudotuberculosis/S. aureus). At

the 2nd and 3rd study periods, we detected 4 and 3 serum KD-

specific molecules in patients’ sera, respectively, common to

MAMPs from in vivo biofilms (1 from B. cereus, 1 from B.
subtilis/B. cereus/Y. pseudotuberculosis, and 1 from S. aureus) in

the respective KD patients. Although Y. pseudotuberculosis is

sometimes involved in KD development [15,16], the detection rate

of Y. pseudotuberculosis-type MAMPs was low in our study.

Rather, B. cereus-type MAMPs were most frequently associated

with KD, and indeed B. cereus itself was isolated from our

patients. In addition, microbes producing B. subtilis-type and S.
aureus-type MAMPs were also associated with KD.

B. cereus, B. subtilis, Y. pseudotuberculosis, S. aureus, and P.
aeruginosa produced endothelial cell-activating MAMPs only in

the biofilm-forming conditions, mostly in higher amounts in the

presence of butter (Figure 6). Four of the 5 bacteria were isolated

from our KD patients, and P. aeruginosa was associated with KD

development [22] and isolated from the small intestine of KD

patients [23].

The biofilm formation may be found in living tissues including

teeth, tongue, respiratory tract, middle ears, and gastrointestinal

tract [24]. In KD, specific MAMPs were detected in sera as well as

in the in vivo biofilm extracts from various sites by LC-MS

analysis. Several molecules common to both KD patients’ in vivo
biofilms and sera were not present in the in vitro biofilm extracts of

a single microbe, probably because they were products from

polymicrobial biofilms in vivo [25]. The transition from the

planktonic state to the sessile state in the biofilm induces a radical

change in the gene and protein expression in bacteria. The biofilm

matrix, composed of polysaccharides, proteins, nucleic acids and

lipids, is newly produced and secreted to form the immediate

extracellular environment [26]. Indeed, bacterial biofilm products

were reported to induce a distinct inflammatory response in

human cells compared to their planktonic counterparts [27]. In

our study, not culture supernatants but biofilm extracts induced

cytokine production in human endothelial cells (Figure 6).

Bacillus species including B. cereus and B. subtilis are volatile

spore-forming rods widely distributed in soil and air, and

sometimes induce infections and intoxications [28,29]. The

necessity of the biofilm and a certain environmental condition

might explain why the presence of Bacillus species in control

individuals does not induce KD by itself, and why other types of

Bacillus species infections such as bacteremia and meningitis are

not associated with KD development. In addition, just like KD [2],

there is no person to person transmission in Bacillus species-
associated human diseases such as food poisoning [28] and

anthrax [30].

At least some serum KD-specific MAMPs bound to IgG mainly

via Fab non antigen-binding regions, just like other microbial

glycolipids that showed a high binding affinity to human IgG via

Fab constant regions [19,20]. Therefore, it is likely that high-dose

IVIGs work, at least in part, as a scavenger of such MAMPs from

the blood stream, a previously unrecognized mechanism in KD

[31,32].

The main limitations of our study were that the structural

analysis of these KD-specific MAMPs was hampered by the

instability of the lipophilic molecules after purification, and that

Figure 4. KD in vivo biofilms contain MAMPs common to serum KD-specific molecules (3rd study period). Three serum KD-specific
molecules (m/z 667.4, 619.4 and 409.3) at the 3rd study showed the same m/z with MS/MS fragmentation patterns similar to MAMPs from in vivo
biofilm extracts (Table S4 in File S1) and in vitro bacterial biofilm extracts. A: The molecule at m/z 667.4 was common in KD serum, tongue biofilm
extracts and in vitro biofilm extracts from S. aureus. B: The molecule at m/z 619.4 was common in KD serum, teeth and tongue biofilm extracts, and in
vitro biofilm extracts from B. subtilis, B. cereus and Y. pseudotuberculosis. C: The molecule at m/z 409.3 was common in KD serum, and teeth and
tongue biofilm extracts.
doi:10.1371/journal.pone.0113054.g004
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Figure 5. LC-MS chromatograms of IgG sepharose-binding molecules. A. Representative LC-MS chromatograms of a IgG sepharose-binding
molecule (m/z 1414.3) are shown in a KD patient and a DC control. TIC: Total ion current chromatograms, XIC: Extracted-ion chromatograms at m/z
1400–1500, and extracted-ion chromatograms at m/z 1414.3. (1) Human polyclonal IgG-conjugated sepharose 6 Fast (2) Inactivated CNBr Sepharose
4B control column. B. Binding of a KD-specific molecule to various affinity columns: Columns used are described in ONLINE METHODS. +: The binding
quantities of a KD-specific molecule analyzed by LC-MS were equal or larger than those to human polyclonal IgG column, 6: smaller than 20% of
those to human polyclonal IgG column, -: no binding. We performed the experiments 3 times.
doi:10.1371/journal.pone.0113054.g005
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fractionated crude biofilm extracts were too toxic to replicate the

KD phenotype in mice.

We have shown that serum KD-specific molecules were diverse

but mostly derived from biofilms and possessed molecular

structures common to MAMPs. The present study suggests a

possibility that KD-specific MAMPs induce vascular inflamma-

tion, leading to the development of KD. Further study is on the

way as a nation-wide project to investigate a pathogenic link

between KD development and biofilm-derived MAMPs.

Conclusion

Extensive analysis by LC-MS/MS revealed that serum KD-

specific molecules possessed molecular structures common to

MAMPs from Bacillus cereus, Bacillus subtilis, Yersinia pseudo-
tuberculosis and Staphylococcus aureus. These molecules were

mostly derived from biofilms formed in vivo (teeth, tongue, nasal

cavity, or stool). This report might offer novel insight into the

diagnosis and management of KD as well as its pathogenesis.

Figure 6. Activation of HCAECs by biofilm lipid extracts from various microbes. The production of IL-6 and IL-8 by HCAECs was measured
after 24-h culture in the presence or absence of a microbial stimulant. Each microbe was cultured in the presence or absence of biofilm-forming glass
slides with or without butter. As a microbial stimulant, an extract from a culture supernatant (%) or a biofilm (&) of a microbe cultured in the
presence (right column) or absence (left column) of butter was used. Medium alone, ethyl acetate alone or ethyl acetate extract from glass slides
cultured in the absence of a microbe was used as a negative control (NC). FK 565 (10 mg/mL) was used as a positive control (PC). B.c: Bacillus cereus,
B.s: Bacillus subtilis, G.t: Gordonia terrae, T.s: Terribacillus saccharophilus, S.f: Streptomyces flavogriseus, S.v: Streptomyces violaceus, Y.p: Yersinia
pseudotuberculosis, Y.e: Yersinia enterocolitica, E.c: Escherichia coli, P.ae: Pseudomonas aeruginosa, S.a: Staphylococcus aureus, S.e: Staphylococcus
epidermidis, S.p: Streptococcus pyogenes, S.m: Streptococcus mitis, S.s: Streptococcus sanguinis, P.ac: Propionibacterium acnes, A.n: Aspergillus niger, C.a:
Candida albicans, U.m: Ustilago maydis, P.o: Penicillium oxalicum. Numbers under bacteria indicate those of KD patients. Data are expressed as the fold
change induction of IL-8 or IL-6 compared to the PC levels. We performed the experiments 3 times. Biofilms were compared with supernatant control
considering presence or absence of butter. *P,0.01, **P,0.001 and ***P,0.0001 (Welch’s t-test).
doi:10.1371/journal.pone.0113054.g006
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Figure 7. Fractionation of HCAEC-activating biofilm lipid extracts by HPLC. Each biofilm lipid extract from Y. pseudotuberculosis (A), B.
cereus (B), B. subtilis (C), S. aureus (D) or P. aeruginosa (E) was separated into 10 fractions by HPLC and assayed for the stimulatory activity of HCAECs
(&). Fractions 3 and 4 from each biofilm lipid extract induced high cytokine production by HCAECs. Ethyl acetate lipid extracts from glass slides in the
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