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Abstract

We investigated the epidemiology of Trypanosoma pestanai infection in European badgers (Meles meles) from Wytham
Woods (Oxfordshire, UK) to determine prevalence rates and to identify the arthropod vector responsible for transmission. A
total of 245 badger blood samples was collected during September and November 2009 and examined by PCR using
primers derived from the 18S rRNA of T. pestanai. The parasite was detected in blood from 31% of individuals tested. T.
pestanai was isolated from primary cultures of Wytham badger peripheral blood mononuclear cells and propagated
continually in vitro. This population was compared with cultures of two geographically distinct isolates of the parasite by
amplified fragment length polymorphism (AFLP) and PCR analysis of 18S rDNA and ITS1 sequences. High levels of genotypic
polymorphism were observed between the isolates. PCR analysis of badger fleas (Paraceras melis) collected from infected
individuals at Wytham indicated the presence of T. pestanai and this was confirmed by examination of dissected specimens.
Wet smears and Giemsa-stained preparations from dissected fleas revealed large numbers of trypanosome-like forms in the
hindgut, some of which were undergoing binary fission. We conclude that P. melis is the primary vector of T. pestanai in
European badgers.
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Introduction

A variety of trypanosome species are found in domesticated and

free-living British mammalian fauna (Table 1). As stercorarian

trypanosomes, all of these parasites undergo development and

differentiation within the gut of the arthropod vector and are

transmitted to their mammalian hosts contaminatively, through

ingestion of the vector or its faeces. Trypanosomes of British cattle

(T. theileri) and sheep (T. melophagium) are classified in the subgenus

Megatrypanum and are transmitted respectively by tabanid flies [1]

and the sheep ked [2]. In contrast, the majority of trypanosomes

found in British wild mammals are grouped within the subgenus

Herpetosoma, of which the rat parasite T. lewisi is the type species,

and are transmitted by fleas [3]. An exception to this is T. pestanai,

a parasite of European badgers (Meles melis), which is classified in

the sub-genus Megatrypanum. The arthropod vector of T. pestanai is

currently unknown. The convention for classification of the

Stercoraria has been questioned because it is based largely on

morphological parameters and host species [4]. Indeed, a number

of analyses at the molecular level have indicated that both the

Herpetosoma and Megatrypanum are polyphyletic [5,6]. A recent study

of the evolutionary relationships of T. rangeli, a parasite generally

accepted as belonging to the subgenus Herpetosoma, concluded that

the use of these classifications should be discontinued [5]. Since its

first description in Portugal in 1905 [7], T. pestanai has been

reported in badgers from France [8], England [9] and Ireland

[10]. The prevalence of the parasite in a badger population

resident in Wytham Woods, Oxfordshire, has been investigated

previously through microscopic analysis of blood smears [11]

where seasonal and age-related differences were observed.

However, interpretation of these observations has been confound-

ed by the lack of information on the transmission vector. A

number of blood-feeding ectoparasites are found on badgers,

including the flea Paraceras melis and tick species such as Ixodes

hexagonus, I. ricinus [12] and I. canisuga, although ticks are rarely

present on animals trapped at Wytham (C. Newman, unpublished

observations). In contrast, P. melis is highly prevalent among

Wytham badgers - and badgers generally [13] - with some animals

experiencing substantial infestations [14]. Given the prominent

role of flea species in transmission of Herpetosoma trypanosomes of

other British wild fauna, these observations present P. melis as a

compelling candidate vector for T. pestanai. We have therefore

examined the role of P. melis in transmission of T. pestanai between

badgers, using a PCR-based parasite detection system in

association with morphological analysis of fleas collected from

PCR+ve badgers. We investigated whether the flea supports

development of the insect stages of the parasite which would

indicate that it represents the principal transmission vector. The
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use of PCR techniques also allowed us to extend our previous

observations of T. pestanai prevalence in Wytham badgers, by

achieving higher levels of sensitivity. In addition, we also

investigated whether genetic diversity exists between geographi-

cally distinct isolates of T. pestanai.

Results

Prevalence of Trypanosoma pestanai and dynamics of
infection and transmission

In total, 245 blood samples were collected from 207 badgers

during trapping sessions in September and November 2009.

DNA extracted from each blood sample was analysed by PCR

using primers (TPEF1, TPEB1) derived from the 18S rRNA of T.

pestanai. A product of the expected size (,513 bp) was amplified

in the infected samples. Of the 245 blood samples screened, 78

samples tested positive (31% prevalence) for T. pestanai. Of 207

individual badgers analysed, 170 were trapped only once, 36

were trapped twice and 1 was trapped 3 times. The PCR

prevalence of T. pestanai infection in individual badgers (no

repeats) from the first trapping was 29.3%. To study the

dynamics of infection and transmission of T. pestanai, several

parameters were evaluated: trapping session, sex, age, body

condition, location (sett) and number of fleas. No significant

differences were observed between prevalence rates for the

September and November trapping sessions (36% and 28%

prevalence respectively, p = 0.289, Pearson Chi-Square test).

However, the prevalence of T. pestanai was significantly higher

in males (42%) than in females (27%) (p = 0.025, Chi-Square test).

Cubs (less than one year old) had significantly higher rates of

infection (40% prevalence) than both young adults (1–5 years old,

35% prevalence) and mature adults (more than 5 years old, 16%

prevalence) (p = 0.04, linear by linear association test). After

adjusting for age, evidence for an association between sex and the

presence of T. pestanai in blood was apparent in a multivariable

logistic regression analysis (p = 0.033). Males were twice as likely

to be infected as females (OR = 1.90; 95% CI: 1.05–3.43). After

adjusting for sex in a multivariable logistic regression test, there

was evidence for a difference in infection rate between cubs and

adults (p = 0.04), with adults being more resistant to infection

(OR: 0.29; 95% CI: 0.093–0.916). No evidence of association

between body condition and prevalence of T. pestanai in blood

was observed (p = 0.563, Linear by linear association test).

Similarly, no evidence was found for an association between flea

burden and presence of T. pestanai in blood (p = 0.122, Linear by

linear association test). To examine the dynamics of T. pestanai

infection over time, blood samples from 36 badgers that were

caught in both trapping sessions were examined by PCR. Of

these, 18 (48%) were negative on both occasions, and 9 (24%)

showed persistent infection (or concurrent recrudescence of

infection) across trappings. Four badgers observed to be infected

in September tested negative in November (10%), while 5

animals that were negative in September had become infected by

November (13%). These data are consistent with a cyclical

pattern of T. pestanai prevalence.

Isolation of T. pestanai and morphological characteristics
of axenic cultures

Live motile T. pestanai parasites were invariably observed in

cultures of peripheral blood mononuclear cells established from

PCR+ve blood samples. Moreover, these parasites continued to

multiply under the culture conditions used, often giving rise to

rosette-like aggregates (Figure 1). Giemsa-stained smears (Figure 2)

illustrate characteristic trypanosome features (e.g. kinetoplast and

flagellum) observed in cultured T. pestanai parasites. A variety of

parasite morphologies were observed, including slender (Fig. 2A),

broad and intermediate forms (Fig. 2B), and parasites undergoing

division/binary fission (Fig. 2C) and degeneration as manifested by

transformation to a spherical form with granular degeneration of

the protoplasm (Fig. 2D). All three T. pestanai isolates (East Anglia,

Oxford and France) showed similar morphologies in culture.

Genetic characterisation of three geographically distinct
cultured T. pestanai isolates

Total DNA extracted from cultures of three geographically

distinct T. pestanai isolates was analysed by PCR (Fig. 3). PCR

analysis using primers derived from the 18S rRNA of T. pestanai

resulted in amplification of an identical band from all three isolates

when using TPEF1/ TPEB1 (Fig. 3A) and TPEF2/TPEB2

(Fig. 3B) primers. However, PCR analysis using primers specific

for the ITS1 sequence (KIN1, KIN2) revealed different size bands

(Fig. 3C). More detailed genetic characterization using AFLP

revealed clear genetic polymorphism between all three isolates

(Figure S1). Four selective AFLP primer combinations were used,

yielding 56 markers, 41 of which were polymorphic for one or

more isolates. The Jaccard index of similarity ranged from 34 to

64%, indicating elevated levels of genetic heterogeneity among the

isolates. The highest coefficient of similarity was found between

the France and East Anglia isolates (64%), followed by the Oxford

and East Anglia isolates (48%) and by the Oxford and France

isolates (34%).

Table 1.

Mammalian host Trypanosome Sub-genus Vector Reference

Wood mouse (Apodemus sylvaticus) T. grosi Herpetosoma Flea [34]

Bank vole (Clethrionomys glareolus) T. evotomys Herpetosoma Flea [34,35]

Rat (Rattus sp) T. lewisi Herpetosoma Flea [18,36]

Field vole (Microtus agrestis) T. microti Herpetosoma Flea [37]

Rabbit (Oryctolagus cuniculus) T. nabiasi Herpetosoma Flea [38]

European Badger (Meles meles) T. pestanai Megatrypanum Unknown [7]

Cow (Bos Taurus) T. theileri Megatrypanum Tabanid flies [1]

Sheep (Ovis aries) T. melophagium Megatrypanum Sheep ked [2]

Mole (Talpa europaea) T. talpae Megatrypanum Mite [39]

doi:10.1371/journal.pone.0016977.t001
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Detection of robust IgG responses of badgers against the
parasite

Western blot analysis of sera from infected (PCR+ve in blood)

and uninfected (PCR2ve in blood) badgers showed a broadly

specific IgG response against T. pestanai lysates without exception,

with male and female animals showing similar breadth of response

(Fig. 4A). Antigenic differences were evident between the Oxford

and East Anglia isolates when probed with individual badger sera

(Fig. 4B). No seronegative badgers were observed over the

trapping period.

Detection of T. pestanai in badger fleas (P. melis)
PCR amplification was carried out on DNA extracted from 26

individual fleas collected from infected badgers (n = 18) and 12

fleas from uninfected individuals (n = 8) using the T. pestanai-

specific primers TPEF1 and TPEB1. Of those collected from

infected badgers, 16 fleas (61%) tested positive for T. pestanai, while

2 (16%) of those from uninfected animals yielded a PCR product.

The difference in T. pestanai PCR prevalence between fleas

collected from infected versus uninfected badgers was significant

(p = 0.015), as revealed by a Fisher’s exact test. Similarly, numbers

of infected fleas obtained from infected badgers were significantly

higher (p = 0.026) than those found on uninfected individuals. To

confirm that T. pestanai-specific PCR products observed in a

proportion of fleas reflects development of the parasite within the

insect rather than simple contamination of a blood meal, a

number of fleas collected from infected badgers were dissected and

their gut tissues examined by phase contrast microscopy. In a

proportion of these fleas, large numbers of trypanosomes were

observed in the hind gut. These were motile and in some cases

exhibited the same rosette formation observed in in vitro cultures

(Fig. 5A and 5B).

Discussion

Available literature on T. pestanai is sparse and, like many of the

Megatrypanum trypanosomes, the parasite has been classified on the

basis of its morphological appearance in blood smears [9]. Criteria

applied in this regard include large size, a small kinetoplast located

close to the nucleus, and a pointed posterior end. Such parameters

are of questionable value where parasitaemias are low and the

biology of the parasite is incompletely understood. For example,

our measurements of cultured T. pestanai indicate an overall length

of 25.33–33.33 mm (n = 82) whereas Pierce & Neal (1974) recorded

values of 25.6–41.4 mm in blood smears. In addition, the extent to

which morphological classification reflects true evolutionary

relationships is in some doubt. Hence, published information on

trypanosome 18S rRNA phylogenies generally places T. pestanai

apart from T. theileri, the type species of subgenus Megatrypanum

[5,15], with its closest relative being a species isolated from a

wombat. Indeed, Megatrypanum trypanosomes fail to form discrete

clusters under this type of analysis, distributing instead in

apparently unrelated phylogenetic groupings [16]. We now

provide compelling evidence that the badger flea P. melis is the

definitive invertebrate host of T. pestanai. This ectoparasite is highly

prevalent among badgers from this focal Wytham Woods badger

population [11] and its host specificity is consistent with an

evolutionary relationship with T. pestanai. In particular, badgers

exhibit extensive grooming habits to control fleas [17], providing

continuous opportunity for ingestion of infected fleas and their

faeces. Badgers that tested positive for T. pestanai by PCR were

consistently found to harbour fleas that also yielded PCR products.

This is unlikely to reflect simple carry-over of parasites in the blood

meal, given the low parasitaemias observed in badgers [11] and

the sensitivity of the PCR system used. Trypanosomes of mammals

will be considered under two major groups, Salivarian or

Stercorarian, based on whether they undergo anterior station

(foregut) development or posterior station (hindgut) development

in the insect vector, respectively. Indeed, where trypanosomes

were found in dissected fleas from badgers, these were located in

the hindgut rather than the foregut and, in many instances, formed

rosette-like structures characteristic of replicating T. pestanai

cultures. These parasites were distinct from crithidial forms and

gregarine protists that were also present in a proportion of

dissected fleas (data not shown). Precise details of the life cycle of

T. pestanai in the insect vector remain to be determined. However,

by analogy with T. lewisi, it is likely that it undergoes a period of

cyclic development in the flea to produce metacyclic forms

infective for the mammalian host [3][18]. After ingestion by the

flea, trypomastigote forms of T. lewisi penetrate the epithelial cells

of the stomach of the flea and replicate. Upon rupture of the

infected cell, daughter trypomastigotes enter the lumen of the flea

stomach and migrate to the hindgut and rectum, where they

transform into epimastigotes. These undergo further multiplica-

tion, producing large numbers of infective metacyclic forms in the

rectum, which are discharged in the faeces. The mammalian host

becomes infected contaminatively by ingestion of flea faeces or

intact fleas. Megatrypanum parasites are transmitted by a diverse

range of vectors, including tabanid flies (T. theileri), keds ( T.

melophagium) and mites (T. talpae) (see Table 1). Our evidence that

T. pestanai is transmitted by P. melis fleas makes it unique among

the Megatrypanum trypanosomes and is perhaps indicative of a

Figure 1. T. pestanai (Oxford isolate) in axenic culture. Formation
of rosettes as a result of incomplete separation of daughter cells
observed by inverted phase contrast microscopy at different magnifi-
cations (upper panel, 620; lower panel, 640).
doi:10.1371/journal.pone.0016977.g001
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Figure 2. Giemsa-stained smears showing different T. pestanai forms in axenic culture. (A) Epimastigote-like long slender form. (B)
Epimastigote-like swollen form. (C) Dividing epimastigote. (D) Large pear-shaped form (‘‘degenerative’’ form).
doi:10.1371/journal.pone.0016977.g002

Figure 3. Comparison by PCR of 3 geographically distinct isolates of T. pestanai. DNA extracted from different T. pestanai isolates in axenic
culture (1. East Anglia isolate; 2. Oxford isolate; 3. France isolate) was analysed by PCR using primers derived from the 18S rRNA (A. TPEF1/B1 primers;
B. TPEF2/B2 primers) and ITS1 sequences of T. pestanai. (C. KIN1/KIN2 primers).
doi:10.1371/journal.pone.0016977.g003
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closer relationship with those parasites currently classified within

the subgenus Herpetosoma. Although recent phylogenetic analysis

based on 18S rRNA and the glyceraldehyde phosphate dehydro-

genase (GAPDH) gene [15,19] are consistent with this possibility,

the precise relationships remain unclear. Macdonald et al. [11]

observed trypanosomes in only 33 (4.6%) of 718 blood smears

collected from the Wytham badgers between 1989–1991. Of the

263 badgers examined during that period, only 20 (7.7%) yielded

at least one positive test. This was not considered to be an absolute

reflection of prevalence, as detection of T. pestanai in blood smears

is difficult, especially where parasitaemia is low. Indeed, T. pestanai

was isolated in culture from four blood samples that were negative

by blood smear analysis in that study. The PCR-based

methodologies used in the present study clearly provide a more

reliable and precise diagnostic tool and reveal a considerably

higher infection prevalence in the study population. Significantly

higher prevalence of T. pestanai infection was observed in male

badgers than in females. Several host-parasite systems, including

those of humans, exhibit sex-related differences [20]. Although

either sex can show a higher rate of infection, many studies suggest

that females mount a more effective immune response [21,22,23].

Testosterone has been observed to enhance susceptibility of rats to

T. cruzi, as evidenced by higher parasitaemia associated with

reduced T cell responsiveness [24]. It is therefore possible that the

gender bias observed in T. pestanai prevalence among the Wytham

badgers relates to a hormonal influence on immunity. However,

we observed broad specificity of serum IgG responses in both male

and female badgers in immunoblots of T. pestanai lysates.

Furthermore, studies of the coccidian parasites Eimeria melis and

Isospora melis in the Wytham badger population revealed no

evidence that prevalence, and hence immune-susceptibility or risk

of exposure to either parasite species varied with gender at any

stage of maturity [25,26]. Given the communal sleeping habits of

badgers, and the frequency with which fleas move between hosts

[14], we consider it unlikely that the differences in T. pestanai

prevalence between males and females arises from exposure to the

vector. However, Macdonald et al. (2008) [27] observed within a

high density population of badgers that males move more between

groups than do females. Dispersing males tended to move to larger

groups and to groups with a preponderance of females. This bias

was influenced by season, occurring more in autumn and spring.

Our data are derived from material collected from the Wytham

badgers during the autumn trapping, when higher rates of

Figure 4. Western blot showing a robust IgG response of
badgers against T. pestanai lysates. (A, left) Female badger serum,
PCR negative in blood. (A, right) male badger serum, PCR positive in
blood. (B, left) badger serum response against East Anglia isolate. (B,
right) same badger serum response against Oxford isolate. (C) Western
blot in the absence of badger serum (HRP-conjugated anti-badger IgG
antibody only).
doi:10.1371/journal.pone.0016977.g004

Figure 5. Wet-smear of T. pestanai detected in the flea of infected badger. (A) Presence of live motile T. pestanai parasites in the hindgut of
an infected flea observed by phase contrast microscopy (640). (B) Detection of rosette in the hindgut of an infected flea observed by phase contrast
microscopy (6100).
doi:10.1371/journal.pone.0016977.g005
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movement would be expected among males. It is therefore possible

that the male bias in T. pestanai infection prevalence relates to

badger dispersal and flea exchange. Under these circumstances,

males might be expected to pick up fleas from other badger

groups, enhancing their potential for infection with T. pestanai. We

also observed a strong association between T. pestanai infection and

age, with cubs showing substantially higher prevalence rates than

adults. This is likely to arise from exposure to fleas. Cubs spend

more time in the sett, where they are exposed to contaminated

bedding [12] and as a result of close contact with their mother

during suckling and grooming. Our data also indicate that

Wytham badgers undergo multiple infections with T. pestanai over

time and that they can remain infected for prolonged periods.

Some individuals remained PCR-positive over two trapping

exercises, while others appeared to lose the parasite during the

interval between trappings. In addition, the complexity of the

patterns observed with badger sera on immunoblots of T. pestanai

lysate appeared to increase with age (data not shown). Indeed, no

seronegative badgers were observed over the trapping. These

observations are consistent with a model based on repeated

infections that perhaps evolve to a prolonged or intermittent

carrier state. Precise resolution of this situation will await further

evaluation in the Wytham badgers and identification of appropri-

ate molecular markers. Our preliminary observations with AFLP

and the 18S rRNA and ITS1 sequences are consistent with genetic

polymorphism between isolates of T.pestanai. Indeed, the two UK

populations, although moderately disparate in origin (Oxfordshire

and East Anglia), are sufficiently diverse to classify as distinct sub-

species. Acknowledging that these data are derived from small

sample numbers, they do suggest that T. pestanai is genotypically

diverse. The origins of this diversity are unclear, in the absence of

information on sexual recombination in the flea vector, but it may

relate to maintenance of the parasite in the face of what appears to

be a robust IgG response in infected badgers. Such diversity

confounds interpretations of prevalence data based on relatively

conserved 18S rRNA sequences. In particular, elucidation of

whether persistence of the parasite as revealed by 18S rRNA PCR

relates to repeated infection or prolonged carrier status will require

a more refined set of genotypic markers.

In conclusion, we have determined the prevalence of T. pestanai

infection in Wytham Woods badgers using PCR of 18S rRNA

sequences. We observe considerably higher prevalence than that

previously reported on the basis of blood smear examination. In

addition we report higher prevalence in male badgers and in those

,1 year old. We provide compelling evidence that T. pestanai in this

population is transmitted by the badger flea P. melis and further

show that badgers mount a vigorous antibody response against the

parasite. Finally, we reveal that T. pestanai parasites are genotypically

diverse with substantial variation being evident between isolates

derived from relatively adjacent locations. We propose that this

diversity is driven in part by the badger immune response.

Materials and Methods

2.1. Ethics Statement
This study was approved by Natural England and carried out

under Natural England Licenses, currently 20001537 and Home

Office License PPL 30/2318. All trapping and handling procedures

were in accord with the UK Animals (Scientific Procedures) Act,

1992, and approved by the institutional ethical review committee.

2.2. Study population
All samples were collected between September and November

2009 from a badger population at Wytham Woods; a 424ha mixed

semi-natural woodland site, in Oxfordshire, UK (GPS ref:

51:46:26N; 1:19:19W). This population has been studied contin-

uously since the 1970s [28,29] and currently comprises ca. 220

adults with ca. 50 cubs per year. As part of ongoing long-term

monitoring studies, the population is trapped 1–4 times annually

using cage-traps baited with peanuts set in the vicinity of each sett.

Upon capture, badgers are transported to a central handling

facility and sedated by intramuscular injection of 0.2ml ketamine

hydrochloride (100 mg ml21) per kg body weight [30]. At first

capture (generally as cubs) every individual is marked with a

permanent tattoo number in the left inguinal region. For each

badger, the location of capture (‘sett’), sex and age is recorded.

Morphometric measures recorded include weight (kg), length (tip

of snout to base of sacrum - mm) and body-condition, using a

subcutaneous fat score originally developed for sheep on a scale of

1 = emaciated to 5 = very good condition. For the present study,

the number of fleas was also counted at each capture during a

cursory examination over ,20 sec interval, by parting the fur and

examining the badger’s back and underside [14]. Blood samples

were taken by jugular venipuncture using a potassium-EDTA

vacutainer (BD Vacutainer Systems, Plymouth, UK) and stored at

4uC before being processed in the laboratory within 72h of

collection. After sampling, badgers were allowed to recover fully

before being released at the site of capture later in the same day.

2.3. Parasite isolation from blood
Badger peripheral blood mononuclear cells (PBMC) were

isolated from uncoagulated blood by Ficoll density gradient

separation. Briefly, 3 ml of Ficoll were underlaid with approxi-

mately 3 ml of uncoagulated blood. After 30 min centrifugation at

7006g the white blood cell layer was collected carefully and

washed twice in Alsever’s solution (2006g for 10 min). The PBMC

cell pellet was re-suspended in Schneider’s medium containing

20% FCS and incubated in 24-well plates at 28uC in a humidified

atmosphere of 5% CO2 in air.

The T. pestanai France-isolate (LEM 110) was kindly provided

by Dr. Wendy Gibson (University of Bristol, UK) while T. pestanai

East Anglia isolate was isolated from a blood sample kindly

provided by Dr. Mark A. Chambers (Veterinary Laboratories

Agency, Addlestone, Surrey, UK).

2.4. DNA extraction
Total DNA was extracted from blood samples (300 ml of whole

blood per badger) using the Wizard Genomic DNA Purification kit

(Promega) following the manufacturer’s recommendations. Total

DNA from individual fleas was extracted using a DNeasy blood

and tissue kit (Qiagen). Each flea was soaked for 5 min in 200 ml of

phosphate buffered saline in a petri-dish and crushed with the

plunger of a disposable plastic syringe. After a brief centrifugation

(160006g for 1 min) the supernatant was transferred into a new

sterile eppendorf tube containing 20 ml of Proteinase K (Fermen-

tas) and 200 ml of buffer AL (Qiagen). DNA extraction was then

carried out in line with the kit instructions.

2.5. PCR
Primers designed to target the T. pestanai 18S rRNA coding

sequence (Accession no: AJ009159; TPE primers) and kinetoplas-

tid ITS1 sequences (KIN) were used for PCR amplification [31].

TPEF1:59-CCATGCATGCCTCAGAATCACTGC-3

TPEB1: 59-GGCACTGCCGGCTCTATTTC-39

TPEF2: 59-GCAGCGAAAAGAAATAGAGCCGG-39

TPEB2: 59-GTTCGTCCTGGTGCGGTCTAA-39

KIN1: 59-GCGTTCAAAGATTGGGCAAT-39

KIN2: 59-CGCCCGAAAGTTCACC-39

Transmission of Trypanosoma Pestanai to Badgers
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PCR amplifications were performed in a total volume of 20 ml

containing 2 ml of 106NH4 PCR buffer (Bioline), 1 ml of 50 mM

MgCl2 (Bioline), 0.5 ml of 10 mM dNTP (Bioline), 4 ml of primer

mix (Forward and Reverse at 10 pmol each), 0.2 ml (1 unit) of

TaqDNA polymerase (Bioline), 2 ml of DNA template and 10.3 ml

of distilled water. The reaction profile included an initial

denaturation step at 94uC for 10 min, followed by 40 cycles of

45 seconds at 94uC, 1 min at 63uC, 1 min at 72uC and a final step

of 7 min at 72uC, using a G-STORM thermal cycler. PCR

products were electrophoresed for 75 min at 100V in a 1% Tris-

acetic acid-EDTA (TAE) agarose gel containing 16 Safeview

Nucleic Acid Stain (NBS Biologicals) for visualization. O’Gen-

eRuler 1kb DNA ladder (Fermentas) was used for sizing the DNA

fragments in agarose gels.

2.6. Parasite protein lysate preparation
T. pestanai parasites (56107) from axenic culture were washed

twice in PBS by centrifugation at 7006g for 10 min. The parasite

pellet was resuspended in 80 ml of M-PER lysis buffer (Pierce)

containing 16 Halt protease/phosphatase inhibitor cocktail

(Pierce). The mixture was vortexed and incubated for 20 min at

RT. After centrifugation at 160006g for 15 min, the supernatant

was transferred into a new microcentrifuge tube containing 20 ml

of 56Laemmli buffer and boiled at 90uC for 3 min.

2.7. Western blotting
15 ml of protein lysate were loaded in wells of a precast 10%

polyacrylamide Tris HCl gel (Biorad) and electrophoresed at

30 mA for 1h. Proteins were then transferred to a 0.2-mm

nitrocellulose membrane (Amersham Biosciences) at 100V for

60 min. The membrane was incubated in blocking solution (PBS

containing 0.05% Tween 20 and 5% milk powder) for 1h at RT

followed by overnight incubation with badger serum (1:100 in

blocking solution). Excess antibody was removed by extensive

washing in PBS containing 0.05% Tween 20. The membrane was

then incubated with HRP-conjugated anti-badger IgG (clone CF2,

kindly provided by Dr. Mark Chambers, VLA) diluted 1:500 in

blocking buffer, for 90 min at room temperature. The membranes

were washed extensively in PBS 0.05% Tween 20, and bands were

visualized using the ECL system (Amersham Biosciences) and a

Curix 60 processor (Agfa-Gevaert N.V., Mortsel, Belgium).

2.8. Amplified fragment length polymorphism (AFLP)
Approximately 200 ng total T. pestanai genomic DNA was

digested using the enzymes Eco RI and Mse I (Fermentas) prior to

ligation to adapters as described previously [32,33]. Primer pairs

(MWG Biotech (UK) Ltd.) were based on the adaptor sequences.

Pre-amplification was performed using the Eco RI associated

primer with no selective base and the Mse I associated primer with

a single selective base (A). Selective amplifications were performed

with primers including two selective bases (Eco RI primer

2AC+Mse I primer 2AC; Eco RI primer 2AC+Mse I primer

2AT; Eco RI primer 2CG+Mse I primer 2AC; Eco RI primer

2CG+Mse I primer 2AT). The selective Eco RI primers were

labelled with 33PcATP using T4 polynucleotide kinase (Invitro-

gen). AFLP products were resolved by denaturing polyacrylamide

gel electrophoresis (6% acrylamide, UreaGel 6, National Diag-

nostics) and visualised by autoradiography. Electrophoretic

patterns were converted into binary matrices (1 for presence, 0

for absence of a band) and used for calculation of the Jaccard

index for each pair-wise comparison [33] (calculated as the

number of common bands/the total number of bands 6100, to

quantify sampled genetic similarity as a percentage).

2.9. Flea dissection and staining
Individual fleas collected from infected and uninfected badgers

were dissected under a dissecting-microscope. Each flea was

placed on a glass slide in a drop of phosphate buffered saline and

transected at the thoraco-abdominal junction with a scalpel blade.

The head and thorax were then discarded and the abdomen was

immobilised with a fine needle and opened by cutting along the

midline of the dorsal tergites with iris scissors. The abdominal

contents were then carefully removed with the aid of fine forceps,

and the salivary glands, fat body and (in the case of females)

uterine tissues were dissected away and discarded. The residual

tissues comprising proventriculus, foregut, intestine, malphigian

tubules and hindgut were arranged on the slide before covering

the preparation with a coverslip. Slides were examined at 1006
magnification under phase contrast to identify trypanosome forms

and images were obtained using an Olympus CX41 microscope

mounted camera (Olympus DP20).

2.9. Statistical analysis
Pearson Chi-square test and Fisher’s exact test were used to

assess associations between categorical variables and prevalence of

infection in blood. Linear by linear association Chi-square test was

used to assess association between ordinal variables and prevalence

of infection in blood. Logistic regression models were employed to

estimate the effects of sex, age groups, body condition scores,

number of fleas, trapping session and risk of blood infection. Odds

ratio (OR) and 95% confidence interval (CI) are presented. All

analyses were carried out using Stata 9 software package

(StataCorp, Texas, USA).

Supporting Information

Figure S1 AFLP fingerprints generated from DNA
samples of 3 geographically distinct isolates of T.
pestanai (1: France isolate; 2: Oxford isolate; 3: East Anglia

isolate) with 4 different primer combinations. The selective EcoRI

(E) primers and MseI (M) primers included two added bases (either

2AC, 2AT or 2CG).

(TIF)
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